JPH0510727A - Thin film inspection apparatus and its inspection method - Google Patents

Thin film inspection apparatus and its inspection method

Info

Publication number
JPH0510727A
JPH0510727A JP16475291A JP16475291A JPH0510727A JP H0510727 A JPH0510727 A JP H0510727A JP 16475291 A JP16475291 A JP 16475291A JP 16475291 A JP16475291 A JP 16475291A JP H0510727 A JPH0510727 A JP H0510727A
Authority
JP
Japan
Prior art keywords
thin film
light
stage
controller
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16475291A
Other languages
Japanese (ja)
Inventor
Atsushi Kubota
篤 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16475291A priority Critical patent/JPH0510727A/en
Publication of JPH0510727A publication Critical patent/JPH0510727A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To make the thin films uniformity inspection efficient. CONSTITUTION:A thin film inspection apparatus is composed of a light source 4, a monochrometer 5, a light intensity detector 6 facing to the monochrometer 5, a stage 10 to support a substrate 2 coated with a thin film 3, a radiation light controller 9 to control the wavelength of the radiation light 17, a stage controller 11 to drive the stage 10 so that the radiation light 17 scans the thin film 3, a detected light controller 12 to control the wavelength of the detection light to be detected by the light intensity detector 6, a controlling processing apparatus 13 to control the stage 10, the radiation light controller 9, and the detected light controller 12 and carry out data processing of output signals from the light intensity detector 6, and output apparatus 14, 15 to make the output signals from the controlling processing apparatus 13 into visible data. Using the apparatus, the uniformity of the thickness of a thin film 3 is inspected based on the light transmitted through the thin film 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は透明基板に被着した薄膜
の検査装置と検査方法、特に、膜厚の均一性検査に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection apparatus and an inspection method for a thin film deposited on a transparent substrate, and more particularly to an inspection of film thickness uniformity.

【0002】近年、コンピュータの高速化,大容量化が
著しく進歩しており、それに伴って半導体装置製造技術
の一層の精密化が要求される。そのため、薄膜の検査を
効率的かつ高精度に行う必要がある。
In recent years, the speeding up and increasing the capacity of computers have been remarkably advanced, and accordingly, further refinement of semiconductor device manufacturing technology is required. Therefore, it is necessary to inspect the thin film efficiently and highly accurately.

【0003】[0003]

【従来の技術】従来、半導体装置に用いる薄膜の厚さを
検査する方法として、光干渉法,X線法,触針法,断面
の光学的観察法,レーザ光を使用したスペクトル法等が
知られている。これらの従来方法は小範囲の膜厚測定に
適しているが、半導体ウエーハ全体および液晶表示パネ
ルのような大型基板に被着した薄膜の均一性検査に適用
したとき、ウエーハや基板自体のひずみ,基板搭載テー
ブルの高さのずれ等の影響を測定値から分離することが
困難である。
2. Description of the Related Art Conventionally, as a method for inspecting the thickness of a thin film used for a semiconductor device, there are known an optical interference method, an X-ray method, a stylus method, an optical observation method of a cross section, a spectrum method using a laser beam and the like. Has been. These conventional methods are suitable for measuring the film thickness in a small range, but when applied to the uniformity inspection of thin films deposited on the entire semiconductor wafer and large substrates such as liquid crystal display panels, distortion of the wafer and the substrate itself, It is difficult to separate the influence of the height deviation of the board mounting table from the measured value.

【0004】特に、液晶表示パネルにおけるように、薄
膜の一辺の長さが25cm以上にもなると、従来方法で薄膜
の均一性を検査するにはあまりにも時間が掛かり過ぎ
る。
In particular, when the length of one side of the thin film is 25 cm or more as in a liquid crystal display panel, it takes too much time to inspect the uniformity of the thin film by the conventional method.

【0005】[0005]

【発明が解決しようとする課題】以上説明したように従
来の膜厚検査方法は、小範囲の膜厚に対し1%または2
Å程度の高精度に測定可能である。しかし、広範囲に渡
って膜厚の均一性を効率的に測定をしようとすると、基
板自体のひずみ等に影響され不適当であり、かつ、時間
が掛かり過ぎるという問題点があった。
As described above, according to the conventional film thickness inspection method, the film thickness in a small range is 1% or 2%.
Å Can be measured with high accuracy. However, when trying to efficiently measure the uniformity of the film thickness over a wide range, there is a problem that it is unsuitable due to the strain of the substrate itself, and that it takes too much time.

