JPH05106560A - Multi-stage compressor system - Google Patents

Multi-stage compressor system

Info

Publication number
JPH05106560A
JPH05106560A JP29376391A JP29376391A JPH05106560A JP H05106560 A JPH05106560 A JP H05106560A JP 29376391 A JP29376391 A JP 29376391A JP 29376391 A JP29376391 A JP 29376391A JP H05106560 A JPH05106560 A JP H05106560A
Authority
JP
Japan
Prior art keywords
stage compressor
compressed air
discharge
temperature
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29376391A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kajino
安弘 鍛治野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29376391A priority Critical patent/JPH05106560A/en
Publication of JPH05106560A publication Critical patent/JPH05106560A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To enhance the control efficiency for the temp. of the discharge compressed air by performing the control directly through adjustment of the amount of compressed air to be fed flowing to an intercooler. CONSTITUTION:A discharge temp. control device 10 to control the temp. of the compressed air discharged from a multi-stage compressor 1 on the basis of the temp. of the discharge compressed air is composed of a temp. sensor 11 installed on a discharge piping 5 of the final stage compressor, a bypass piping 13 arranged between the discharge piping 2 of the fore stage compressor and the suction piping 3 of a back stage compressor so as to detour by an intercooler 4, and a bypass rate-of-flow adjusting valve 14 furnished on this bypass piping 13. The amount of compressed air flowing from the fore stage compressor into the back stage compressor is adjusted by the rate-of-flow adjusting valve 14 on the basis of the sensing value of the temp. sensor 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばドライヤ装置を
有する多段圧縮機設備に関し、更に詳細にはこのような
多段圧縮機設備に適用される吐出温度制御装置に係り、
特に最終段圧縮機からの吐出温度制御を能率よく行える
ようにした多段圧縮機設備の吐出温度制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-stage compressor facility having, for example, a dryer, and more particularly to a discharge temperature control device applied to such a multi-stage compressor facility.
In particular, the present invention relates to a discharge temperature control device for a multi-stage compressor facility, which enables efficient control of discharge temperature from the final stage compressor.

【0002】[0002]

【従来の技術】図3は、ドライヤ装置を有する従来の多
段圧縮機設備の構成を示す。図3において、多段圧縮機
1を構成する前段圧縮機の吐出配管2と後段圧縮機の吸
入配管3との間にはインタークーラ4が設けられ、この
インタークーラ4によって圧縮空気が冷却されるように
なっている。
2. Description of the Related Art FIG. 3 shows the structure of a conventional multistage compressor facility having a dryer device. In FIG. 3, an intercooler 4 is provided between the discharge pipe 2 of the former stage compressor and the suction pipe 3 of the latter stage compressor which constitute the multistage compressor 1, and the intercooler 4 cools the compressed air. It has become.

【0003】また、多段圧縮機1の最終段圧縮機の吐出
配管5は途中から二手に分岐されており、一方はアフタ
ークーラ6を介して一つの吸着筒7に接続され、他方は
前記吸着筒7と並列に配置された別の吸着筒8に接続さ
れている。後者の吸着筒8は、ドレン分離器(例えば、
吸着筒を通過する圧縮空気を冷却するクーラと、このク
ーラにより冷却された圧縮空気からドレンを除去するサ
イクロンとから構成される)9を介して前者の吸着筒7
に接続されている。
The discharge pipe 5 of the final stage compressor of the multi-stage compressor 1 is branched into two parts from the middle, one of which is connected to one adsorption cylinder 7 via an aftercooler 6 and the other is the adsorption cylinder. 7 is connected to another adsorption cylinder 8 arranged in parallel. The latter adsorption cylinder 8 is a drain separator (for example,
The former adsorption cylinder 7 via a cooler for cooling the compressed air passing through the adsorption cylinder and a cyclone for removing drain from the compressed air cooled by the cooler.
It is connected to the.

