JPH0214998B2 - - Google Patents

Info

Publication number
JPH0214998B2
JPH0214998B2 JP58245056A JP24505683A JPH0214998B2 JP H0214998 B2 JPH0214998 B2 JP H0214998B2 JP 58245056 A JP58245056 A JP 58245056A JP 24505683 A JP24505683 A JP 24505683A JP H0214998 B2 JPH0214998 B2 JP H0214998B2
Authority
JP
Japan
Prior art keywords
compression section
compressor
pressure air
temperature
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58245056A
Other languages
Japanese (ja)
Other versions
JPS60142070A (en
Inventor
Kazumi Hasegawa
Kyoyuki Mogi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP58245056A priority Critical patent/JPS60142070A/en
Publication of JPS60142070A publication Critical patent/JPS60142070A/en
Publication of JPH0214998B2 publication Critical patent/JPH0214998B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Drying Of Gases (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は新規な多段圧縮機のドライヤ装置に係
り、特に吸着筒を用いたドライヤ装置において、
吸湿飽和状態に達した吸着筒を圧縮機から吐出さ
れる圧気に保有される熱で加熱再生させると共に
最終段の圧縮部に前段の圧縮部から導入される圧
気の温度を制御することにより、最終段の圧縮部
から吐出される吐出圧気の温度を一定値以上に保
持させつつ露点を一定値以下に制御することので
きる多段圧縮機のドライヤ装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a new dryer device for a multi-stage compressor, and particularly to a dryer device using an adsorption cylinder.
By heating and regenerating the adsorption cylinder that has reached a moisture absorption saturation state using the heat held in the pressure discharged from the compressor, and by controlling the temperature of the pressure air introduced from the previous stage compression section into the final stage compression section, the final The present invention relates to a dryer device for a multi-stage compressor that can control the dew point to below a certain value while maintaining the temperature of the discharge pressure air discharged from the compression section of the stages above a certain value.

[発明の技術的背景とその問題点] 一般に複数個の吸着筒を圧縮機の吐出管路上に
並列に配設し、そのうちのいくつかの吸着筒を吸
湿工程に用い、他方のいくつかの吸湿飽和状態に
ある吸着筒を加熱再生する再生工程に置き、加熱
再生工程の完了にともない先に吸湿工程にある吸
着筒と再生済吸着筒とを交換乃至置き換える圧縮
機のドライヤ装置は知られている。
[Technical background of the invention and its problems] Generally, a plurality of adsorption cylinders are arranged in parallel on the discharge pipe of a compressor, and some of the adsorption cylinders are used for the moisture absorption process, and some of the adsorption cylinders are used for the moisture absorption process. There is a known compressor dryer device in which a saturated adsorption cylinder is placed in a regeneration process for heating and regeneration, and upon completion of the heating regeneration process, the adsorption cylinder in the moisture absorption process is replaced with the regenerated adsorption cylinder. .

従来のドライヤ装置にあつては吸湿飽和に達し
た吸着筒は伝熱ヒータ等の加熱手段により加熱再
生されるものであり、この加熱設備を設ける必要
があつたと共に熱源を必要とした。
In conventional dryer apparatuses, the adsorption cylinder that has reached moisture absorption saturation is heated and regenerated by a heating means such as a heat transfer heater, and it is necessary to provide this heating equipment and a heat source.

ところで、圧縮機から吐出される圧気は約110
〜170℃の高温状態にあり、従来装置にあつては
このような高温状態にある圧気をアフタークーラ
で約40℃に冷却させると共にドレンセパレータで
ドレンを除去した後に、吸着筒へ導入させてい
た。
By the way, the pressure air discharged from the compressor is approximately 110
The pressure air is at a high temperature of ~170℃, and in conventional equipment, the pressurized air at such a high temperature was cooled to about 40℃ using an aftercooler, and the drain was removed using a drain separator before being introduced into the adsorption cylinder. .

従つて、圧縮機から吐出される圧気中に保有さ
れる熱は何等有効に利用されることなく放出され
ており、省エネルギ対策上好ましくなかつた。
Therefore, the heat held in the pressurized air discharged from the compressor is released without any effective use, which is not preferable from the viewpoint of energy saving.