【0006】[0006]

【課題を解決するための手段】前記問題点の解決を目的
とする本発明は図1によれば、透明基板2に被着した薄
膜3の厚さの均一性を光透過率の変化によって測定する
方法であって、光源4,特定波長の光を透過させるモノ
クロメータ5,モノクロメータ5を介して光源4に対向
する光強度検出器6,基板2をモノクロメータ5と光強
度検出器6との対向間に支持するステージ10, モノクロ
メータ5を透過して薄膜3に照射する光17の波長を制御
する照射光コントローラ9,薄膜3に照射する光17が薄
膜3の全面を走査するようにステージ10を2軸方向に移
動させるステージコントローラ11, 薄膜3を透過した透
過光から光強度検出器6が検出する検出光の波長を制御
する検出光コントローラ12, ステージ10と照射光コント
ローラ9と検出光コントローラ12を制御し光強度検出器
6からの出力信号をデータ処理する制御処理装置13, 制
御処理装置13からの出力信号を可視データにする出力装
置14および15を具えたことを特徴とする薄膜検査装置で
あり、前記薄膜検査装置を使用する薄膜厚さの均一性検
査において、検出光コントローラ12による検出光の波長
を、照射光コントローラ9による照射光17の波長と同一
にすることを特徴とする、および、前記薄膜検査装置を
使用する薄膜厚さの均一性検査において、透明基板2に
被着した薄膜3の所要個所を表呈せしめる不透明マスク
を薄膜3に重ね、ステージ10を移動せしめ、薄膜3の所
要個所における均一性を検査することを特徴とする、さ
らに、前記薄膜検査装置を使用する薄膜厚さの均一性検
査において、ステージ10を移動せしめて薄膜3の全面を
フォローする照射光17の走査が、所定方向にシフトする
ジグザグコースの繰り返しとすることを特徴とする薄膜
検査方法である。
According to the present invention for solving the above-mentioned problems, according to FIG. 1, the uniformity of the thickness of the thin film 3 deposited on the transparent substrate 2 is measured by the change of the light transmittance. The light intensity detector 6, which faces the light source 4 through the light source 4, the monochromator 5 that transmits light of a specific wavelength, and the monochromator 5, and the substrate 2 includes the monochromator 5 and the light intensity detector 6. 10, the irradiation light controller 9 that controls the wavelength of the light 17 that radiates the thin film 3 through the monochromator 5, so that the light 17 that illuminates the thin film 3 scans the entire surface of the thin film 3. A stage controller 11 that moves the stage 10 in two axial directions, a detection light controller 12 that controls the wavelength of the detection light that the light intensity detector 6 detects from the transmitted light that has passed through the thin film 3, a stage 10, an irradiation light controller 9, and detection Light control And a control processing device 13 for controlling the image data output signal from the light intensity detector 6 and output devices 14 and 15 for converting the output signal from the control processing device 13 into visible data. It is a thin film inspection device, and in the uniformity inspection of the thin film thickness using the thin film inspection device, the wavelength of the detection light by the detection light controller 12 is the same as the wavelength of the irradiation light 17 by the irradiation light controller 9. And, in the uniformity inspection of the thin film thickness using the thin film inspection apparatus, an opaque mask showing the required portions of the thin film 3 deposited on the transparent substrate 2 is placed on the thin film 3 and the stage 10 is moved. , Inspecting the uniformity of the thin film 3 at required locations. Further, in the uniformity inspection of the thin film thickness using the thin film inspection apparatus, the stage 10 is moved to move the entire thin film 3. Scanning of the irradiation light 17 to follow is a thin film inspection method characterized by a repeating zig-zag course of shifting to a predetermined direction.

【0007】[0007]

【作用】上記手段は、薄膜の厚さの絶対値を測定するの
と異なり、薄膜が厚くなると光透過率が低くなることを
利用した厚さの均一性検査である。そのため本発明装置
は、薄膜の物性により照射する光の波長および検出する
光の波長を選択する必要から、照射光のための波長コン
トローラと検出光のための波長コントローラとを具え、
透明基板に薄膜を被着した被検試料は、照射光が薄膜全
面を走査可能とするため、2軸方向に移動するステージ
に搭載する。
The above-mentioned means is a thickness uniformity test that utilizes the fact that the light transmittance decreases as the thickness of the thin film differs from that in which the absolute value of the thickness of the thin film is measured. Therefore, the device of the present invention comprises a wavelength controller for irradiation light and a wavelength controller for detection light because it is necessary to select the wavelength of light to be irradiated and the wavelength of light to be detected depending on the physical properties of the thin film.
The test sample in which the thin film is applied to the transparent substrate is mounted on a stage that moves in two axis directions so that the irradiation light can scan the entire surface of the thin film.