【0004】以上述べた構成において、多段圧縮機1か
らの高温圧縮空気の一部が吸湿飽和状態にある吸着筒8
に導入され、吸着筒8は高温圧縮空気により加熱再生さ
れる。残りの高温圧縮空気はアクフタクーラ6を経て吸
着筒7へ至る。吸着筒8から流出する圧縮空気は吸着筒
8から追出された湿気を含んだ高温状態になっており、
この圧縮空気はドレン分離器9でドレンが除去された
後、吸着筒7に移送されて系外需要負荷機器へ移送され
る。
In the configuration described above, the adsorption cylinder 8 in which a part of the high temperature compressed air from the multi-stage compressor 1 is in a moisture absorption saturated state
And the adsorption cylinder 8 is heated and regenerated by hot compressed air. The remaining high-temperature compressed air reaches the adsorption cylinder 7 through the actuator cooler 6. The compressed air flowing out from the adsorption cylinder 8 is in a high temperature state containing the moisture expelled from the adsorption cylinder 8,
The drain of the compressed air is removed by the drain separator 9, and then the compressed air is transferred to the adsorption cylinder 7 and transferred to the external demand load equipment.

【0005】そして、この吸湿作用をしている吸着筒7
が吸湿飽和状態に近付くとともに、他方の吸着筒8が加
熱再生完了に近付くと、図示しない切換弁の切換えによ
り、再生済み吸着筒8と飽和状態になった吸着筒7とが
置換されるべく、圧縮空気の流れは切換えられ、このよ
うに多段圧縮機1から吐出される圧縮空気の保有する熱
により吸湿飽和に達した吸着筒が、加熱再生されるよう
になっている。
Then, the adsorption cylinder 7 having this moisture absorption function
Is approaching the moisture absorption saturated state and the other adsorption cylinder 8 is nearing the completion of heating regeneration, the regeneration adsorption cylinder 8 and the saturated adsorption cylinder 7 are replaced by switching the switching valve (not shown). The flow of the compressed air is switched, and thus the adsorption cylinder that has reached the moisture absorption saturation by the heat of the compressed air discharged from the multi-stage compressor 1 is heated and regenerated.

【0006】ところで、このようなドライヤ装置付きの
多段圧縮機設備において、従来、同様に図3に示すよう
に、吐出圧縮空気の温度に基づいて多段圧縮機1から吐
出される圧縮空気の温度を一定値以上に制御する吐出温
度制御装置10を備えたものが知られている。すなわ
ち、この吐出温度制御装置10によって、多段圧縮機1
の最終段圧縮機からの吐出空気を所定の値以上の温度に
保持させ、もって露点を一定値以下に制御し、結露の発
生を防止し得るようにしたものである。
By the way, in such a multi-stage compressor facility equipped with a dryer, the temperature of the compressed air discharged from the multi-stage compressor 1 is conventionally determined based on the temperature of the discharged compressed air as shown in FIG. A device provided with a discharge temperature control device 10 for controlling the temperature to a certain value or higher is known. That is, the discharge temperature control device 10 controls the multi-stage compressor 1
The air discharged from the last-stage compressor is kept at a temperature of a predetermined value or higher, and the dew point is controlled to a fixed value or lower to prevent the occurrence of dew condensation.

【0007】[0007]

【発明が解決しようとする課題】ところが、従来例で
は、この吐出温度制御装置10は、多段圧縮機1におけ
る最終圧縮機の吐出配管5に設けられた温度検出器11
と、多段圧縮機1に設けられたインタクーラ4の冷媒供
給量を調節する、弁の如き冷媒供給量調節手段12とに
よって構成されている。すなわち、吐出空気温度を温度
検出器11で検出し、この検出値から冷媒供給量調節手
段12でインタークーラ4の冷却能力を調節し、吐出空
気温度を一定値以上に制御するようにしている。このよ
うな構成では、しかし、圧縮空気(一次側)の温度を制
御するのに冷媒(二次側)のコントロールを行っている
ので、必ずしも能率がよくない。
However, in the conventional example, the discharge temperature control device 10 includes the temperature detector 11 provided in the discharge pipe 5 of the final compressor of the multi-stage compressor 1.
And a refrigerant supply amount adjusting means 12 such as a valve for adjusting the refrigerant supply amount of the intercooler 4 provided in the multi-stage compressor 1. That is, the discharge air temperature is detected by the temperature detector 11, and the cooling capacity of the intercooler 4 is adjusted by the refrigerant supply amount adjusting means 12 based on the detected value so that the discharge air temperature is controlled to a certain value or higher. However, in such a configuration, since the refrigerant (secondary side) is controlled to control the temperature of the compressed air (primary side), the efficiency is not necessarily high.

