JPH0511048B2 - - Google Patents

Info

Publication number
JPH0511048B2
JPH0511048B2 JP62191516A JP19151687A JPH0511048B2 JP H0511048 B2 JPH0511048 B2 JP H0511048B2 JP 62191516 A JP62191516 A JP 62191516A JP 19151687 A JP19151687 A JP 19151687A JP H0511048 B2 JPH0511048 B2 JP H0511048B2
Authority
JP
Japan
Prior art keywords
monetite
phosphoric acid
reaction
present
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62191516A
Other languages
Japanese (ja)
Other versions
JPS6437409A (en
Inventor
Hideki Aoki
Osamu Fujii
Atsuo Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19151687A priority Critical patent/JPS6437409A/en
Publication of JPS6437409A publication Critical patent/JPS6437409A/en
Publication of JPH0511048B2 publication Critical patent/JPH0511048B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、従来のモネタイトの製造方法と異な
り、生成反応に関与する水分を大幅に減少し、か
つ該反応溶液の[PH]条件を簡易化することによ
つて製造工程の高能率化を図り、更に生成反応の
温度範囲を制御することによつて、生産物の結晶
サイズを制御し得るようにしたモネタイト
(CaHPO4)の新規な製造方法に関するものであ
る。
Detailed Description of the Invention [Industrial Application Field] Unlike conventional monetite production methods, the present invention significantly reduces the water involved in the production reaction and simplifies the [PH] conditions of the reaction solution. A new method for producing monetite (CaHPO 4 ) that improves the efficiency of the production process by increasing the efficiency of monetite (CaHPO 4 ) and controlling the crystal size of the product by controlling the temperature range of the production reaction. It is about the method.

[従来の技術] モネタイトは、一般蛍光用ハロリン酸カルシウ
ム蛍光体の主要原料として重要であるばかりでな
く、人工骨、人工歯根などの医療用材料として近
年注目されているハイドロキシアパタイトなどの
りん酸カルシウム化合物製造のための基本原料で
もある。
[Prior Art] Monetite is not only important as a main raw material for calcium halophosphate phosphors for general fluorescent use, but also calcium phosphate compounds such as hydroxyapatite, which has attracted attention in recent years as a medical material for artificial bones, artificial tooth roots, etc. It is also the basic raw material for manufacturing.

従来のモネタイトの製造方法は、CaO−P2O5
−H2O系から製造するが、具体的には、りん酸
アルカリ溶液と塩化カルシウム溶液とを用い、ゆ
つくりとよくかきまぜ反応させる。その際温度を
100[℃]附近に保ち、[PH]を4ないし5の範囲
に保持しながら25ないし30時間かけて合成すると
いうものである。
The conventional method for producing monetite is CaO−P 2 O 5
It is produced from a -H 2 O system, and specifically, an alkaline phosphate solution and a calcium chloride solution are used and reacted by stirring slowly and thoroughly. At that time, the temperature
The synthesis is carried out over a period of 25 to 30 hours while maintaining the temperature around 100 [℃] and the [PH] in the range of 4 to 5.

[本発明の目的:解決しようとする問題点] 上記従来の製造方法では、反応温度を常に100
[℃]附近に保つことや、[PH]を比較的狭い範囲
に保つ必要があるので、その調整に『PHスタツ
ト』を使用しなければならず、製造工程中の要件
の制御も難かしく、また複雑で比較的高価な制御
器具を必要とするなどの問題点がある。また原料
として、上記の如く塩と塩を使用するため、[PH]
の制御をすることが難しいという難点もある。
[Objective of the present invention: Problems to be solved] In the above conventional production method, the reaction temperature is always kept at 100%.
It is necessary to keep the temperature close to [℃] and [PH] within a relatively narrow range, so a PH stat must be used to adjust it, and it is difficult to control the requirements during the manufacturing process. There are also other problems, such as the need for complex and relatively expensive control equipment. In addition, since salt and salt are used as raw materials as mentioned above, [PH]
Another drawback is that it is difficult to control.