【0008】さらに、照射光の波長と検出光の波長を同
一に制御すること、被検試料の所要部を表呈せしめるマ
スクを使用することによって検査精度が向上し、ジグザ
グコースの繰り返しで照射光が薄膜に照射するようにす
ることによって、広範囲検査を効率化する。
Furthermore, the inspection accuracy is improved by controlling the wavelength of the irradiation light and the wavelength of the detection light to be the same, and by using a mask that exposes the required portion of the sample to be tested, the irradiation light is repeated by repeating the zigzag course. By irradiating the thin film on the thin film, the wide area inspection is made efficient.

【0009】[0009]

【実施例】図1は本発明に係わる薄膜検査装置のシステ
ム図である。図1において、1は透明基板(ガラス基
板)2に薄膜3を被着した被検試料、4は薄膜3に向け
て光を出射する光源、5は単波長の光を透過するモノク
ロメータ、6は薄膜3を透過した光の強度を測定する光
強度検出器(フォトマルチプライヤ)、7は光強度検出
器6の出力信号(電圧)を増幅するアンプ、8はアンプ
7に接続したX−Yレコーダ、9はモノクロメータ5を
透過し薄膜3に照射する光の波長を制御する照射光コン
トローラ、10は検査試料1を搭載したステージ、11は薄
膜3に照射する照射光17が薄膜3の全面を走査するよう
にステージ10を2軸方向に移動させるステージコントロ
ーラ、12は薄膜3を透過した透過光から光強度検出器6
が検出する光の波長を制御する検出光コントローラ、13
は照射光コントローラ9とステージコントローラ11と検
出光コントローラ12を制御する制御処理装置 (パーソナ
ルコンピュータ) であり、アンプ7を通って制御装置13
に入力した薄膜3の厚さ分布信号は、プリンタ14にて印
刷し表示パネル15に表示されるようになる。
1 is a system diagram of a thin film inspection apparatus according to the present invention. In FIG. 1, 1 is a test sample in which a thin film 3 is coated on a transparent substrate (glass substrate) 2, 4 is a light source that emits light toward the thin film 3, 5 is a monochromator that transmits light of a single wavelength, 6 Is a light intensity detector (photomultiplier) for measuring the intensity of light transmitted through the thin film 3, 7 is an amplifier for amplifying the output signal (voltage) of the light intensity detector 6, and 8 is an XY connected to the amplifier 7. A recorder, 9 is an irradiation light controller that controls the wavelength of light that passes through the monochromator 5 and irradiates the thin film 3, 10 is a stage on which the inspection sample 1 is mounted, and 11 is irradiation light 17 that irradiates the thin film 3 with the entire surface of the thin film 3. A stage controller for moving the stage 10 in two axial directions so as to scan the beam, and 12 is a light intensity detector 6 from the transmitted light transmitted through the thin film 3.
Detection light controller, which controls the wavelength of light detected by
Is a control processing device (personal computer) that controls the irradiation light controller 9, the stage controller 11, and the detection light controller 12, and the control device 13 passes through the amplifier 7.
The thickness distribution signal of the thin film 3 input to is printed by the printer 14 and displayed on the display panel 15.

【0010】光源4の出射光16から単一波長の光を透過
させるモノクロメータ5は、照射光コントローラ9によ
って、例えば 380nm〜780nm の中から選択された単一波
長の照射光17を透過させる。照射光17の波長は、薄膜3
の分光スペクトルより、厚さ変動の検出に適した値に設
定する。
The monochromator 5 which transmits the light of the single wavelength from the light 16 emitted from the light source 4 transmits the irradiation light 17 of the single wavelength selected from, for example, 380 nm to 780 nm by the irradiation light controller 9. The wavelength of the irradiation light 17 is the thin film 3
Set to a value suitable for detecting the thickness variation from the spectrum of.

【0011】照射光17を照射したとき薄膜3を透過した
透過光18が入射する光強度検出器6は、外部からの入射
光等に影響されないようにするため、検出光コントロー
ラ12によって予め設定した波長の光を電気量に変換し、
電気信号として出力する。該電気信号は、アンプ7にて
増幅しX−Yレコーダ8に記録されると共に、制御装置
13に入力して表示パネル15に表示すると同時にプリンタ
14にて記録する。
The light intensity detector 6 on which the transmitted light 18 transmitted through the thin film 3 when irradiated with the irradiation light 17 is set in advance by the detection light controller 12 so as not to be affected by incident light from the outside. Convert light of wavelength to electric quantity,
Output as an electric signal. The electric signal is amplified by the amplifier 7 and recorded in the XY recorder 8, and the control device
13 to display on the display panel 15
Record at 14.

