JPH02224219A - Method of control of gap accuracy of large substrate - Google Patents

Method of control of gap accuracy of large substrate

Info

Publication number
JPH02224219A
JPH02224219A JP1284277A JP28427789A JPH02224219A JP H02224219 A JPH02224219 A JP H02224219A JP 1284277 A JP1284277 A JP 1284277A JP 28427789 A JP28427789 A JP 28427789A JP H02224219 A JPH02224219 A JP H02224219A
Authority
JP
Japan
Prior art keywords
photomask
gap
flatness
large substrate
accuracy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1284277A
Other languages
Japanese (ja)
Inventor
Shigemasa Nakazawa
中沢 繁容
Nobunari Nadamoto
信成 灘本
Mitsuru Iida
満 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP1284277A priority Critical patent/JPH02224219A/en
Publication of JPH02224219A publication Critical patent/JPH02224219A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels

Abstract

PURPOSE:To facilitate formation of a uniform high picture quality pattern by a method wherein an adjusting means functions so as to improve a gap accuracy in accordance with the flatness of a photomask measured by a measuring means. CONSTITUTION:The flatness of a photomask 2 is measured first and an adjusting means adjusts a large substrate 1 in accordance with the measured value to cope with the warpage and deformation of the photomask 2. However, the warpage and deformation of the photomask 2 are not always regular and, further, varied from product to product. Therefore, after the state of the flatness of the photomask 2 over the whole surface is measured by a measuring means separately, the flatness of the substrate is adjusted by a flexible chuck 9 provided in the adjusting means, so that even if there is a local deformation in the photomask, the gap accuracy can be maintained steadily.

Description

【発明の詳細な説明】 発明の目的; (産業上の利用分野) この発明は、フォトマスクのパターンをレジストが塗布
されている大型基板に焼付ける際のフォトマスクと基板
との間のギャップ精度を管理する大型基板のギャップ精
度管理方法に関する。
[Detailed Description of the Invention] Purpose of the Invention; (Industrial Application Field) This invention aims to improve the gap accuracy between a photomask and a substrate when printing a photomask pattern onto a large substrate coated with a resist. This paper relates to a gap accuracy control method for large substrates.

(従来の技術) 通常°基板のギャップ精度を測定するには、第13図の
従来のチャックを用いたギャップ精度管理装置の断面図
に示すように、半導体レーザ5及びCCD等で成るライ
ンセンサ6で構成されるギャップ検出センサを用い′C
光学的に解析しており、同図にはマスクフレーム3に載
置されたフォトマスク2に対して、半導体レーザ5から
のレーザ光が入射されてフォトマスク2の下面及びチャ
ック4に載置された基板lの表面で反射する反射光を、
ラインセンサ6で読取る様子が示されている。こうして
、半導体レーザ5に対して所定の入射角を与えるように
しておけば、各検出点でこれに対応した反射角と行路差
の換算から、フォトマスク2と基板1との間のギャップ
Glを求めることができる。又、ギャップG1の検出点
には、基板lの外周部や4隅近傍から3〜4箇所が選定
されることが多く、そのd111定価の検出精度は±3
μfi+以内で管理されるようになっている。
(Prior Art) Normally, in order to measure the gap accuracy of a substrate, as shown in the sectional view of a gap accuracy control device using a conventional chuck in FIG. Using a gap detection sensor consisting of
The figure shows that a laser beam from a semiconductor laser 5 is incident on a photomask 2 placed on a mask frame 3, and the photomask 2 is placed on the lower surface of the photomask 2 and chuck 4. The reflected light reflected on the surface of the substrate l,
The state of reading by the line sensor 6 is shown. In this way, if a predetermined incident angle is given to the semiconductor laser 5, the gap Gl between the photomask 2 and the substrate 1 can be calculated from the corresponding reflection angle and path difference conversion at each detection point. You can ask for it. In addition, three to four locations are often selected from the outer periphery or near the four corners of the substrate l as the detection points for the gap G1, and the detection accuracy of the d111 list price is ±3.
It is managed within μfi+.

なお、第14図は染色用感材におけるギャップ量とパタ
ーン寸法のシフト量との関係を示しており、ギャップと
画質の関係でギャップが大きくなると画質が低下するこ
とを示している。
Incidentally, FIG. 14 shows the relationship between the gap amount and the shift amount of the pattern dimension in the dyeing photosensitive material, and shows that in the relationship between the gap and the image quality, as the gap becomes larger, the image quality deteriorates.