かつ、両方の塩を水溶液とするために、大量の
水が反応系に存在することとなり、また反応が進
むに従つて塩素根等の有害不純物が副生するた
め、その除去の工程も必要となることから、製造
方法として非能率である、という欠点もある。
In addition, since both salts are made into an aqueous solution, a large amount of water is present in the reaction system, and as the reaction progresses, harmful impurities such as chlorine radicals are produced as by-products, so a process for their removal is also required. Therefore, it also has the disadvantage of being inefficient as a manufacturing method.

なおまた、この従来の方法では、反応温度が高
いなどのため、得られるモネタイトは、殆んど比
較的大きな結晶ばかりであるから、用途がせまく
限定されるという問題点もある。
Furthermore, in this conventional method, the reaction temperature is high, and most of the monetite obtained is relatively large crystals, so there is a problem that its uses are narrowly limited.

[本発明の構成:問題点解決の手段] 本発明では、モネタイトの新規な製造方法とし
て以下の如く構成し、それによつて、上記従来技
術における問題点ないしは諸欠点をほぼ解決する
に至つた。
[Structure of the present invention: Means for solving the problems] The present invention has the following structure as a new method for producing monetite, thereby almost solving the problems and various drawbacks of the above-mentioned prior art.

先ず濃度が10[%]以上90[%]以下のりん酸水
溶液を用い、その中に、カルシウムの酸化物、水
酸化物、炭酸化物のうちから選ばれた1種以上の
粉末を徐々に加え、[PH]は3.5以下の強酸領域に
保ち、また温度は、この反応が可能である範囲
で、一定時間反応させた後、溶液中に生じた沈澱
物(CaHPO4)を濾過、洗浄、乾燥させること
を、特徴とする。
First, a phosphoric acid aqueous solution with a concentration of 10% to 90% is used, and one or more powders selected from calcium oxides, hydroxides, and carbonates are gradually added thereto. , [PH] is kept in the strong acid range of 3.5 or less, and the temperature is kept within the range where this reaction is possible. After reacting for a certain period of time, the precipitate (CaHPO 4 ) formed in the solution is filtered, washed, and dried. It is characterized by causing

次に、前記の製造方法のうちの一つの実施態様
としては、前記のりん酸溶液と前記のカルシウム
化合物粉末を反応させる温度範囲が、40[℃]以
下とする態様であつて、主として微晶質のモネタ
イトを生ぜしめる製造方法である。
Next, in one embodiment of the above manufacturing method, the temperature range in which the phosphoric acid solution and the calcium compound powder are reacted is 40 [°C] or less, and mainly microcrystalline This is a manufacturing method that produces high quality monetite.

更に次に、前記の製造方法のうち、もう一つの
実施態様は、前記のりん酸溶液と前記のカルシウ
ム化合物粉末を反応させる温度範囲を40[℃]を
超える範囲として、主として結晶質のモネタイト
を生ぜしめる製造方法である。
Furthermore, in another embodiment of the above-mentioned manufacturing method, the temperature range in which the phosphoric acid solution and the above-mentioned calcium compound powder are reacted is in a range exceeding 40 [°C], and mainly crystalline monetite is produced. This is a manufacturing method that produces

次に上記の本発明の構成要素について説明を加
える。本発明では従来方法と異なり、得られるモ
ネタイトの結晶粒子のサイズを自由に制御し得る
ようにした。そのために、反応溶液の濃度と温度
を制御するようにした。更にそのために、上記の
ように使用りん酸の濃度を高濃度とするが、これ
は10[%]以上90[%]以下とすることが必要であ
る。この理由は10[%]未満とすると、所謂希薄
溶液となり、収率が低下し、かつ、モネタイト結
晶粒子のサイズは大きくなり易く、粒子サイズの
制御は困難となるからである。
Next, the above-mentioned components of the present invention will be explained. In the present invention, unlike conventional methods, the size of the obtained monetite crystal particles can be freely controlled. For this purpose, the concentration and temperature of the reaction solution were controlled. Furthermore, for this purpose, the concentration of phosphoric acid used is made high as described above, and it is necessary that this is 10 [%] or more and 90 [%] or less. The reason for this is that if it is less than 10%, it becomes a so-called dilute solution, the yield decreases, and the size of the monetite crystal particles tends to increase, making it difficult to control the particle size.