【0012】ステージ10は検査試料1の上下方向および
幅方向(図紙の厚さ方向)の2軸方向に移動し、例えば
上下方向に一定量ずつシフトしながら幅方向に往復動し
て、薄膜3の全面に照射光17を照射する。従って、照射
光17が直径1mmの光束であるとき上下方向のシフト量は
1mm以下となり、薄膜3の幅方向長さが 150mmのとき幅
方向に照射光17が移動する走査回数は 150回以上にな
る。
The stage 10 moves in the two axial directions of the inspection sample 1 in the vertical direction and the width direction (thickness direction of the drawing paper), and reciprocates in the width direction while shifting by a fixed amount in the vertical direction to form a thin film. Irradiation light 17 is applied to the entire surface of 3. Therefore, when the irradiation light 17 is a light flux having a diameter of 1 mm, the vertical shift amount is 1 mm or less, and when the width direction length of the thin film 3 is 150 mm, the irradiation light 17 moves in the width direction more than 150 times. Become.

【0013】そこで、ステージ10の移動によっで検査試
料1をその幅方向に移動させると同時に、ステージ10を
上下方向に適当な振幅例えば10mmの振幅で往復動させる
と、照射光17の走査線は正弦波形(ジグザクコース)を
描くようになり、照射光17の走査回数は直線走査時の1/
10となり試験効率が向上する。
Therefore, when the stage 10 is moved in the width direction and the stage 10 is reciprocated in the vertical direction at an appropriate amplitude, for example, an amplitude of 10 mm, the scanning line of the irradiation light 17 is moved. Will draw a sine wave (zigzag course), and the scanning frequency of the irradiation light 17 is
The test efficiency is improved to 10.

【0014】図2は図1の本発明装置によって薄膜の均
一性を実測した透過光出力分布の一例、図3は図2にお
けるX-1点とX-2点とを結ぶ直線上の出力分布をX−Y
レコーダで記録したときの概略図、図4は膜厚と光透過
率との関係を示す図である。ただし、図2の薄膜はガラ
ス基板にカラーフィルタ用赤色画素薄膜を被着したも
の、図4の薄膜はガラス基板に透明導電膜を被着したも
のである。
FIG. 2 shows an example of the transmitted light output distribution obtained by actually measuring the uniformity of the thin film by the apparatus of the present invention shown in FIG. 1, and FIG. 3 shows the output distribution on the straight line connecting the points X -1 and X -2 in FIG. X-Y
FIG. 4 is a schematic diagram of recording with a recorder, and FIG. 4 is a diagram showing a relationship between film thickness and light transmittance. However, the thin film of FIG. 2 is a glass substrate coated with a red pixel thin film for color filters, and the thin film of FIG. 4 is a glass substrate coated with a transparent conductive film.

【0015】図2および図3において、格子線で示す薄
膜の厚さ分布19は、中心部に近い部分と左上隅部分とに
厚い部分 (低透過率部分) が検出される。一般に、この
ような膜厚の均一性検査において薄膜の透過率をT,薄
膜を透過した検出光の強度をI,薄膜に照射する照射光
の強度をI0,膜厚をd,薄膜の照射光吸収係数をkとし
たとき、 T=I/I0 =e-kd で現される式に従う。
In FIGS. 2 and 3, in the thickness distribution 19 of the thin film indicated by the grid line, a thick portion (low transmittance portion) is detected in the portion near the center and the upper left corner. Generally, in such a film thickness uniformity inspection, the transmittance of the thin film is T, the intensity of the detection light transmitted through the thin film is I, the intensity of the irradiation light for irradiating the thin film is I 0 , the film thickness is d, and the irradiation of the thin film is performed. When the light absorption coefficient is k, it follows the formula expressed by T = I / I 0 = e −kd .

【0016】図4は透明導電膜(ITO膜)の膜厚と透
過率との関係を示すシュミレーションである。横軸を透
明導電膜の厚さ (μm), 縦軸を光透過率とした図4にお
いて、図中の実線T-1は厚さが1μm のとき透過率が90
%である透明導電膜の透過率特性、図中の破線T-2は厚
さが1μm のとき透過率が50%である透明導電膜の透過
率特性であり、何れの透過率特性も膜厚の増加と共に減
少する。
FIG. 4 is a simulation showing the relationship between the film thickness of the transparent conductive film (ITO film) and the transmittance. In FIG. 4, where the horizontal axis represents the thickness (μm) of the transparent conductive film and the vertical axis represents the light transmittance, the solid line T −1 in the figure indicates that the transmittance is 90 when the thickness is 1 μm.
%, The transmittance characteristic of the transparent conductive film, the broken line T -2 in the figure is the transmittance characteristic of the transparent conductive film having a transmittance of 50% when the thickness is 1 μm. Decreases with increasing.