(発明が解決しようとする課題) 上述のような方法でギャップ精度が管理された場合、例
えば基板1上の選定箇所とした検出点以外(有効画面内
)に留意してみると、実際には第13図に示す点線形の
ように、フォトマスク2が製造時に起因する反りや変形
等を最大値では1100μmも持っているが、従来はこ
れを無視した条件下でギャップGlを管理するようにし
ており、バ1測が欠陥だらけになっている。即ち、第1
3図に示す実線のフォトマスク2の例はあくまで理想の
状態を仮定したものであり、実際は同図中のギャップG
11のような、基板lとフォトマスク2との間で起こり
得る1100μmものギャップのバラツキが生したまま
焼付工程(プリント)が行なわれる。第10図は測定位
置1〜9とギャップ量との測定結果を示しており、○印
が従来の測定結果である。このように従来方法のバラツ
キ量は45μmとなっているが、従来方法ではフォトマ
スクの平坦度に応じてギャップを調節することかできな
いため、フォトマスクの平坦度の悪さがそのままギャッ
プのバラツキ量になっている。
(Problem to be Solved by the Invention) When gap accuracy is managed by the method described above, for example, if we pay attention to detection points other than the selected detection points on the board 1 (within the effective screen), we find that As shown by the dotted line in Figure 13, the photomask 2 has a maximum warpage and deformation of 1100 μm due to manufacturing, but conventionally the gap Gl has been managed under conditions that ignore this. As a result, the B1 measurement is full of flaws. That is, the first
The example of the photomask 2 shown in the solid line in Figure 3 is based on the assumption of an ideal state, and in reality, the gap G in the figure is
The baking process (printing) is carried out with a gap variation of as much as 1100 μm that may occur between the substrate 1 and the photomask 2 as shown in 11. FIG. 10 shows the measurement results for the measurement positions 1 to 9 and the gap amount, and the circles indicate the conventional measurement results. In this way, the amount of variation in the conventional method is 45 μm, but since the conventional method can only adjust the gap according to the flatness of the photomask, poor flatness of the photomask directly affects the amount of variation in the gap. It has become.

又、従来の方法に依った場合、フォトマスク2にレーザ
光を入射させる為、このフォトマスク2上の所定位置に
はクロム1摸而を除去した白抜は部が検出窓用として設
けられており、例えば大型LCD (液晶)基板等のフ
ィルタ有効画素内でのギャップ計測は実質的に不可能で
あった。
In addition, in the case of the conventional method, in order to make the laser beam enter the photomask 2, a blank area with a portion of chrome removed is provided at a predetermined position on the photomask 2 as a detection window. Therefore, it has been virtually impossible to measure the gap within a filter effective pixel of, for example, a large LCD (liquid crystal) substrate.

この発明は上述のような事情よりなされれたものであり
、この発明の目的は、フォトマスクに細工を施すこと無
く、大型基板とフォトマスクとの間の全面に関する焼付
ギャップの精度を改善して一定にすると共に、均一な高
画質パターン形成を可能にして多面付に対しても適用し
得るような有用性高い大型基板のギャップ精度管理方法
を)足供することにある。
This invention was made in view of the above-mentioned circumstances, and an object of the invention is to improve the accuracy of the printing gap on the entire surface between a large substrate and a photomask without modifying the photomask. It is an object of the present invention to provide a highly useful method for controlling the gap accuracy of a large substrate, which makes it possible to maintain a constant gap accuracy and to form a uniform high-quality pattern, and which is also applicable to multi-sided mounting.

発明の構成; (課題を解決するための手段) この発明は、フォトマスクのパターンをレジストが塗布
されている大型基板に焼付ける際のフォトマスクと大型
基板との間のギャップ精度管理方法に関するもので、こ
の発明の上記目的は、前記フォトマスクの平坦度を測定
する計測手段と、前記大型基板の平面性を調節する調節
手段とを設け、前記胴側手段による前記フォトマスクの
平坦度測定値に基づく前記調節手段の対応処理によって
ギャップ精度を高めるように構成することによっ”C達
成される。
Structure of the Invention; (Means for Solving the Problems) The present invention relates to a method for controlling the gap accuracy between a photomask and a large substrate when printing a photomask pattern onto a large substrate coated with a resist. The above object of the present invention is to provide a measuring means for measuring the flatness of the photomask and an adjusting means for adjusting the flatness of the large substrate, and to adjust the flatness measurement value of the photomask by the body side means. "C" is achieved by configuring the gap accuracy to be increased by a corresponding processing of the adjustment means based on .