また90[%]を超えると容器が侵蝕されるおそ
れがあり、工業的にも成立たなくなるからであ
る。
Moreover, if it exceeds 90 [%], there is a risk that the container will be eroded, making it unfeasible industrially.

また、本発明において、カルシウム化合物とし
て粉末を用いるのは、反応溶液の濃度の制御を行
なうために、出発状態を濃くしておくことが必要
であるからである。即ち、従来技術ではりん酸塩
の水溶液とカルシウム塩の水溶液を用いていたと
ころ、本発明製造方法では、高濃度のりん酸とカ
ルシウム化合物の乾燥状態の粉末を用いることに
より、出発時に反応系を高濃度のものに保つ。こ
のカルシウム化合物はカルシウムの酸化物、水酸
化物、炭酸化物などのうち選ばれた1種以上何種
類を用いてもよい。而してこれらは具体的には、
CaO,Ca(OH)2,CaCO3などである。これらの
うち、結晶粒子サイズを制御して、微晶質モネタ
イトを製造するためには望ましくはCaCO3を用
いるのがよい。これはCaCO3を使用すると発泡
効果があるからであり、発泡効果があると、製造
されるモネタイトが微晶質となりやすいことは本
発明者等の実験による新しい知見である。
Further, in the present invention, powder is used as the calcium compound because it is necessary to keep the starting state concentrated in order to control the concentration of the reaction solution. That is, while the conventional technology used an aqueous solution of phosphate and an aqueous solution of calcium salt, the production method of the present invention uses dry powders of highly concentrated phosphoric acid and calcium compounds, so that the reaction system can be prepared at the start. Keep it highly concentrated. The calcium compound may be one or more selected from calcium oxides, hydroxides, carbonates, etc. Specifically, these are:
These include CaO, Ca(OH) 2 and CaCO 3 . Among these, CaCO 3 is preferably used to control the crystal grain size and produce microcrystalline monetite. This is because the use of CaCO 3 has a foaming effect, and it is a new finding from experiments by the present inventors that when the foaming effect is present, the monetite produced tends to become microcrystalline.

かつまた、反応速度を調節するため、これらの
カルシウム化合物の粉末のサイズは100[μm]以
下であることが望ましく、またこれらの粉末を上
記りん酸に加える操作は徐々に行う必要がある。
急激に加えると炭酸ガスを発生するような場合に
おいては、反応系溶液の飛散のおそれもあるから
である。
Furthermore, in order to control the reaction rate, the size of the powder of these calcium compounds is preferably 100 [μm] or less, and the operation of adding these powders to the phosphoric acid needs to be performed gradually.
This is because, in cases where carbon dioxide gas is generated if added rapidly, there is a risk that the reaction solution will scatter.

つぎに反応溶液の[PH]を3.5以下とし強酸領
域とするのは、矢張りモネタイトを生成せしめる
ため、かつまたその微結晶を得るために必要な制
御である。この理由は反応溶液の[PH]が3.5を
超えると、モネタイトの比較的大きな結晶粒子が
増加するばかりでなく、ブルツシヤイト
(CaHPO4・2H2O)も不純物として生ずるから
である。
Next, setting the [PH] of the reaction solution to 3.5 or less to be in a strong acid range is necessary control in order to generate monetite and to obtain its microcrystals. The reason for this is that when the [PH] of the reaction solution exceeds 3.5, not only relatively large crystal particles of monetite increase, but also bruschite (CaHPO 4 .2H 2 O) is produced as an impurity.