また、この種圧縮機においては実願昭54−
181143号において「回転式圧縮機のドライヤ」が
提案されている。この提案は圧縮機の入口側に接
続される放風ラインから吐出された圧気の熱を利
用して吸着塔の再生加熱効率を高めるものであ
り、圧縮機の入口側の圧気であるため、十分な高
温圧気を吸着塔に供給できない。また、実願昭54
−181144号においては圧縮機から吐出された圧気
を別個加熱装置で加熱する「圧縮ドライヤ」が提
案されており、この提案は別個加熱手段を必要と
すると共に、消費電力が大きくなることがあつ
た。
In addition, in this type of compressor, the actual application
No. 181143 proposes a "rotary compressor dryer." This proposal uses the heat of the pressurized air discharged from the air discharge line connected to the inlet side of the compressor to increase the regeneration heating efficiency of the adsorption tower. It is not possible to supply high-temperature and high-pressure air to the adsorption tower. Also, Jitsugan 54
-No. 181144 proposes a "compression dryer" that heats the pressurized air discharged from a compressor using a separate heating device, but this proposal requires a separate heating means and may consume a lot of power. .

[発明の目的] そこで、本発明は以上の従来装置における問題
点を有効に解決すべく創案されたものである。
[Object of the Invention] Therefore, the present invention has been devised to effectively solve the problems in the conventional devices described above.

本発明の目的は多段圧縮機から吐出される圧
気の保有する熱により吸湿飽和に達した吸着筒を
加熱再生し得るようにし最終段の圧縮部に前段
の圧縮部から導入される圧気を所定の値以上の温
度に保持させ、以つて露点を一定値以下に制御し
露結の発生を防止し得る圧縮機のドライヤ装置を
提供する。
An object of the present invention is to enable the adsorption column that has reached hygroscopic saturation to be heated and regenerated by the heat possessed by the pressure air discharged from a multi-stage compressor, so that the pressure air introduced from the previous stage compression section into the final stage compression section is kept at a predetermined level. To provide a dryer device for a compressor, which can maintain a temperature above a certain value, thereby controlling the dew point below a certain value, and preventing the occurrence of dew condensation.

[発明の実施例] 次に本発明の一実施例を添付図面に従つて詳述
する。
[Embodiment of the Invention] Next, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図示する如く、1は二段式多段圧縮機であり、
第1段目の圧縮部1aと第2段目(最終段)の圧
縮部1nとの間には前段の圧縮部1aの吐出口2
と後段の圧縮部1nの入口3とを結ぶ管路4に介
設されたインタークーラ5が設けられている。
As shown in the figure, 1 is a two-stage multi-stage compressor,
Between the first stage compression section 1a and the second stage (final stage) compression section 1n, there is a discharge port 2 of the previous stage compression section 1a.
An intercooler 5 is provided in a conduit 4 that connects the inlet 3 of the compression section 1n and the inlet 3 of the compression section 1n at the subsequent stage.

圧縮部1の最終段の圧縮部1nの吐出口には吐
出管路6が接続される。この吐出管路6には2つ
に分岐されるべく分岐管7,7が連設されてい
る。それぞれの分岐管7,7には上記吐出管路6
に対して並列に接続される如く吸着筒8,9が介
設されている。また、吐出管路6と分岐管7,7
との分岐点には第1の切換弁10が設けられ、こ
の切換弁10はいずれかの吸着筒8あるいは9へ
上記圧縮機1からの高温圧気を導入させると同時
に他方の吸着筒8あるいは9から後述する如く乾
燥圧気を系外の需要負荷機器へ取り出す機能を有
し、少なくとも2つの弁部を備えた四方弁によつ
て構成されている。
A discharge pipe line 6 is connected to a discharge port of the compression section 1n at the final stage of the compression section 1. Branch pipes 7, 7 are connected to this discharge pipe line 6 so as to be branched into two. The above-mentioned discharge pipe line 6 is connected to each branch pipe 7, 7.
Adsorption cylinders 8 and 9 are interposed so as to be connected in parallel to the cylinders. In addition, the discharge pipe line 6 and the branch pipes 7, 7
A first switching valve 10 is provided at the branch point between the two adsorption cylinders 8 and 9, and this switching valve 10 allows high-temperature pressure air from the compressor 1 to be introduced into one of the adsorption cylinders 8 or 9 at the same time. As will be described later, it has the function of extracting dry pressurized air to demand load equipment outside the system, and is constituted by a four-way valve having at least two valve parts.