(作用) この発明は、大型基板に対するフォトマスクの焼イ」工
程に関わるギャップ精度を均一に管理する為、先ずフォ
トマスクの平坦度を測定し、この値に基づいて調節手段
で大型基板を調節することによって、フォトマスクの持
つ反りや変形に対処するようになっている。しかし、フ
ォトマスクが持つ反りや変形は必ずしも規則的では無く
、しかも物品によってまちまちである為、この発明のギ
ャップ精度管理方法においては、予めフォトマスクの平
坦度に関する全面の状態を別途計測手段で測定した上で
、調節手段に設けられたフレキシブルチャックが基板の
平面性を調節しており、フォトマスクに局部的な変形が
あっても、極めて正確にギャップ精度を一定に保持し得
るようになっている。即ち、フォトマスクと大型基板と
の間の焼付ギャップ精度を常に±5μm以内に管理しな
がら焼付工程を可能にしており、フォトマスクの反りや
変形からの影響を完全に回避している。
(Function) This invention first measures the flatness of the photomask and adjusts the large substrate using an adjusting means based on this value in order to uniformly manage the gap accuracy related to the process of baking a photomask on a large substrate. By doing so, it is possible to deal with warpage and deformation of the photomask. However, the warpage and deformation of photomasks are not necessarily regular and vary depending on the product, so in the gap accuracy control method of the present invention, the flatness of the photomask is measured in advance using a separate measuring means. In addition, a flexible chuck installed in the adjustment means adjusts the flatness of the substrate, making it possible to maintain a constant gap accuracy even if there is local deformation of the photomask. There is. In other words, the printing process can be performed while always controlling the printing gap accuracy between the photomask and the large substrate within ±5 μm, completely avoiding the effects of warpage and deformation of the photomask.

(実施例) この発明について、以下に実施例を挙げて詳細に説明す
る。
(Example) This invention will be described in detail by giving examples below.

第2図は、この発明の大型基板のギャップ精度管理方法
を説明する装置の断面図である。先ず、マスクフレーム
3上に載置されたフォトマスク2と、平面性の調節作用
点となるフレキシブルチャック9上に載置された大型基
板lとのギャップ6Iを測定するには、前述した従来方
法に依って、第3図に示すような3箇所の測定点Eに対
して半導体レーザ5のレーザ光を照射して、大型基板1
の表面上とフォトマスク2の底面で反射させ、これをラ
インセンサ6で読取るように構成しており、特に大型の
基板用としてはプロキシアライナが使われる。
FIG. 2 is a sectional view of an apparatus for explaining the gap accuracy control method for large substrates according to the present invention. First, in order to measure the gap 6I between the photomask 2 placed on the mask frame 3 and the large substrate l placed on the flexible chuck 9, which serves as the point of action for flatness adjustment, the conventional method described above is used. The large substrate 1 is irradiated with laser light from the semiconductor laser 5 to three measurement points E as shown in FIG.
The light is reflected on the surface of the photomask 2 and the bottom surface of the photomask 2, and is read by the line sensor 6. A proxy aligner is used especially for large substrates.