また、本発明において、単に[PH]の上限のみ
を限定するのは、前記従来技術のように[PH]
を、或るせまい範囲に制御するよりも、制御しや
すく高能率であるからである。
Furthermore, in the present invention, merely limiting the upper limit of [PH] is different from that in the prior art described above.
This is because it is easier to control and more efficient than controlling it within a certain narrow range.

また、りん酸と炭酸カルシウムを用いる場合に
は、モネタイトが合成されると同時に、H2Oが
生成してりん酸が希釈されるので、高濃度のりん
酸を用いるのであるが、更に反応溶液の濃度と前
記の[PH]を調節するのに、必要な場合には、濃
りん酸等を用いる。
Furthermore, when using phosphoric acid and calcium carbonate, H 2 O is generated and the phosphoric acid is diluted at the same time as monetite is synthesized, so a high concentration of phosphoric acid is used, but the reaction solution is Concentrated phosphoric acid or the like is used if necessary to adjust the concentration of and the above-mentioned [PH].

次に40[℃]を別の実施態様の反応温度の一つ
の限界としたことは、反応溶液の温度が40[℃]
以下であると生成するモネタイトは微結晶となり
易く、また、40[℃]を超えると比較的大きな結
晶ができ易いという、本発明者等の研究上の新し
い知見、成果にもとづくものである。
Next, setting 40 [℃] as one limit of the reaction temperature in another embodiment means that the temperature of the reaction solution is 40 [℃]
This is based on the new findings and results of the research conducted by the present inventors, such as that when the temperature is below, the monetite produced tends to become microcrystalline, and when the temperature exceeds 40 [°C], relatively large crystals tend to form.

以上のように生成したモネタイトは濾過洗浄さ
れ、乾燥されて製品となるが、この濾過洗浄の
際、分離された濾液には、濃りん酸もしくは無水
りん酸を加えて再利用すれば、本発明製造方法は
連続操業が可能となる。
The monetite produced as described above is filtered and washed and dried to become a product. During this filtration and washing, the separated filtrate can be reused by adding concentrated phosphoric acid or phosphoric acid anhydride. The manufacturing method enables continuous operation.

[本発明の作用] 本発明の作用を、カルシウム化合物として炭酸
カルシウムを用いた例について説明すると実験式
(1)のようになる。
[Action of the present invention] The effect of the present invention can be explained using an example in which calcium carbonate is used as a calcium compound.
It becomes like (1).

H3PO4+CaCO3 →CaHPO4+H2O+CO2↑ …(1) 即ちモネタイト(CaHPO4)が合成されると同時
に、H2Oが生成するのでりん酸は希釈される。
従つて最初から高濃度のりん酸を使う方が効率が
良い。またCO2が発生し、反応液中に発泡が見ら
れるが、これは上記実験式(1)に見られるように、
分子サイズより発泡するので、沈殿物としてのモ
ネタイトの凝集が起こりにくく、従つてモネタイ
トは微結晶として生成すると考えられるのであ
る。
H 3 PO 4 +CaCO 3 →CaHPO 4 +H 2 O+CO 2 ↑ (1) That is, at the same time as monetite (CaHPO 4 ) is synthesized, H 2 O is generated and phosphoric acid is diluted.
Therefore, it is more efficient to use highly concentrated phosphoric acid from the beginning. In addition, CO 2 is generated and foaming is observed in the reaction solution, but this is due to the fact that, as seen in the above experimental formula (1),
Since it foams due to its molecular size, it is difficult for monetite to aggregate as a precipitate, and it is therefore thought that monetite is formed as microcrystals.