圧縮機1からの高温圧気の導入によつて加熱再
生中の吸着筒8あるいは9の排出口11にはこの
吸着筒を通過した圧気を冷却すると共に冷却され
た圧気中のドレンを除去するドレン分離器12が
第2の切換弁13を介して接続されている。
At the outlet 11 of the adsorption cylinder 8 or 9 which is being heated and regenerated by the introduction of high-temperature pressure air from the compressor 1, there is a drain separation device that cools the pressure air that has passed through the adsorption cylinder and removes condensate from the cooled pressure air. 12 is connected via a second switching valve 13.

このドレン分離器12は主に上記吸着筒を通過
した圧気を冷却するクーラ14と、そのクーラ1
4によつて冷却された圧気中のドレンを除去する
サイクロン15とによつて構成されている。
This drain separator 12 mainly includes a cooler 14 that cools the pressure air that has passed through the adsorption column, and a cooler 14 that cools the pressure air that has passed through the adsorption column.
A cyclone 15 removes condensate from the pressurized air cooled by the cyclone 4.

また、第2の切換弁13は加熱再生中の吸着
筒、図示例にあつては吸着筒8から排出される圧
気をドレン分離器12へ移送させると同時にドレ
ン分離器12からのドレン除去済の圧気を別の加
熱再生済の吸着筒9へ移送させるように構成され
た少なくとも2つの弁部を有する四方弁によつて
形成されている。上記第1の切換弁10には吸湿
工程にある吸着筒9から乾燥圧気を系外の需要負
荷機器へ移送するための乾燥圧気移送路16が接
続されている。従つて、第1の切換弁10を介し
ていずれか一方の吸湿工程中の吸着筒9あるいは
8の出口と乾燥圧気移送路16とは自動的に接続
されることになる。
Further, the second switching valve 13 transfers the pressurized air discharged from the adsorption column during heating and regeneration, in the illustrated example, the adsorption column 8, to the drain separator 12, and at the same time transfers the pressure air discharged from the drain separator 12, which has already been removed, to the drain separator 12. It is formed by a four-way valve having at least two valve parts configured to transfer pressurized air to another adsorption cylinder 9 that has been heated and regenerated. A dry pressurized air transfer path 16 is connected to the first switching valve 10 for transferring dry pressurized air from the adsorption cylinder 9 in the moisture absorption process to a demand load device outside the system. Therefore, the outlet of either the adsorption cylinder 9 or 8 during the moisture absorption step and the dry pressure air transfer path 16 are automatically connected via the first switching valve 10.

次に、上記前段の圧縮部1aの吐出口2からイ
ンタークーラ5を介して最終段の圧縮部1nの入
口3を結ぶ管路17には温度検出器18が設けら
れる。一方、インタークーラ5の冷媒通路19に
は冷媒供給量を調節するための冷媒供給量調節手
段20が設けられる。この調節手段20は具体的
には流量調節弁であり、その制御入力は温度検出
器18の出力信号によつてなされる。特に温度検
出器18は管路17を通過して最終段の圧縮部1
nの入口3に導入される圧気の温度を検出し、そ
の検出値と予め設定された設定値とを比較演算
し、設定値以上の高温となるべく上記冷媒供給量
調節手段20たる流量調節弁の開度調節して冷媒
の供給量を可変に調節し、クーラ5の冷却能力を
変化させるように構成されている。また、最終段
の圧縮部1nの吐出口に接続された吐出管路6の
温度(吐出温度)Tは最終段の圧縮部1nの入口
3に前段の圧縮部1aら導入される圧気の温度t
と下記の関係式が成立する。
Next, a temperature detector 18 is provided in a conduit 17 that connects the discharge port 2 of the preceding stage compression section 1a to the inlet 3 of the final stage compression section 1n via the intercooler 5. On the other hand, the refrigerant passage 19 of the intercooler 5 is provided with a refrigerant supply amount adjusting means 20 for adjusting the refrigerant supply amount. This regulating means 20 is specifically a flow regulating valve, and its control input is made by the output signal of the temperature sensor 18. In particular, the temperature sensor 18 passes through the conduit 17 to the compression section 1 at the final stage.
The temperature of the pressurized air introduced into the inlet 3 of the refrigerant is detected, and the detected value and a preset set value are compared and calculated, and the temperature of the flow rate regulating valve, which is the refrigerant supply amount regulating means 20, is adjusted so that the temperature becomes higher than the set value. It is configured to variably adjust the amount of refrigerant supplied by adjusting the opening, thereby changing the cooling capacity of the cooler 5. Further, the temperature (discharge temperature) T of the discharge pipe 6 connected to the discharge port of the final stage compression section 1n is the temperature t of the pressure air introduced from the previous stage compression section 1a into the inlet 3 of the final stage compression section 1n.
The following relational expression holds true.