そして、フォトマスク2の全面の平坦度を測定するには
、フォトマスク2の所定位置にギャップ計測用の入射光
向けの窓を有した測定点が定められている性質上、第5
図及び第6図に示す平坦度測定装置にあるような静電容
量センサCを用いて、別途計測手段に依ってその平坦度
を測定する。なお、第6図は第5図中のDD’における
断面構造を示している。静電容量センサCのフォトマス
ク2に対する計測は、フォトマスク2が第2図のギャッ
プ精度管理装置のマスクフレーム3上に載置されたとき
、第3図及び第4図のフレキシブルチャック9の分割領
域下に備えられたアクチュエータ駆動のピエゾ素子Pに
対応するように位置決めして測定するもので、第5図に
その平坦度測定箇所の一例を示している。本実施例では
フォトマスクの平坦度の測定に静電容量センサを使用す
る場合について述べたが、これに換えて半導体レーザか
らのレーザ光をフォトマスクに照射して、この反射光を
ラインセンサで検知する光学的な方法を用いてもよい。
In order to measure the flatness of the entire surface of the photomask 2, a measurement point having a window for incident light for gap measurement is determined at a predetermined position of the photomask 2.
The flatness is measured by a separate measuring means using a capacitance sensor C as shown in the flatness measuring apparatus shown in FIGS. Note that FIG. 6 shows a cross-sectional structure at DD' in FIG. 5. The capacitance sensor C measures the photomask 2 by dividing the flexible chuck 9 in FIGS. 3 and 4 when the photomask 2 is placed on the mask frame 3 of the gap quality control device shown in FIG. Measurement is performed by positioning to correspond to the piezo element P driven by an actuator provided below the area, and an example of the flatness measurement location is shown in FIG. In this example, we have described the case where a capacitance sensor is used to measure the flatness of a photomask, but instead of this, a laser beam from a semiconductor laser is irradiated onto the photomask, and this reflected light is used with a line sensor. Optical methods of detection may also be used.

尚、フォトマスク2及び大型基板1を固定支持するため
に、マスクフレーム3及びフレキシブルチャック9には
第2図に示すような真空溝ll及び12が設りられてい
る。更に調節手段が大型基板lを調節するには、第2図
の如くベース7上にピエゾ素子を用いたアクチエエータ
10(ダイヤフラム、パルスモータ等)と、これに並設
されたスプリング8とを固定し、これが大型基板1を調
節するために介在させたフレキシブルチャック9に係着
するように構成すれば良い。アクチュエータlOは圧電
作用によってフレキシブルチャック9を上方に押上げ、
スプリング8は常時フレキシブルチャック9を下方に引
張っている。
In order to fixedly support the photomask 2 and the large substrate 1, the mask frame 3 and the flexible chuck 9 are provided with vacuum grooves 11 and 12 as shown in FIG. Furthermore, in order for the adjustment means to adjust the large substrate l, an actuator 10 (diaphragm, pulse motor, etc.) using a piezo element and a spring 8 arranged in parallel with the actuator 10 are fixed on the base 7 as shown in FIG. , it is sufficient if the structure is such that this is engaged with a flexible chuck 9 interposed to adjust the large substrate 1. The actuator IO pushes the flexible chuck 9 upward by piezoelectric action,
The spring 8 constantly pulls the flexible chuck 9 downward.

このようにして、基板1とフォトマスク2との間のギャ
ップの精度管理方法を行い得るが、その処理動作を第1
図のフローチャートに基づいて説明する。
In this way, the precision control method for the gap between the substrate 1 and the photomask 2 can be performed, but the processing operation is
This will be explained based on the flowchart shown in the figure.