このようにして得られた微結晶を濾過洗浄すれ
ば濾液は薄いりん酸溶液となるので、これに無水
りん酸等を加えることにより、高濃度のりん酸と
し、これに再びCaCO3を加えて上記(1)式の作用
を繰り返し、本発明製造方法は高能率の連続操業
が可能となる。
If the microcrystals obtained in this way are filtered and washed, the filtrate will become a dilute phosphoric acid solution, and by adding phosphoric anhydride etc. to this, it will be made into a highly concentrated phosphoric acid, and then CaCO 3 will be added to this again. By repeating the effect of equation (1) above, the production method of the present invention enables highly efficient continuous operation.

次いで数件の実施例に沿い本発明の製造方法に
つき、更に詳細に説明する。
Next, the manufacturing method of the present invention will be explained in more detail with reference to several examples.

〔実施例 1] 出発物質には特級りん酸(関東化学(株)製)とア
ルカリ分析用炭酸カルシウム(和光純薬(株)製)を
用いた。5[mol%]のりん酸水溶液100[g]に
14[g]の炭酸カルシウムを加え、室温で攪しな
がら24[時間]反応させた。この後、沈澱を濾過、
洗浄、乾燥した。この産物を粉末X線回析法によ
り同定し、SEM観察したところ5[μm]程度の
モネタイト単相であつた。また重量測定の結果、
CaCO3に対しての収率は、88[%]であつた。濾
液の[PH]は1.9であつた。
[Example 1] Special grade phosphoric acid (manufactured by Kanto Chemical Co., Ltd.) and calcium carbonate for alkali analysis (manufactured by Wako Pure Chemical Industries, Ltd.) were used as starting materials. 5 [mol%] phosphoric acid aqueous solution 100 [g]
14 [g] of calcium carbonate was added, and the mixture was allowed to react for 24 [hours] while stirring at room temperature. After that, filter the precipitate,
Washed and dried. This product was identified by powder X-ray diffraction and SEM observation revealed that it was a single monetite phase with a size of about 5 μm. Also, as a result of weight measurement,
The yield based on CaCO 3 was 88%. [PH] of the filtrate was 1.9.

以上の如く、本実施例により製造されたモネタ
イトは成分は高純度で、かつ微結晶であり、収率
も極めて高いものであつた。
As described above, the monetite produced in this example had high purity and microcrystalline components, and the yield was extremely high.

〔実施例 2〕 出発物質には特級りん酸(関東化学(株)製)とア
ルカリ分析用炭酸カルシウム(和光純薬(株)製)を
用いた。6[mol%]のりん酸水溶液100[g]に
12[g]の炭酸カルシウムを加え、室温で攪しな
がら24[時間]反応させた。この後、沈澱を濾過、
洗浄、乾燥した。濾液の[PH]は1.0であつた。
この産物を粉末X線回析法により同定し、SEM
観察したところ実施例1に比較して粒径の小さい
モネタイトが得られた。
[Example 2] Special grade phosphoric acid (manufactured by Kanto Chemical Co., Ltd.) and calcium carbonate for alkali analysis (manufactured by Wako Pure Chemical Industries, Ltd.) were used as starting materials. 6 [mol%] phosphoric acid aqueous solution 100 [g]
12 [g] of calcium carbonate was added, and the mixture was allowed to react for 24 [hours] while stirring at room temperature. After that, filter the precipitate,
Washed and dried. [PH] of the filtrate was 1.0.
This product was identified by powder X-ray diffraction and SEM
When observed, monetite with a smaller particle size than that of Example 1 was obtained.

即ち、本実施例では実施例1よりも高濃度のり
ん酸を使用した結果、更に微細なモネタイトの結
晶が得られた。
That is, in this example, as a result of using a higher concentration of phosphoric acid than in Example 1, even finer monetite crystals were obtained.