式中P1は最終段の圧縮部1nの入力圧力、P2
は最終段の圧縮部1nの出口圧力(吐出圧)、k
は空気の比熱比、ηadは圧縮機の断熱効率、従つ
てΔtは最終段の圧縮部1nの略圧力比によつて
決まり、P2/P1が一定であればTの温度を制御
する代用としてtの温度を制御することによつて
Tの温度を一定値以上に制御することができる。
In the formula, P 1 is the input pressure of the final stage compression section 1n, P 2
is the outlet pressure (discharge pressure) of the final stage compression section 1n, k
is the specific heat ratio of air, ηad is the adiabatic efficiency of the compressor, and therefore Δt is determined approximately by the pressure ratio of the final stage compression section 1n, and if P 2 /P 1 is constant, it can be used as a substitute for controlling the temperature of T. By controlling the temperature of t as follows, the temperature of T can be controlled to be above a certain value.

この場合、最終段の圧縮部1nの下流側におい
て切換弁10,13が切換え操作されたり、吸着
筒8,9内に圧縮空気が通過する際には圧気の圧
力P2が変動することがあり、このため吐出温度
Tが不安定になる。
In this case, when the switching valves 10 and 13 are switched downstream of the compression section 1n of the final stage, and when the compressed air passes through the adsorption cylinders 8 and 9, the pressure P2 of the pressurized air may fluctuate. , Therefore, the discharge temperature T becomes unstable.

以上の構成よりなる本発明の作用について述べ
る。図示例にあつては今左側に位置される吸着筒
8が加熱再生工程にあり、右側に位置される吸着
筒9が吸湿工程にある。この場合、第1の切換弁
10と第2の切換弁13とは実線で示す方向へセ
ツトされている。このように切換弁10,13を
セツトすることにより、圧縮機1からの高温圧気
(110〜170℃)が直接吸湿飽和状態にある吸着筒
8に導入され、吸着筒8は高温圧気により加熱再
生されることになる。加熱再生中の吸着筒8の排
出口11から流出する圧気は吸着筒8から追い出
された湿気を含んだ高温状態になつている。この
高温多湿の圧気は第2の切換弁13を介してドレ
ン分離器12へ流出する。この分離器12へ導入
された圧気は先ず、クーラ14で冷却され、サイ
クロン15でドレンが除去される。サイクロン1
5から流出する圧気は第2の切換弁13を通して
既に加熱再生された吸着筒9に移送される。この
吸着筒9に移送された圧気は吸湿されて第1の切
換弁10を通して乾燥圧気移送路16へ流れて系
外需要負荷機器へ移送される。
The operation of the present invention having the above configuration will be described. In the illustrated example, the adsorption cylinder 8 located on the left is currently in the heating regeneration process, and the adsorption cylinder 9 located on the right is in the moisture absorption process. In this case, the first switching valve 10 and the second switching valve 13 are set in the direction shown by the solid line. By setting the switching valves 10 and 13 in this way, high-temperature pressure air (110 to 170°C) from the compressor 1 is directly introduced into the adsorption cylinder 8 which is in a moisture absorption saturated state, and the adsorption cylinder 8 is heated and regenerated by the high-temperature pressure air. will be done. Pressurized air flowing out from the outlet 11 of the adsorption cylinder 8 during heating and regeneration is in a high temperature state containing moisture expelled from the adsorption cylinder 8. This hot and humid pressure air flows out to the drain separator 12 via the second switching valve 13. The pressurized air introduced into the separator 12 is first cooled by a cooler 14 and drained by a cyclone 15. cyclone 1
The pressure air flowing out from the adsorption cylinder 9 is transferred through the second switching valve 13 to the adsorption cylinder 9 which has already been heated and regenerated. The pressurized air transferred to the adsorption cylinder 9 absorbs moisture, flows through the first switching valve 10 to the dry pressure air transfer path 16, and is transferred to demand load equipment outside the system.