先ず、フォトマスク2の全面の平坦度を第5図及び第6
図に示す静電容器センサCを用いて測定しくステップS
l) 、この測定値をメモリに記憶する(ステップS2
)。次に、第3図及び第4図に示すようなフォトマスク
2上の3箇所のギャップ測定点Eに対し、前述したよう
な従来方法によってギャップを測定する(ステップS3
)。この測定時に、ギャップ測定点に関するギャップ検
出精度がその8′[容範囲である±5μ1以内に収まる
ように、アクチエエータ10の駆動をフレキシブルチャ
ック9を介して大型基板1に対して行ない、その傾き、
高さ等の測定要素から平面になるようにアクチエエータ
駆動Iによって調節する(ステップS4)。更にフォト
マスク2の平坦度の測定値の記憶値(ステップS2)を
利用し、従来からのギャップ測定箇所以外の領域に対し
て、第5図に示すフォトマスク2の平坦度が測定された
箇所に対応する分割フレキシブルチャック9の領域内の
アクチエエータ駆動Hによって、第2図の如く大型基板
1を調節する(ステップ55)。アクチエエータlOは
電気的エネルギーを直線移動量に直接変換するもので、
この発明のギャップ精度管理方法においては、大型基板
lを調節するフレキシブルチャック9に対して、その圧
電効果作用の駆動を利用して微細な移動量を与えるよう
にしている。即ち、記憶されたフォトマスク2の各箇所
における平坦度測定値に基づき、これに対応してピエゾ
素子Pが用いられた各アクチュエータを駆動することに
よって、フォトマスク2と大型基板1との間のギャップ
の精度がこの調節手段の調節を経て均一に保たれるわけ
である。尚、この発明は大型基板lの焼付工程に際して
利用されるものであり、ギャップ精度が均一に保たれた
後は、大型基板1にフォトマスク2やフォトレジスト等
を塗布するための座標系の処理に関わるアライメント(
ステップS6)を経た後、必要なプリントがされ(ステ
ップS7)、大型基板1の焼付工程が終了する。
First, the flatness of the entire surface of the photomask 2 is measured as shown in Figures 5 and 6.
Step S to measure using the electrostatic container sensor C shown in the figure.
l), store this measured value in memory (step S2
). Next, gaps are measured using the conventional method described above at three gap measurement points E on the photomask 2 as shown in FIGS. 3 and 4 (step S3).
). During this measurement, the actuator 10 is driven with respect to the large substrate 1 via the flexible chuck 9 so that the gap detection accuracy regarding the gap measurement point is within ±5 μ1, which is the 8′ [capacity range], and its inclination is
Adjustment is made by the actuator drive I so that it becomes a flat surface based on measurement factors such as height (step S4). Furthermore, using the stored value of the measured value of the flatness of the photomask 2 (step S2), the flatness of the photomask 2 shown in FIG. The large substrate 1 is adjusted as shown in FIG. 2 by driving the actuator H in the region of the divided flexible chuck 9 corresponding to (step 55). The actuator IO directly converts electrical energy into linear movement.
In the gap accuracy control method of the present invention, the flexible chuck 9 that adjusts the large substrate 1 is given a fine movement amount by utilizing the drive of its piezoelectric effect. That is, based on the memorized flatness measurement value at each location of the photomask 2, the distance between the photomask 2 and the large substrate 1 is adjusted by driving each actuator in which the piezo element P is used correspondingly. The accuracy of the gap is maintained uniform through the adjustment of this adjusting means. This invention is used in the baking process of a large substrate 1, and after the gap accuracy is maintained uniform, the coordinate system processing for applying a photomask 2, photoresist, etc. to the large substrate 1 is performed. Alignment related to (
After passing through step S6), necessary printing is performed (step S7), and the printing process of the large substrate 1 is completed.

以上、フレキシブルチャックを9分割してアクチュエー
タで駆動する場合について述べたが、さらにフレキシブ
ルチャックの変形例について述べる。フレキシブルチャ
ック9の底面に対して、第7図(^)に示すような十字
7M30及び31を中心部を交叉させて配設すると共に
、同図(B)に示す圧電効果で上方に押上げるアクチュ
エータ40を同図(^)の0部に取付け、更に同図(8
)に示すように常に下方に引張力を与えるスプリング4
1を同図(A)の6部に取付けることによって平面性の
調節精度が向上した。なお、十字jrn 30及び31
の断面形状は第9図に示すようになっている。この場合
には、フォトマスク2の平坦度測定(ステップS1)の
測定箇所は、第11図に示す如くアクチュエータ駆動の
ピエゾ素子に対応するように設定し、測定点は5筒所と
した。また、平坦度測定装置として第12図に示す如く
半導体レーザとラインセンサを使用して行った。次いで
フォトマスクと基板のギャップ測定(ステップS3)に
おいては、第7図(八)に示すようにギャップ測定点E
を4箇所設定し、ギャップ精度の向上を計った。
The case where the flexible chuck is divided into nine parts and driven by an actuator has been described above, and a modified example of the flexible chuck will be further described. On the bottom surface of the flexible chuck 9, crosses 7M30 and 31 as shown in FIG. 7(^) are arranged so as to intersect at the center, and an actuator is used to push the crosses 7M30 and 31 upward by piezoelectric effect as shown in FIG. 7(B). Attach 40 to section 0 in the same figure (^), and then attach it to part 0 in the same figure (8).
) As shown in Figure 4, the spring 4 always provides a downward tensile force.
By attaching 1 to the 6th part of the same figure (A), the accuracy of adjustment of flatness was improved. In addition, cross jrn 30 and 31
The cross-sectional shape of is as shown in FIG. In this case, the measurement points for the flatness measurement (step S1) of the photomask 2 were set to correspond to the actuator-driven piezo elements as shown in FIG. 11, and the number of measurement points was five. Further, as a flatness measuring device, a semiconductor laser and a line sensor as shown in FIG. 12 were used. Next, in the gap measurement between the photomask and the substrate (step S3), as shown in FIG. 7 (8), the gap measurement point E is
were set at four locations to improve gap accuracy.