【0008】本発明は、このような従来技術の課題を解
決するためになされたもので、圧縮空気(一次側)の温
度を制御するのに、冷媒(二次側)ではなくてインター
クーラへ流す圧縮空気量の調節によって直接的に制御す
るようにして、制御能率の向上が図れる多段圧縮機設備
の吐出温度制御装置を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems of the prior art. In order to control the temperature of the compressed air (primary side), the intercooler is used instead of the refrigerant (secondary side). It is an object of the present invention to provide a discharge temperature control device for a multi-stage compressor facility, which is capable of directly controlling by adjusting the amount of compressed air to be flowed and improving control efficiency.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、多段圧縮機と、この多段圧縮機を構成
する前段圧縮機の吐出配管と後段圧縮機の吸入配管との
間に設けられた圧縮空気冷却用のインタークーラと、最
終段圧縮機の吐出配管に並列に接続され、交互に吐出圧
縮空気の吸湿用および加熱再生用として用いられる一対
の吸着筒と、吐出圧縮空気の温度に基づいて前記多段圧
縮機から吐出される圧縮空気の温度を一定値以上に制御
する吐出温度制御装置とを備えた多段圧縮機設備におい
て、前記吐出温度制御装置は、前記最終段圧縮機の吐出
配管に設けられた温度検出器と、前段圧縮機の吐出配管
と後段圧縮機の吸入配管との間にインタークーラをバイ
パスするよう設けられたバイパス配管と、このバイパス
配管に設けられ、最終段圧縮機から吐出される圧縮空気
の温度を一定値以上に保持すべく前記温度検出器からの
検出値に基づいて前記バイパス配管を介して前段圧縮機
から後段圧縮機に流入する圧縮空気の流量を調節するバ
イパス流量調節手段とを有してなる。
In order to solve the above-mentioned problems, the present invention provides a multi-stage compressor and a discharge pipe of a pre-stage compressor and a suction pipe of a post-stage compressor which constitute this multi-stage compressor. And a pair of adsorption cylinders connected in parallel to the discharge pipe of the final stage compressor for cooling compressed air and alternately used for moisture absorption and heating regeneration of the discharged compressed air, and the discharged compressed air. In a multi-stage compressor facility including a discharge temperature control device that controls the temperature of compressed air discharged from the multi-stage compressor to a constant value or higher based on the temperature of, the discharge temperature control device is the final stage compressor. A temperature detector provided in the discharge pipe of, a bypass pipe provided to bypass the intercooler between the discharge pipe of the former compressor and the suction pipe of the latter compressor, and this bypass pipe, Based on the detected value from the temperature detector to keep the temperature of the compressed air discharged from the final stage compressor at a certain value or more, the compressed air flowing from the former stage compressor to the latter stage compressor through the bypass pipe And a bypass flow rate adjusting means for adjusting the flow rate.