〔実施例 3〕 出発物質には特級りん酸(関東化学(株)製)と特
級水酸化カルシウム(関東化学(株)製)を用いた。
5[mol%]のりん酸水溶液100[g]に14[g]の
水酸化カルシウムを加え、室温で しながら24
[時間]反応させた。この後、沈澱を濾過、洗浄、
乾燥した。この産物を粉末X線回析法により同定
し、SEM観察したところ5[μm]程度のモネタ
イト単相であつた。また重量測定の結果、Ca
(OH)2に対して収率は、90[%]であつた。濾液
の[PH]は2.0であつた。
[Example 3] Special grade phosphoric acid (manufactured by Kanto Kagaku Co., Ltd.) and special grade calcium hydroxide (manufactured by Kanto Kagaku Co., Ltd.) were used as starting materials.
Add 14 [g] of calcium hydroxide to 100 [g] of 5 [mol%] phosphoric acid aqueous solution, and add 24 [g] of calcium hydroxide at room temperature.
[Time] Allowed to react. After this, the precipitate is filtered, washed,
Dry. This product was identified by powder X-ray diffraction and SEM observation revealed that it was a single monetite phase with a size of about 5 [μm]. Also, as a result of weight measurement, Ca
The yield was 90% based on (OH) 2 . [PH] of the filtrate was 2.0.

本例のようにカルシウム化合物として水酸化カ
ルシウムを用いると、炭酸カルシウムを用いた場
合と比較して、モネタイトの結晶サイズは同程度
であるが、収率は一層向上するという結果が得ら
れた。
When calcium hydroxide was used as the calcium compound as in this example, the crystal size of monetite was about the same, but the yield was further improved compared to when calcium carbonate was used.

〔実施例 4〕 出発物質には特級りん酸(関東化学(株)製)とア
ルカリ分析用炭酸カルシウム(和光純薬(株)製)を
用いた。10[mol%]のりん酸水溶液100[g]に
7.8[g]の炭酸カルシウムを徐々に加え、室温で
反応溶解させた。この反応溶液を100[℃]に加熱
した。この後、沈澱を濾過、洗浄、乾燥した。こ
の産物を粉末X線回析法により同定し、SEM観
察したところ500[μm]程度のモネタイト単相で
あつた。炉液の[PH]は0.8であつた。
[Example 4] Special grade phosphoric acid (manufactured by Kanto Chemical Co., Ltd.) and calcium carbonate for alkali analysis (manufactured by Wako Pure Chemical Industries, Ltd.) were used as starting materials. 10 [mol%] phosphoric acid aqueous solution 100 [g]
7.8 [g] of calcium carbonate was gradually added and reacted and dissolved at room temperature. This reaction solution was heated to 100 [°C]. After this, the precipitate was filtered, washed and dried. This product was identified by powder X-ray diffraction and SEM observation revealed that it was a single monetite phase of about 500 [μm]. [PH] of the furnace liquid was 0.8.

本実施例では、このように反応温度が室温より
も高温の100[℃]、即ち従来方法と同じであるが、
矢張り高温では、反応溶液は強酸領域でも、製造
されるモネタイトの結晶サイズは比較的大きいと
いう結果が得られている。
In this example, the reaction temperature was 100 [°C] higher than room temperature, that is, the same as the conventional method, but
At extremely high temperatures, the crystal size of the produced monetite is relatively large even when the reaction solution is in a strongly acidic region.

[本発明の効果] (1) 本発明に係るモネタイトの製造方法によれ
ば、高濃度のりん酸液と乾燥粉末状のカルシウ
ム化合物を用いるので、従来法のようなりん酸
塩の水溶液とカルシウム塩の水溶液を用いて、
多量の水が反応系に存在する方法とは異なり、
最初より使用水分は必要最小限におさえること
ができるから、反応液、濾過液等の単位量は、
従来より、格段に少なく高能率である。
[Effects of the present invention] (1) According to the method for producing monetite according to the present invention, a highly concentrated phosphoric acid solution and a dry powdered calcium compound are used. Using an aqueous salt solution,
Unlike methods where large amounts of water are present in the reaction system,
Since the amount of water used can be kept to the minimum necessary from the beginning, the unit amounts of reaction liquid, filtrate, etc.
It is much less and more efficient than the conventional method.