【0017】図5は液晶表示パネルに使用するカラーフ
ィルタ用赤色画素薄膜の分光スペクトルである。図5に
おいて、縦軸は照射光の透過率(%),横軸は波長(nm)で
あり、図中の実線は厚さが1.9μm である赤色画素薄膜
の分光特性、図中の破線は厚さが2.4μm である赤色画
素薄膜の分光特性である。
FIG. 5 is a spectrum of a red pixel thin film for a color filter used in a liquid crystal display panel. In FIG. 5, the vertical axis is the transmittance (%) of the irradiation light, the horizontal axis is the wavelength (nm), and the solid line in the figure is the spectral characteristic of the red pixel thin film with a thickness of 1.9 μm, the dashed line in the figure. Is the spectral characteristics of a red pixel thin film having a thickness of 2.4 μm.

【0018】薄厚の均一性を透過光によって検査するに
は、その薄膜が有する透過光特性に基づいて、均一性を
検出可能な照射光波長を選択する必要がある。そこで、
赤色画素薄膜の厚さ均一性検査に使用する照射(検出)
光には、厚さ変化に対する透過率の変化が安定であり、
かつ、波長の変動に対して安定な波長領域として、図5
より450nm 〜550nm とすることが望ましい。
In order to inspect the uniformity of the thin thickness by the transmitted light, it is necessary to select the irradiation light wavelength capable of detecting the uniformity based on the transmitted light characteristic of the thin film. Therefore,
Irradiation (detection) used for thickness uniformity inspection of red pixel thin film
For light, the change in transmittance with respect to the change in thickness is stable,
In addition, as a wavelength range that is stable with respect to wavelength fluctuation,
It is more desirable to set it to 450 nm to 550 nm.

【0019】図6はカラーフィルタにおける色別画素膜
の厚さ均一性試験に適用した本発明の実施例の説明図で
あり、(イ) はカラーフィルタの模式平面図、(ロ) はカラ
ーフィルタの断面図、(ハ) 色別画素膜の検査用マスクの
平面図、(ニ),(ホ),(ヘ) は色別画素膜検査方法を説明する
ための平面図である。
6A and 6B are explanatory views of an embodiment of the present invention applied to a thickness uniformity test of a color-specific pixel film in a color filter. FIG. 6A is a schematic plan view of the color filter, and FIG. 6B is a color filter. FIG. 4C is a cross-sectional view, FIG. 6C is a plan view of a mask for inspecting a color-specific pixel film, and FIGS. 4D, 4E, and 4F are plan views for explaining the color-specific pixel film inspection method.

【0020】図6(イ) および(ロ) において、カラーフィ
ルタ21は、透明 (ガラス) 基板22の表面に多数の画素用
透孔があいたブラックマスク23を形成し、該透孔を埋め
るようにそれぞれ多数の赤色画素R,緑色画素G,青色
画素Bを形成する。かかるカラーフィルタ21において、
画素R,G,Bの厚さ均一性を試験するのに使用する使
用する照射光の波長は、画素R,G,Bによって異な
る。
In FIGS. 6A and 6B, the color filter 21 forms a black mask 23 having a large number of pixel through holes on the surface of a transparent (glass) substrate 22, and fills the through holes. A large number of red pixels R, green pixels G, and blue pixels B are formed respectively. In such a color filter 21,
The wavelength of the illuminating light used to test the thickness uniformity of the pixels R, G, B depends on the pixels R, G, B.

【0021】図6(ハ) において、画素R,G,Bの厚さ
均一性を試験するため準備するマスク24は、ガラス基板
に遮光膜25を被着し、遮光膜25に多数の透孔26を形成し
たものである。かかるマスク24は、画素Rの厚さ均一性
を試験するとき画素G,Bを覆うようになり、画素Gの
厚さ均一性を試験するとき画素R,Bを覆うようにな
り、画素Bの厚さ均一性を試験するとき画素R,Gを覆
うようになる。
In FIG. 6C, a mask 24 prepared for testing the thickness uniformity of the pixels R, G, B has a light-shielding film 25 deposited on a glass substrate, and the light-shielding film 25 has a large number of through holes. Formed 26. Such a mask 24 covers the pixels G and B when testing the thickness uniformity of the pixel R, and covers the pixels R and B when testing the thickness uniformity of the pixel G. It will cover pixels R, G when testing for thickness uniformity.