しかし、このような調節手段でもギャップの非検出部3
2において、チャック9の自重等の影習で30〜40μ
lのバラツキが生じた。
However, even with such adjustment means, the non-detection portion 3 of the gap
In 2, 30 to 40μ was obtained by observing the weight of the chuck 9, etc.
There was a variation in l.

そのため、この発明では第8図(A)に示す如く1対の
対角線状の十字溝30のみを配設すると共に、同図([
1)に示す如く4隅及び中央部にL字状の取付治具42
を取付け、取付治具にアクチュエータ40及びスプリン
グ41を結合した。その結果、第10図のΔ印で示すよ
うな非常な高精度な平面性が得られた。
Therefore, in this invention, only a pair of diagonal cross grooves 30 are provided as shown in FIG.
As shown in 1), there are L-shaped mounting jigs 42 at the four corners and the center.
was attached, and the actuator 40 and spring 41 were coupled to the mounting jig. As a result, very highly accurate flatness as shown by the Δ mark in FIG. 10 was obtained.

本発明においては、所定の測定点についてフォトマスク
と基板とのギャップ設定を行なってから(ステップ53
〜S4)、メモリされたフ(トマスクの平坦測定値に従
ってアクチュエータを駆動して(ステップS5)、基板
全体のギャップを調節する場合について述べたが、任意
の測定点についてフォトマスクと基板のギャップ設定を
行なうと同時に、メモリされたフォトマスクの平坦度測
定値に従ってアクチュエータを駆動して基板全体のギャ
ップを調整するようにしてもよい 発明の効果; 以上のようにこの発明によれば、フォトマスクの反りや
変形等のctE uを排除した大型基板の焼付工程時の
高精度なギャップ精度管理方法を実現しており、焼付能
率とその完成度を著しく向上しているのは勿論、ギャッ
プ精度が均一に管理されることによって、−結露光方式
による高画質パターンの形成か可能になる。即ち、液晶
デイスプレィ基板及びカラーフィルタ等の大型基板への
多面付を、大型基板用プロキシアライナを用いて実現可
能にするギャップ精度管理方法を実現している。
In the present invention, after setting the gap between the photomask and the substrate at a predetermined measurement point (step 53
- S4), the actuator is driven according to the memorized flatness measurement value of the photomask (step S5), and the gap of the entire substrate is adjusted. According to the present invention, as described above, according to the present invention, the gap of the entire substrate may be adjusted by driving the actuator according to the memorized flatness measurement value of the photomask. We have realized a highly accurate gap accuracy control method during the printing process of large substrates that eliminates ctEu such as warping and deformation, and not only significantly improves printing efficiency and completion, but also ensures uniform gap accuracy. By managing this, it becomes possible to form high-quality patterns using the condensation method.In other words, multi-sided mounting on large substrates such as liquid crystal display substrates and color filters can be realized using a proxy aligner for large substrates. A gap accuracy control method has been realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の大型基板のギャップ精度管理方法の
処理動作例を示すフローチャート、第2図はこの発明の
詳細な説明するために示す大型基板のギャップ精度管理
装置の断面図、第3図はこの発明の調節手段に使用する
フレキシブルチャックの平面図、第4図は調節手段の構
成を説明するために示すギャップ精度管理装置の断面図
、第5図はフォトマスクの平面図、第6図はフォトマス
りの平坦度測定用装置の一例を第5図中のDD’ で示
す断面図、第7図(八) はこの発明の改良例を示すフ
レキシブルチャックの背面図、同図(13)はその側面
図、第8図(八)はこの発明の他の実施例を示すフレキ
シブルチャックの背面図、同図(B)はその側面図、第
9図は十字溝の構成例を示す断面図、第10図はこの発
明の結果を従来方法と比較して示す特性図、第11図は
この発明の改良例及び他の実施例におけるフォトマスク
の平坦度測定箇所を示す図、第12図はこの発明の改良
例及び他の実施例におけるフォトマスクの平坦度測定装
置を示す断面図、第13図は従来の基板のギャップ精度
管理装置を示す断面図、第14図はギャップ量と寸法シ
フト量の関係を示す特性図である。 1・・・大型基板、2・・・フォトマスク、3・・・マ
スクフレーム、4・・・チャック、5・・・半導体レー
ザ、6・・・ラインセンサ、7・・・ベース、8・・・
スプリング、9・・・フレキシブルチャック、10・・
・アクチュエータ、11.12・・・真空溝。 享 阜 す 図 慕 図 革 団 慕 図 躬 回 某 /1 回 許 國 賢ントトー t−恨小Nq−
FIG. 1 is a flowchart showing an example of the processing operation of the large substrate gap accuracy control method of the present invention, FIG. 2 is a sectional view of a large substrate gap accuracy control device shown for detailed explanation of the invention, and FIG. 3 is a plan view of a flexible chuck used in the adjustment means of the present invention, FIG. 4 is a sectional view of a gap precision control device shown to explain the configuration of the adjustment means, FIG. 5 is a plan view of a photomask, and FIG. 7(8) is a cross-sectional view of an example of a photomass flatness measuring device shown at DD' in FIG. 5, FIG. 7(8) is a rear view of a flexible chuck showing an improved example of the present invention, and FIG. 8(8) is a rear view of a flexible chuck showing another embodiment of the present invention, FIG. 8(B) is a side view thereof, and FIG. 9 is a sectional view showing an example of the structure of the cross groove , FIG. 10 is a characteristic diagram showing the results of this invention in comparison with the conventional method, FIG. 11 is a diagram showing the flatness measurement points of a photomask in an improved example of this invention and another example, and FIG. A cross-sectional view showing a photomask flatness measuring device in an improved example and other embodiments of the present invention, FIG. 13 is a cross-sectional view showing a conventional substrate gap accuracy control device, and FIG. 14 is a gap amount and dimensional shift amount. FIG. DESCRIPTION OF SYMBOLS 1...Large substrate, 2...Photomask, 3...Mask frame, 4...Chuck, 5...Semiconductor laser, 6...Line sensor, 7...Base, 8...・
Spring, 9...Flexible chuck, 10...
・Actuator, 11.12...Vacuum groove. Enjoying the World's Dreams Revolutionary Team's Dreams/1st Time