【0010】[0010]

【作用】圧縮機の吐出口温度は、圧縮機の圧力比および
効率が変らないならば、その最終段の入口温度によって
決まる。この入口温度はインタークーラの吐出圧縮空気
温度に相当する。そこで、本発明は、上記の手段によ
り、インタークーラ吐出空気温度を一定に保つよう、イ
ンタークーラ入口からインタークーラで冷却されていな
い高温圧縮空気をバイパス配管を通して吐出側に流すよ
うにする一方、この流量をバイパス流量調節手段で調節
するようにしたので、圧縮機の吐出温度を予め設定した
値以上へ常に上昇させることができ、系外需要負荷機器
へ移送する圧縮空気を予め設定された露点値以下に自動
的に制御することができる。
The temperature at the outlet of the compressor is determined by the temperature at the inlet of the final stage if the pressure ratio and efficiency of the compressor are unchanged. This inlet temperature corresponds to the temperature of the compressed air discharged from the intercooler. Therefore, according to the present invention, in order to keep the temperature of the discharge air of the intercooler constant by the above-mentioned means, high temperature compressed air not cooled by the intercooler is made to flow to the discharge side from the intercooler through the bypass pipe. Since the flow rate is adjusted by the bypass flow rate adjusting means, the discharge temperature of the compressor can be constantly increased to a value higher than the preset value, and the compressed air to be transferred to the load demand equipment outside the system has a preset dew point value. The following can be controlled automatically.

【0011】このように、本発明によれば、圧縮空気
(一次側)の温度を制御するのに、冷媒(二次側)では
なくて、インタークーラへ流す圧縮空気量の調節によっ
て直接的に制御するようにしたので、制御能率の向上が
図れるようになる。
As described above, according to the present invention, in order to control the temperature of the compressed air (primary side), not the refrigerant (secondary side) but the amount of compressed air flowing to the intercooler is directly adjusted. Since the control is performed, the control efficiency can be improved.

【0012】[0012]

【実施例】以下図1,図2を参照して本発明の実施例に
ついて詳細に説明する。なお、図1,図2において、図
3に示した従来例と同様の構成部分には同一の符号を使
用する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 1 and 2, the same reference numerals are used for the same components as those of the conventional example shown in FIG.

【0013】図1は本発明の第1実施例を示し、本実施
例でも、多段圧縮機1を構成する前段圧縮機の吐出配管
2と後段圧縮機の吸入配管3との間にはインタークーラ
4が設けられ、このインタークーラ4によって圧縮空気
が冷却されるようになっている。
FIG. 1 shows a first embodiment of the present invention, and in this embodiment as well, an intercooler is provided between a discharge pipe 2 of a front stage compressor and a suction pipe 3 of a rear stage compressor which constitute a multi-stage compressor 1. 4 is provided, and the compressed air is cooled by the intercooler 4.

【0014】また、多段圧縮機1の最終段圧縮機の吐出
配管5は途中から二手に分岐されており、一方はアフタ
ークーラ6を介して一つの吸着筒7に接続され、他方は
前記吸着筒7と並列に配置された別の吸着筒8に接続さ
れている。後者の吸着筒8は、ドレン分離器(例えば、
吸着筒を通過する圧縮空気を冷却するクーラと、このク
ーラにより冷却された圧縮空気からドレンを除去するサ
イクロンとから構成される)9を介して前者の吸着筒7
に接続されている。
Further, the discharge pipe 5 of the final stage compressor of the multi-stage compressor 1 is branched into two in the middle, one of which is connected to one adsorption cylinder 7 via an aftercooler 6 and the other is the adsorption cylinder. 7 is connected to another adsorption cylinder 8 arranged in parallel. The latter adsorption cylinder 8 is a drain separator (for example,
The former adsorption cylinder 7 via a cooler for cooling the compressed air passing through the adsorption cylinder and a cyclone for removing drain from the compressed air cooled by the cooler.
It is connected to the.