【0022】図6(ニ) において、赤色画素Rの厚さ均一
性を試験するマスク24は、透孔26内に赤色画素Rが表呈
する如くカラーフィルタ21に重ね、その状態で図1に示
す如き薄膜検査装置に搭載し、多数の赤色画素Rに検査
用の照射光を順次照射してその均一性を検査する。その
結果、照射光がマスク24に照射されたとき透過光(検出
出力)は零となり、赤色画素Rに照射光が照射されたと
きの出力変動から、赤色画素Rの厚さ均一性を知ること
ができる。
In FIG. 6D, the mask 24 for testing the thickness uniformity of the red pixels R is overlaid on the color filter 21 so that the red pixels R are displayed in the through holes 26, and the state is shown in FIG. Such a thin film inspection apparatus is mounted, and a large number of red pixels R are sequentially irradiated with inspection irradiation light to inspect their uniformity. As a result, the transmitted light (detection output) becomes zero when the irradiation light is applied to the mask 24, and the thickness uniformity of the red pixel R is known from the output variation when the irradiation light is applied to the red pixel R. You can

【0023】図6(ホ) において、青色画素Bの厚さ均一
性を試験するマスク24は、透孔26内に青色画素Bが表呈
する如くカラーフィルタ21に重ね、その状態で図1に示
す如き薄膜検査装置に搭載し、多数の青色画素Bに検査
用の照射光を順次照射してその均一性を検査する。その
結果、照射光がマスク24に照射されたとき透過光(検出
出力)は零となり、青色画素Bに照射光が照射されたと
きの出力変動から、青色画素Bの厚さ均一性を知ること
ができる。
In FIG. 6 (e), the mask 24 for testing the thickness uniformity of the blue pixel B is overlaid on the color filter 21 so that the blue pixel B appears in the through hole 26, and the state is shown in FIG. It is mounted on such a thin film inspection apparatus, and a large number of blue pixels B are sequentially irradiated with inspection irradiation light to inspect their uniformity. As a result, the transmitted light (detection output) becomes zero when the irradiation light irradiates the mask 24, and the thickness uniformity of the blue pixel B can be known from the output fluctuation when the irradiation light irradiates the blue pixel B. You can

【0024】図6(ヘ) において、緑色画素Gの厚さ均一
性を試験するマスク24は、透孔26内に緑色画素Gが表呈
する如くカラーフィルタ21に重ね、その状態で図1に示
す如き薄膜検査装置に搭載し、多数の緑色画素Gに検査
用の照射光を順次照射してその均一性を検査する。その
結果、照射光がマスク24に照射されたとき透過光(検出
出力)は零となり、緑色画素Gに照射光が照射されたと
きの出力変動から、緑色画素Gの厚さ均一性を知ること
ができる。
In FIG. 6F, the mask 24 for testing the thickness uniformity of the green pixel G is overlaid on the color filter 21 so that the green pixel G is displayed in the through hole 26, and the state is shown in FIG. Such a thin film inspection apparatus is mounted, and a large number of green pixels G are sequentially irradiated with inspection irradiation light to inspect their uniformity. As a result, the transmitted light (detection output) becomes zero when the irradiation light irradiates the mask 24, and the thickness uniformity of the green pixel G can be known from the output fluctuation when the irradiation light irradiates the green pixel G. You can

【0025】[0025]

【発明の効果】以上説明したように本発明の検査装置お
よび検査方法は、薄膜を透過した透過光強度によって膜
厚の均一性を検査するものであり、従来の膜厚検査器を
使用した膜厚の均一性検査に比べ、高効率かつ広範囲測
定を可能にした効果がある。さらに、照射光の波長と検
出光の波長を同一に制御すること、被検試料の所要部を
表呈せしめるマスクを使用することによって、データ処
理が簡易化すると共に検査精度が向上し、ジグザグコー
スの繰り返しで照射光が薄膜に照射する方法の採用で、
検査効率は一層向上されるようになる。
As described above, the inspecting apparatus and the inspecting method of the present invention are for inspecting the uniformity of the film thickness by the intensity of the transmitted light transmitted through the thin film. Compared to thickness uniformity inspection, it has the effect of enabling high-efficiency and wide-range measurement. Furthermore, by controlling the irradiation light wavelength and the detection light wavelength to be the same, and by using a mask that exposes the required portion of the sample to be tested, data processing is simplified and inspection accuracy is improved, resulting in a zigzag course. By adopting a method of irradiating the thin film with irradiation light by repeating
The inspection efficiency will be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係わる薄膜検査装置のシステム図で
ある。
FIG. 1 is a system diagram of a thin film inspection apparatus according to the present invention.

【図2】 図1の本発明装置によって薄膜の均一性を実
測した透過光出力分布の一例である。
FIG. 2 is an example of a transmitted light output distribution obtained by actually measuring the uniformity of a thin film by the device of the present invention in FIG.