その上従来法のように生成反応の途中で塩素
根のような有害不純物も出ないので、その除去
工程も不必要となるから、生産設備、工程の全
面に亘り、従来法よりも、総合して大幅に高能
率である。
Furthermore, unlike conventional methods, harmful impurities such as chlorine radicals are not produced during the production reaction, and the removal process is not necessary. It is significantly more efficient.

(2) また、本発明方法では、従来法のように塩素
根のような有害な不純物を副生しないから、そ
の除去のための設備も不要であり、!?かに有利
である。
(2) Furthermore, unlike the conventional method, the method of the present invention does not produce harmful impurities such as chlorine radicals, so there is no need for equipment for their removal, which is quite advantageous!

(3) かつまた、本発明方法では、[PH]の制御を
上限のみにしているので、従来法のように各種
塩を用いるために反応溶液の[PH]をせまい範
囲に制御しなければならない方法と異なり、制
御方法が簡潔で、生産設備も安上りである。
(3) Furthermore, in the method of the present invention, [PH] is controlled only at the upper limit, so unlike conventional methods, the [PH] of the reaction solution must be controlled within a narrow range due to the use of various salts. Unlike conventional methods, the control method is simple and the production equipment is inexpensive.

(4) 本発明の製造方法は、従来法と異なり、製造
されるモネタイトの結晶粒のサイズを反応溶液
の濃度と[PH]により、自由に制御することが
できるもので、製造されるモネタイトの用途を
その結晶サイズの大小により広範囲に拡げるこ
とができる点特別の効果がある。
(4) Unlike conventional methods, the production method of the present invention allows the size of the crystal grains of the monetite produced to be freely controlled by the concentration and [PH] of the reaction solution. It has a special effect in that it can be used in a wide range of applications depending on the crystal size.

(5) 更にまた、本発明に係るモネタイトの製造方
法では、出発時の反応溶液を高濃度にしておく
方法であるから、製造されたモネタイトを濾別
した後の濾液に無水りん酸等を加えて濃度、
[PH]を再調整し、かくして連続操業を行なう
ことができ、その結果、製造能率は益々高く、
生産物のコストは大幅に安くなる、という大き
な効果も得られる。
(5) Furthermore, in the method for producing monetite according to the present invention, since the starting reaction solution is kept at a high concentration, phosphoric anhydride or the like is added to the filtrate after the produced monetite is filtered. concentration,
[PH] can be readjusted and thus continuous operation can be carried out, resulting in higher and higher production efficiency.
Another major effect is that the cost of products will be significantly lower.

(6) 以上のように本発明に係るモネタイトの製造
方法は、製造設備の低廉、工程の高能率化、生
産物の用途により広範囲に適用制御し得る、
等々総合的各面において、従来法に比し、経済
的かつ質的に画期的な効果をもたらす製造方法
であるということができる。
(6) As described above, the method for producing monetite according to the present invention allows for inexpensive production equipment, high efficiency of the process, and can be applied and controlled over a wide range of uses of the product.
In all aspects, it can be said that this manufacturing method brings about revolutionary effects economically and qualitatively compared to conventional methods.

Claims (1)