【0015】以上述べた構成において、多段圧縮機1か
らの高温圧縮空気の一部が吸湿飽和状態にある吸着筒8
に導入され、吸着筒8は高温圧縮空気により加熱再生さ
れる。残りの高温圧縮空気はアクフタクーラ6を経て吸
着筒7へ至る。吸着筒8から流出する圧縮空気は吸着筒
8から追出された湿気を含んだ高温状態になっており、
この圧縮空気はドレン分離器9でドレンが除去された
後、吸着筒7に移送されて系外需要負荷機器へ移送され
る。
In the structure described above, the adsorption cylinder 8 in which a part of the high temperature compressed air from the multi-stage compressor 1 is in a moisture absorption saturated state.
And the adsorption cylinder 8 is heated and regenerated by hot compressed air. The remaining high-temperature compressed air reaches the adsorption cylinder 7 through the actuator cooler 6. The compressed air flowing out from the adsorption cylinder 8 is in a high temperature state containing the moisture expelled from the adsorption cylinder 8,
The drain of the compressed air is removed by the drain separator 9, and then the compressed air is transferred to the adsorption cylinder 7 and transferred to the external demand load equipment.

【0016】そして、この吸湿作用をしている吸着筒7
が吸湿飽和状態に近付くとともに、他方の吸着筒8が加
熱再生完了に近付くと、図示しない切換弁の切換えによ
り、再生済み吸着筒8と飽和状態になった吸着筒7とが
置換されるべく、圧縮空気の流れは切換えられ、このよ
うに多段圧縮機1から吐出される圧縮空気の保有する熱
により吸湿飽和に達した吸着筒が、加熱再生されるよう
になっている。
Then, the adsorption cylinder 7 having this hygroscopic effect
Is approaching the moisture absorption saturated state and the other adsorption cylinder 8 is nearing the completion of heating regeneration, the regeneration adsorption cylinder 8 and the saturated adsorption cylinder 7 are replaced by switching the switching valve (not shown). The flow of the compressed air is switched, and thus the adsorption cylinder that has reached the moisture absorption saturation by the heat of the compressed air discharged from the multi-stage compressor 1 is heated and regenerated.

【0017】更に、、このようなドライヤ装置付きの多
段圧縮機設備において、本実施例でも、吐出圧縮空気の
温度に基づいて多段圧縮機1から吐出される圧縮空気の
温度を一定値以上に制御する吐出温度制御装置10が備
えられているが、その構成は図3に示した従来例とは異
なっている。
Further, in such a multi-stage compressor facility equipped with a dryer, in the present embodiment as well, the temperature of the compressed air discharged from the multi-stage compressor 1 is controlled to a certain value or higher based on the temperature of the discharged compressed air. Although the discharge temperature control device 10 is provided, the configuration thereof is different from that of the conventional example shown in FIG.

【0018】すなわち、本実施例によれば、吐出温度制
御装置10は、多段圧縮機1の最終段圧縮機の吐出配管
5に設けられた温度検出器11と、前段圧縮機の吐出配
管2と後段圧縮機の吸入配管3との間にインタークーラ
4をバイパスするよう設けられたバイパス配管13と、
このバイパス配管13に設けられ、最終段圧縮機から吐
出される圧縮空気の温度を一定値以上に保持すべく温度
検出器11からの検出値に基づいてバイパス配管13を
介して前段圧縮機から後段圧縮機に流入する圧縮空気の
流量を調節するバイパス流量調節手段としての流量調節
弁14とを有する構成とされている。
That is, according to the present embodiment, the discharge temperature control device 10 includes the temperature detector 11 provided in the discharge pipe 5 of the final stage compressor of the multi-stage compressor 1 and the discharge pipe 2 of the preceding stage compressor. A bypass pipe 13 provided to bypass the intercooler 4 between the suction pipe 3 of the latter stage compressor,
Based on the value detected by the temperature detector 11 in order to keep the temperature of the compressed air discharged from the final stage compressor at a certain value or more, which is provided in the bypass pipe 13, the upstream stage compressor to the downstream stage via the bypass pipe 13 A flow rate control valve 14 as a bypass flow rate control means for controlling the flow rate of the compressed air flowing into the compressor.