【図3】 図2におけるX-1点とX点-2とを結ぶ線上の
透過光出力分布をX−Yレコーダで記録したときの概略
図である。
FIG. 3 is a schematic diagram when a transmitted light output distribution on a line connecting X −1 point and X point −2 in FIG. 2 is recorded by an XY recorder.

【図4】 膜厚と光透過率との関係を示す図である。FIG. 4 is a diagram showing a relationship between film thickness and light transmittance.

【図5】 液晶表示パネルに使用するカラーフィルタ用
赤色画素薄膜の分光スペクトルである。
FIG. 5 is a spectrum of a red pixel thin film for a color filter used in a liquid crystal display panel.

【図6】 カラーフィルタにおける色別画素膜の厚さ均
一性試験に適用した本発明の実施例の説明図である。
FIG. 6 is an explanatory diagram of an example of the present invention applied to a thickness uniformity test of color-specific pixel films in a color filter.

【符号の説明】[Explanation of symbols]

1は検査試料 2は透明基板(ガラス基板) 3は透明基板に被着した薄膜 4は光源 5はモノクロメータ 6は光強度検出器(フォトマルチプライヤ) 9は照射光の波長を制御するコントローラ 10は被検試料を搭載するステージ 11はステージを駆動させるステージコントローラ 12は光強度検出器の検出光の波長を制御する検出光コン
トローラ 13は制御処理装置 (パソコン) 14はプリンタ 15は表示パネル 17は薄膜に照射する光 (照射光) 18は薄膜を透過した光 (透過光) 24は薄膜の不要部等を覆う不透明マスク
1 is an inspection sample 2 is a transparent substrate (glass substrate) 3 is a thin film 4 attached to a transparent substrate 4 is a light source 5 is a monochromator 6 is a light intensity detector (photomultiplier) 9 is a controller 10 which controls the wavelength of irradiation light Is the stage 11 on which the sample to be tested is mounted.The stage controller 12 drives the stage.The controller 12 controls the wavelength of the light detected by the light intensity detector.The controller 13 is a control processor (personal computer) 14.The printer 15 is the display panel 17. Light that illuminates the thin film (irradiation light) 18 is light that has passed through the thin film (transmitted light) 24 is an opaque mask that covers unnecessary parts of the thin film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透明基板(2) に被着した薄膜(3) の厚さ
の均一性を光透過率の変化によって測定する方法であっ
て、光源(4),特定波長の光を透過させるモノクロメータ
(5),該モノクロメータ(5) を介して該光源(4) に対向す
る光強度検出器(6),該基板(2) を該モノクロメータ(5)
と該光強度検出器(6) との対向間に支持するステージ(1
0), 該モノクロメータ(5) を透過して該薄膜(3) に照射
する光(17)の波長を制御する照射光コントローラ(9),該
薄膜(3) に照射する光(17)が該薄膜(3) の全面を走査す
るように該ステージ(10)を2軸方向に移動させるステー
ジコントローラ(11), 該薄膜(3) を透過した透過光から
該光強度検出器(6) が検出する検出光の波長を制御する
検出光コントローラ(12), 該ステージ(10)と該照射光コ
ントローラ(9) と該検出光コントローラ(12)を制御し該
光強度検出器(6)からの出力信号をデータ処理する制御
処理装置(13), 該制御処理装置(13)からの出力信号を可
視データにする出力装置(14,15)とを具えたことを特徴
とする薄膜検査装置。
1. A method for measuring the thickness uniformity of a thin film (3) deposited on a transparent substrate (2) by a change in light transmittance, wherein a light source (4) transmits light of a specific wavelength. Monochromator
(5), a light intensity detector (6) facing the light source (4) through the monochromator (5), and the substrate (2) to the monochromator (5)
And a stage (1
0), an irradiation light controller (9) for controlling the wavelength of the light (17) which is transmitted through the monochromator (5) and is irradiated to the thin film (3), and the light (17) which is irradiated to the thin film (3) is A stage controller (11) for moving the stage (10) biaxially so as to scan the entire surface of the thin film (3), and the light intensity detector (6) from the transmitted light transmitted through the thin film (3). The detection light controller (12) for controlling the wavelength of the detection light to be detected, the stage (10), the irradiation light controller (9), and the detection light controller (12) to control the light intensity detector (6) A thin film inspection apparatus comprising: a control processing device (13) for data processing an output signal; and an output device (14, 15) for converting an output signal from the control processing device (13) into visible data.
【請求項2】 請求項1記載の薄膜検査装置を使用する
薄膜厚さの均一性検査において、前記検出光コントロー
ラ(12)による前記検出光の波長を、前記照射光コントロ
ーラ(9) による前記照射光(17)の波長と同一にすること
を特徴とする薄膜検査方法。
2. In the uniformity inspection of thin film thickness using the thin film inspection apparatus according to claim 1, the wavelength of the detection light by the detection light controller (12) is adjusted by the irradiation light controller (9). A thin film inspection method characterized in that the wavelength is the same as that of the light (17).
【請求項3】 請求項1記載の薄膜検査装置を使用する
薄膜厚さの均一性検査において、前記透明基板(2) に被
着した薄膜(3) の所要個所を表呈せしめる不透明マスク
(24)を該薄膜(3) に重ね、前記ステージ(10)を移動せし
め、該薄膜(3) の所要個所における均一性を検査するこ
とを特徴とする薄膜検査方法。
3. An opaque mask for showing a required portion of a thin film (3) deposited on the transparent substrate (2) in a thin film thickness uniformity inspection using the thin film inspection apparatus according to claim 1.
A thin film inspection method characterized in that (24) is superposed on the thin film (3), the stage (10) is moved, and the uniformity of the thin film (3) at a required position is inspected.
【請求項4】 請求項1記載の薄膜検査装置を使用する
薄膜厚さの均一性検査において、前記ステージ(10)を移
動せしめて前記薄膜(3) の全面をフォローする前記照射
光(17)の走査が、所定方向にシフトするジグザクコース
の繰り返しとすることを特徴とする薄膜検査方法。
4. Irradiation light (17) for moving the stage (10) to follow the whole surface of the thin film (3) in the thin film thickness uniformity inspection using the thin film inspection apparatus according to claim 1. Scanning is repeated zigzag course shifting in a predetermined direction.
JP16475291A 1991-07-05 1991-07-05 Thin film inspection apparatus and its inspection method Withdrawn JPH0510727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16475291A JPH0510727A (en) 1991-07-05 1991-07-05 Thin film inspection apparatus and its inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16475291A JPH0510727A (en) 1991-07-05 1991-07-05 Thin film inspection apparatus and its inspection method