Claims (1)

【特許請求の範囲】 1、フォトマスクのパターンをレジストが塗布されてい
る大型基板に焼付ける際のフォトマスクと大型基板との
間のギャップの精度を管理するギャップ精度管理方法に
おいて、前記フォトマスクの平坦度を測定する計測手段
と、前記大型基板の平面性を調節する調節手段とを設け
、前記計測手段による前記フォトマスクの平坦度測定値
に基づく前記調節手段の対応処理によって前記ギャップ
の精度を高めるように構成したことを特徴とする大型基
板のギャップ精度管理方法。 2、前記調節手段による調節をアクチュエータ駆動を用
いてフレキシブルチャックを介在して行なうようにして
前記フォトマスクと前記大型基板との全面ギャップ精度
が±5μm以内で検出管理され得るようにした請求項1
に記載の大型基板のギャップ精度管理方法。 3、前記大型基板の対角線に沿って十字状の溝が付せら
れており、各対角点及び中央に取付治具を介してアクチ
ュエータ及びスプリングで成るフレキシブルチャックを
設けた請求項1に記載の大型基板のギャップ精度管理方
法。
[Scope of Claims] 1. In a gap accuracy control method for controlling the accuracy of a gap between a photomask and a large substrate when printing a photomask pattern onto a large substrate coated with a resist, the photomask A measurement means for measuring the flatness of the photomask and an adjustment means for adjusting the flatness of the large substrate are provided, and the accuracy of the gap is adjusted by corresponding processing of the adjustment means based on the flatness measurement value of the photomask by the measurement means. 1. A method for controlling gap accuracy of a large substrate, characterized in that the method is configured to increase the gap accuracy. 2. The adjustment by the adjustment means is performed using an actuator drive through a flexible chuck, so that the overall gap accuracy between the photomask and the large substrate can be detected and managed within ±5 μm.
Gap accuracy control method for large substrates described in . 3. A cross-shaped groove is provided along the diagonal of the large substrate, and a flexible chuck consisting of an actuator and a spring is provided at each diagonal point and the center via a mounting jig. Gap accuracy control method for large substrates.
JP1284277A 1988-11-01 1989-10-31 Method of control of gap accuracy of large substrate Pending JPH02224219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1284277A JPH02224219A (en) 1988-11-01 1989-10-31 Method of control of gap accuracy of large substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-276644 1988-11-01
JP27664488 1988-11-01
JP1284277A JPH02224219A (en) 1988-11-01 1989-10-31 Method of control of gap accuracy of large substrate