【0019】このような構成により、インタークーラ4
の吐出空気温度を一定に保つよう、インタークーラ4の
入口から、インタークーラ4で冷却されていない高温圧
縮空気をバイパス配管13を通して吐出側に流すように
する一方、この流量を流量調節弁14で調節するように
したものである。これにより、多段圧縮機1の吐出温度
を予め設定した値以上へ常に上昇させることができ、系
外需要負荷機器へ移送する圧縮空気を予め設定された露
点値以下に自動的に制御することができる。
With such a configuration, the intercooler 4
In order to maintain a constant discharge air temperature of the, the high temperature compressed air that is not cooled by the intercooler 4 is caused to flow from the inlet of the intercooler 4 to the discharge side through the bypass pipe 13, while this flow rate is adjusted by the flow control valve 14. It is something that is adjusted. As a result, the discharge temperature of the multi-stage compressor 1 can be constantly increased to a value equal to or higher than a preset value, and the compressed air transferred to the load demand equipment outside the system can be automatically controlled to be equal to or lower than the preset dew point value. it can.

【0020】したがって、本実施例によれば、圧縮空気
(一次側)の温度を制御するのに、冷媒(二次側)では
なくて、インタークーラ4へ流す圧縮空気量の調節によ
って直接的に制御するようにしたので、制御能率の向上
が図れるようになる。
Therefore, according to the present embodiment, in order to control the temperature of the compressed air (primary side), not the refrigerant (secondary side) but the amount of compressed air flowing to the intercooler 4 is directly adjusted. Since the control is performed, the control efficiency can be improved.

【0021】次に、図2は本発明の第2実施例を示し、
多段圧縮機1の最終圧縮機からの高温圧縮空気の全量を
吐出配管5を通してアフタークーラ6に通した後、その
一部を再生中の吸着筒8へ導くようにしたものである。
このような構成においても、多段圧縮機1の出口の高温
圧縮空気の温度制御は、図1に示した第1実施例と同様
に、インタークーラ4のバイパス配管13と流量調節弁
14とによっておこなわれ、したがって前記第1実施例
と同様の作用効果が奏される。
Next, FIG. 2 shows a second embodiment of the present invention.
The whole amount of the high temperature compressed air from the final compressor of the multi-stage compressor 1 is passed through the after-cooler 6 through the discharge pipe 5, and then a part thereof is guided to the adsorbing cylinder 8 during regeneration.
Even in such a configuration, the temperature control of the high temperature compressed air at the outlet of the multi-stage compressor 1 is performed by the bypass pipe 13 of the intercooler 4 and the flow rate control valve 14 as in the first embodiment shown in FIG. Therefore, the same effect as that of the first embodiment can be obtained.

【0022】なお、更に他の実施例として、図示はしな
いが、図1において、多段圧縮機1の最終段圧縮機の吐
出配管5を途中から分岐しないで、多段圧縮機1から独
立して延びる他の吐出配管をアフタークーラ6に直接接
続するようにしてもよい。
As yet another embodiment, although not shown, in FIG. 1, the discharge pipe 5 of the final-stage compressor of the multi-stage compressor 1 is not branched from the middle and extends independently from the multi-stage compressor 1. The other discharge pipe may be directly connected to the aftercooler 6.

【0023】[0023]

【発明の効果】以上述べたように、本発明によれば、多
段圧縮機設備の吐出温度制御装置は、多段圧縮機の最終
段圧縮機の吐出配管に設けられた温度検出器と、前段圧
縮機の吐出配管と後段圧縮機の吸入配管との間にインタ
ークーラをバイパスするよう設けられたバイパス配管
と、このバイパス配管に設けられ、最終段圧縮機から吐
出される圧縮空気の温度を一定値以上に保持すべく前記
温度検出器からの検出値に基づいて前記バイパス配管を
介して前段圧縮機から後段圧縮機に流入する圧縮空気の
流量を調節するバイパス流量調節手段とを有する構成で
あり、圧縮空気(一次側)の温度を制御するのに、冷媒
(二次側)ではなくて、インタークーラへ流す圧縮空気
量の調節によって直接的に制御するようにしたので、制
御能率の向上が図れる効果が奏される。
As described above, according to the present invention, the discharge temperature control device for a multi-stage compressor facility includes a temperature detector provided in the discharge pipe of the final stage compressor of the multi-stage compressor, and a pre-stage compressor. Between the discharge pipe of the compressor and the suction pipe of the latter stage compressor to bypass the intercooler, and the temperature of the compressed air discharged from the last stage compressor that is provided in this bypass pipe to a constant value. It is a configuration having a bypass flow rate adjusting means for adjusting the flow rate of the compressed air flowing into the post-stage compressor from the pre-stage compressor via the bypass pipe based on the detection value from the temperature detector to be held above. The temperature of the compressed air (primary side) is controlled not by the refrigerant (secondary side) but by directly controlling the amount of compressed air flowing to the intercooler, so the control efficiency can be improved. Effect is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る多段圧縮機設備を示
す系統図である。
FIG. 1 is a system diagram showing a multi-stage compressor facility according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る多段圧縮機設備を示
す系統図である。
FIG. 2 is a system diagram showing a multi-stage compressor facility according to a second embodiment of the present invention.