Publications (1)

Publication Number Publication Date
JPH0510727A true JPH0510727A (en) 1993-01-19

Family

ID=15799249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16475291A Withdrawn JPH0510727A (en) 1991-07-05 1991-07-05 Thin film inspection apparatus and its inspection method

Country Status (1)

Country Link
JP (1) JPH0510727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518403A (en) * 2011-06-16 2014-07-28 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Method for determining the optimum wavelength for inspection of an ophthalmic lens (OPHTHALMICLENSES)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518403A (en) * 2011-06-16 2014-07-28 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Method for determining the optimum wavelength for inspection of an ophthalmic lens (OPHTHALMICLENSES)

Similar Documents

Publication Publication Date Title
JP2523101B2 (en) Acoustic imaging system and method
JP5692691B2 (en) Display device inspection method, inspection device, display device substrate, and display device
US7719672B2 (en) Macro inspection apparatus and microscopic inspection method
EP1794577A1 (en) Optical inspection of flat media using direct image technology
JP2001305072A (en) Method and device for detecting defect in substrate
JPH10132703A (en) Colorimetric measuring apparatus for display screen
JP4856698B2 (en) Inspection method for conductor track structure
US4194127A (en) Process and device for checking substrate wafers
JPH0510727A (en) Thin film inspection apparatus and its inspection method
JPH09133517A (en) Distribution measuring device
JP3417494B2 (en) Method and apparatus for inspecting surface undulation of glass substrate
TW505948B (en) Method and apparatus for detecting thickness of thin layer formed on a wafer
JP2000002514A (en) Film thickness measuring apparatus, alignment sensor and alignment apparatus
JPH08247957A (en) Defect detection method and apparatus for inspecting appearance of liquid crystal substrate or ic wafer
US8755054B2 (en) Method of measuring surface structure of display device
JPH06118009A (en) Foreign matter inspecting device and method therefor
JP2002062218A (en) Optical anisotropic substance evaluating device
JP4133026B2 (en) Standard sample for calibrating defect inspection apparatus for flat panel display and calibration method for defect inspection apparatus
JPH1130590A (en) Foreign matter and defect inspecting device, and manufacture of semiconductor device
JP3287872B2 (en) Inspection method of color filter
KR20010074256A (en) High-Speed and Fine Accuracy Inspection System by the Integration of the Phase Analysis of Laser and Visual Image Signal Processing
JPH10260139A (en) Automatic inspection apparatus for substrate
JP3194019B2 (en) Electrophoresis pattern analyzer
JPH06300707A (en) Foreign matter detection circuit of color filter
JP2010243213A (en) Light quantity setting method, inspection method, and inspection device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008