【特許請求の範囲】 1 濃度が10[%]以上90[%]以下のりん酸水溶
液中に、カルシウムの酸化物、水酸化物、炭酸化
物のうちから選ばれた1種以上の粉末を徐々に加
え、[PH]3.5以下の強酸領域で、反応が可能であ
る温度範囲で、一定時間反応させた後、溶液中の
沈殿物を濾過、洗浄、乾燥させることを特徴とす
るモネタイトの製造方法。 2 前記の反応させる温度範囲が40[℃]以下で
あつて、主として微晶質のモネタイトを生ぜしめ
るものである。特許請求の範囲第1項に記載のモ
ネタイトの製造方法。 3 前記の反応させる温度範囲が、40[℃]を超
えるものであつて、主として結晶質のモネタイト
を生ぜしめるものである、特許請求の範囲第1項
に記載のモネタイトの製造方法。
[Scope of Claims] 1. Into a phosphoric acid aqueous solution having a concentration of 10% to 90%, one or more powders selected from calcium oxides, hydroxides, and carbonates are gradually added. In addition, a method for producing monetite, which is characterized by reacting for a certain period of time in a strong acid region of [PH] 3.5 or less, at a temperature range where the reaction is possible, and then filtering, washing, and drying the precipitate in the solution. . 2. The temperature range for the reaction is 40 [°C] or less, and mainly microcrystalline monetite is produced. A method for producing monetite according to claim 1. 3. The method for producing monetite according to claim 1, wherein the temperature range for the reaction exceeds 40 [° C.] and mainly produces crystalline monetite.
JP19151687A 1987-08-01 1987-08-01 Production of monetite Granted JPS6437409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19151687A JPS6437409A (en) 1987-08-01 1987-08-01 Production of monetite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19151687A JPS6437409A (en) 1987-08-01 1987-08-01 Production of monetite

Publications (2)

Publication Number Publication Date
JPS6437409A JPS6437409A (en) 1989-02-08
JPH0511048B2 true JPH0511048B2 (en) 1993-02-12

Family

ID=16275954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19151687A Granted JPS6437409A (en) 1987-08-01 1987-08-01 Production of monetite

Country Status (1)

Country Link
JP (1) JPS6437409A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832551B2 (en) * 1989-06-24 1996-03-29 旭光学工業株式会社 Porous calcium phosphate-based compound particles and method for producing the same
GB201101219D0 (en) * 2011-01-24 2011-03-09 King S College London Method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921510A (en) * 1982-07-23 1984-02-03 ヘキスト・アクチエンゲゼルシヤフト Manufacture of hydrogen calcium phosphate dihydrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921510A (en) * 1982-07-23 1984-02-03 ヘキスト・アクチエンゲゼルシヤフト Manufacture of hydrogen calcium phosphate dihydrate

Also Published As

Publication number Publication date
JPS6437409A (en) 1989-02-08

Similar Documents

Publication Publication Date Title
CA1297656C (en) Process of preparing hydroxylapatite
JPS6287406A (en) Production of beta-tricalcium phosphate
WO2008123566A1 (en) Carbonic acid group-containing magnesium hydroxide particle and method for producing the same
JPH0959018A (en) Production of alumina particle
JPH1121125A (en) Fine thin platy boehmite particles and their production
JPH03170325A (en) Production of magnesium hydroxide
JPH0511048B2 (en)
JPH0415166B2 (en)
JPS624324B2 (en)
JP2675465B2 (en) Hydrous calcium carbonate and method for producing the same
US3384453A (en) Process for preparing highly crystalline alpha strontium acid phosphate
JPH01264915A (en) Production of fluoroapatite
KR100970162B1 (en) Method of synthesis for crystal hydroxyapatite using bone of animal
JPS6232125B2 (en)
JPH04261189A (en) Production of tin trifluoromethanesulfonate
JPS63100008A (en) Preparation of tricalcium phosphate
JP2592563B2 (en) Method for producing octacalcium phosphate
JPS6246908A (en) Production of hydroxyapatite
RU2285667C1 (en) Method of production of the high purity magnesium nitrate hexahydrate from the technical solution of magnesium nitrate
JPH07206411A (en) Production of octacalcium phosphate
US4203955A (en) Process of preparing calcium hydrogen phosphate anhydride suitable as material for phosphors
RU2457174C1 (en) Method of producing nanosized hydroxyapatite powder
RU2147290C1 (en) Method for production of fine single-phase hydroxyl-apatite
KR100275628B1 (en) Manufacturing method of high-purity crystalline hydroxyapatite
O’Sullivan et al. 1Chanelle Pharma, Galway, Ireland, 2PBC BioMed, Shannon, Ireland