Publications (1)

Publication Number Publication Date
JPH02224219A true JPH02224219A (en) 1990-09-06

Family

ID=26552037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1284277A Pending JPH02224219A (en) 1988-11-01 1989-10-31 Method of control of gap accuracy of large substrate

Country Status (1)

Country Link
JP (1) JPH02224219A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1829836A1 (en) * 2005-06-17 2007-09-05 Shinetsu Chemical Co., Ltd. Large glass substrate for photomask and method for producing same, computer readable recording medium, and method for exposing mother glass
DE102012105218A1 (en) * 2012-06-15 2013-12-19 Epcos Ag Holding device for holding wafer for manufacturing MEMS microphones, has support device including upper side for supporting wafer, and liquid column changing curvature of upper side and exerting force on support device
CN110690158A (en) * 2019-09-25 2020-01-14 云谷(固安)科技有限公司 Stripping device and stripping method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1829836A1 (en) * 2005-06-17 2007-09-05 Shinetsu Chemical Co., Ltd. Large glass substrate for photomask and method for producing same, computer readable recording medium, and method for exposing mother glass
EP1829836A4 (en) * 2005-06-17 2011-10-26 Shinetsu Chemical Co Large glass substrate for photomask and method for producing same, computer readable recording medium, and method for exposing mother glass
DE102012105218A1 (en) * 2012-06-15 2013-12-19 Epcos Ag Holding device for holding wafer for manufacturing MEMS microphones, has support device including upper side for supporting wafer, and liquid column changing curvature of upper side and exerting force on support device
CN110690158A (en) * 2019-09-25 2020-01-14 云谷(固安)科技有限公司 Stripping device and stripping method
CN110690158B (en) * 2019-09-25 2022-03-22 云谷(固安)科技有限公司 Stripping device and stripping method

Similar Documents

Publication Publication Date Title
US7239376B2 (en) Method and apparatus for correcting gravitational sag in photomasks used in the production of electronic devices
JP4362732B2 (en) Large glass substrate for photomask and manufacturing method thereof, computer-readable recording medium, and mother glass exposure method
JP3042187B2 (en) Method and apparatus for measuring the dimensions of a patterned structure of a lithographic photomask
JP3634068B2 (en) Exposure method and apparatus
TWI409579B (en) Method of manufacturing a photomask lithography apparatus, method of inspecting a photomask and apparatus for inspecting a photomask
US7608542B2 (en) Large-size glass substrate for photomask and making method, computer-readable recording medium, and mother glass exposure method
JP2007019509A (en) Measurement of distortion of substrate
JPS62122215A (en) Projection-exposure equipment
JP5065313B2 (en) Lithographic apparatus and calibration method
JPH02224219A (en) Method of control of gap accuracy of large substrate
US6771351B2 (en) Projection exposure method and apparatus
US7522323B2 (en) Method and apparatus for printing a pattern with improved focus correction and higher throughput
CN111366593A (en) Device and method for measuring defect delamination of glass substrate
JP4261689B2 (en) EXPOSURE APPARATUS, METHOD USED FOR THE EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD USING THE EXPOSURE APPARATUS
JP2009170681A (en) Exposure apparatus, exposure method, and device manufacturing method
JP4646342B2 (en) Thin film magnetic head size / array measuring method and thin film magnetic head size / array measuring apparatus
JP4923783B2 (en) Color filter drawing method
JP2007331041A (en) Working device for flat workpiece
JPH0697046A (en) Exposing device
JP2000260840A (en) Method and device for measuring semiconductor substrate
JPH05332761A (en) Pattern position measurement device
JP2002056514A (en) Device for measuring dimension and array of thin film magnetic head
US11067905B1 (en) Real-time autofocus for maskless lithography on substrates
JPH05251303A (en) Projection exposing device
JPS60168112A (en) Focusing device of projecting device