【図3】従来の多段圧縮機設備を示す系統図である。FIG. 3 is a system diagram showing a conventional multi-stage compressor facility.

【符号の説明】[Explanation of symbols]

1 多段圧縮機 2 前段圧縮機の吐出配管 3 後段圧縮機の吸入配管 4 インタークーラ 5 最終段圧縮機の吐出配管 6 アフタークーラ 7 吸着筒 8 吸着筒 9 ドレン分離器 10 吐出温度制御装置 11 温度検出器 13 バイパス配管 14 バイパス流量調節弁(バイパス流量調節手段) 1 Multi-stage compressor 2 Discharge pipe of front stage compressor 3 Suction pipe of rear stage compressor 4 Intercooler 5 Discharge pipe of final stage compressor 6 After cooler 7 Adsorption cylinder 8 Adsorption cylinder 9 Drain separator 10 Discharge temperature control device 11 Temperature detection Device 13 bypass piping 14 bypass flow control valve (bypass flow control means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】多段圧縮機と、この多段圧縮機を構成する
前段圧縮機の吐出配管と後段圧縮機の吸入配管との間に
設けられた圧縮空気冷却用のインタークーラと、最終段
圧縮機の吐出配管に並列に接続され、交互に吐出圧縮空
気の吸湿用および加熱再生用として用いられる一対の吸
着筒と、吐出圧縮空気の温度に基づいて前記多段圧縮機
から吐出される圧縮空気の温度を一定値以上に制御する
吐出温度制御装置とを備えた多段圧縮機設備において、
前記吐出温度制御装置は、前記最終段圧縮機の吐出配管
に設けられた温度検出器と、前段圧縮機の吐出配管と後
段圧縮機の吸入配管との間にインタークーラをバイパス
するよう設けられたバイパス配管と、このバイパス配管
に設けられ、最終段圧縮機から吐出される圧縮空気の温
度を一定値以上に保持すべく前記温度検出器からの検出
値に基づいて前記バイパス配管を介して前段圧縮機から
後段圧縮機に流入する圧縮空気の流量を調節するバイパ
ス流量調節手段とを有することを特徴とする多段圧縮機
設備。
1. A multi-stage compressor, an intercooler for cooling compressed air, which is provided between a discharge pipe of a front-stage compressor and a suction pipe of a rear-stage compressor, which constitutes the multi-stage compressor, and a final-stage compressor. A pair of adsorption cylinders that are connected in parallel to the discharge pipes and are alternately used for absorbing and heating and regenerating the compressed air discharged, and the temperature of the compressed air discharged from the multi-stage compressor based on the temperature of the discharged compressed air. In a multi-stage compressor facility equipped with a discharge temperature control device for controlling
The discharge temperature control device is provided so as to bypass the intercooler between the temperature detector provided in the discharge pipe of the final stage compressor and the discharge pipe of the front stage compressor and the suction pipe of the rear stage compressor. A bypass pipe and a pre-stage compression via the bypass pipe provided on the bypass pipe based on the detection value from the temperature detector to keep the temperature of the compressed air discharged from the final stage compressor above a certain value. Multi-stage compressor facility, comprising: bypass flow rate adjusting means for adjusting the flow rate of compressed air flowing from the compressor to the latter-stage compressor.
JP29376391A 1991-10-14 1991-10-14 Multi-stage compressor system Withdrawn JPH05106560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29376391A JPH05106560A (en) 1991-10-14 1991-10-14 Multi-stage compressor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29376391A JPH05106560A (en) 1991-10-14 1991-10-14 Multi-stage compressor system

Publications (1)

Publication Number Publication Date
JPH05106560A true JPH05106560A (en) 1993-04-27

Family

ID=17798905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29376391A Withdrawn JPH05106560A (en) 1991-10-14 1991-10-14 Multi-stage compressor system

Country Status (1)

Country Link
JP (1) JPH05106560A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814260A2 (en) * 1996-06-03 1997-12-29 Westinghouse Air Brake Company Thermostatically controlled intercooler system for a multiple stage compressor and method
KR100447196B1 (en) * 2002-07-13 2004-09-04 엘지전자 주식회사 Cooling and Heating Device Using Hydrogen Storage Alloys and Method for controlling the same
EP3020972A1 (en) * 2014-11-14 2016-05-18 Kaeser Kompressoren SE Intercooler bypass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814260A2 (en) * 1996-06-03 1997-12-29 Westinghouse Air Brake Company Thermostatically controlled intercooler system for a multiple stage compressor and method
EP0814260A3 (en) * 1996-06-03 1999-07-07 Westinghouse Air Brake Company Thermostatically controlled intercooler system for a multiple stage compressor and method
KR100447196B1 (en) * 2002-07-13 2004-09-04 엘지전자 주식회사 Cooling and Heating Device Using Hydrogen Storage Alloys and Method for controlling the same
EP3020972A1 (en) * 2014-11-14 2016-05-18 Kaeser Kompressoren SE Intercooler bypass
DE102014116672A1 (en) 2014-11-14 2016-05-19 Kaeser Kompressoren Se Intercooler bypass
US10174972B2 (en) 2014-11-14 2019-01-08 Kaeser Kompressoren Se Intercooler bypass

Similar Documents

Publication Publication Date Title
CN111102661B (en) Energy-saving variable-dehumidification-capacity heat pump type rotary dehumidifier unit and control method thereof
US20070295205A1 (en) Method For Drying Compressed Gas And Device Used Thereby
US9259682B2 (en) Heat of compression dryer system
KR101957260B1 (en) Adsorption type air dryer
JP5268401B2 (en) Heat pump dryer
USRE39122E1 (en) Regenerative compressed air/gas dryer
US4761968A (en) High efficiency air drying system
JP4787754B2 (en) Improved method for separating a gas from a gas mixture and apparatus for use in the method
JPS58185990A (en) Dehumidifier for compressor
JPH05106560A (en) Multi-stage compressor system
CN103480246A (en) Multifunctional combined-type low-dew-point gas drying device
KR100863284B1 (en) Apparatus for cooling and dehumidifying open air
WO2023214270A1 (en) Method for controlling a compressor installation and compressor installation
US10174972B2 (en) Intercooler bypass
CN116020235A (en) Adsorption drying device for preparing air with ultralow dew point and ultralow carbon dioxide content
JP2011177632A (en) Method and apparatus for dehumidifying compressed gas
JPH0214998B2 (en)
JPS6410252B2 (en)
JPS5833364Y2 (en) Exhaust heat recovery equipment such as compressors
JPS6333091Y2 (en)
JP3410370B2 (en) Air dehumidifier and control method thereof
JPS63162024A (en) Drying device for compressed air
JP2639135B2 (en) Vehicle air conditioner
KR20230135872A (en) A gas analysis device for enhancing dehumidification of gas injected into a gas analyzer
JPS5832300B2 (en) Heat pump type refrigeration equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107