また、吸湿作用をしている吸着筒9が吸湿飽和
状態に近づくと共に他方の吸着筒8が加熱再生完
了に近づくと、第1の切換弁10と第2の切換弁
13とを同時に切換えて図中破線で示す如くセツ
トすることになる。このようにセツトされること
により、再生済吸着筒8と吸湿飽和状態になつた
吸着筒9とが置き換えられるべく、圧縮機1から
の圧気の流れは吸着筒9から吸着筒8へ切換えら
れる。
Further, when the adsorption cylinder 9 that is absorbing moisture approaches the moisture absorption saturation state and the other adsorption cylinder 8 approaches the completion of heating regeneration, the first switching valve 10 and the second switching valve 13 are simultaneously switched. It will be set as shown by the middle broken line. By setting in this manner, the flow of pressurized air from the compressor 1 is switched from the adsorption cylinder 9 to the adsorption cylinder 8 so that the regenerated adsorption cylinder 8 and the adsorption cylinder 9 which has become saturated with moisture absorption are replaced.

上述の如く、乾燥圧気移送路16を経て系外へ
吸気される圧気の水蒸気圧即ち露点P0は次式 P0=PS1×P3/PS2 ……(3) によつて決まる。但し、PS1は圧縮機の吐出口温
度における飽和水蒸気圧、PS3は再生工程にある
吸着筒の再生温度における飽和水蒸気圧、P3
再生工程にある吸着筒へ吸気される圧気の水蒸気
圧である。
As mentioned above, the water vapor pressure, ie, the dew point P 0 of the pressurized air taken in to the outside of the system via the dry pressure air transfer path 16 is determined by the following equation P 0 =P S1 ×P 3 /P S2 (3). However, P S1 is the saturated water vapor pressure at the discharge port temperature of the compressor, P S3 is the saturated water vapor pressure at the regeneration temperature of the adsorption cylinder in the regeneration process, and P 3 is the water vapor pressure of the pressurized air taken into the adsorption cylinder in the regeneration process. It is.

一方、圧縮機1の吐出口温度は圧縮機の圧力
比、効率が変わらないならば、その最終段[上記
例では第2段]の入口温度によつて決まる。そし
て、この入口温度はインタークーラ5へ供給され
る冷媒の流量によつて主に決定される。
On the other hand, the discharge port temperature of the compressor 1 is determined by the inlet temperature of the final stage (second stage in the above example) if the pressure ratio and efficiency of the compressor do not change. This inlet temperature is mainly determined by the flow rate of the refrigerant supplied to the intercooler 5.

冷媒の冷却能力が高まると、圧縮機1の吐出口
温度もこれに追従して下げられる。そして再生工
程にある吸着筒の再生加熱能力が低下するから、
上記式(3)から明らかなように、吐出管路2へ吸気
される圧気の露点も上がることになる。
When the cooling capacity of the refrigerant increases, the discharge port temperature of the compressor 1 is also lowered accordingly. Since the regeneration heating capacity of the adsorption column during the regeneration process decreases,
As is clear from the above equation (3), the dew point of the pressure air taken into the discharge pipe 2 also increases.

そこで、インタークーラ5の冷却能力が増大
し、圧縮機1の吐出口温度が予め設定された値よ
り下回ると、温度検出器18で最終段の圧縮部1
nの入口温度を検出し、冷媒供給量調節手段20
としての流量調節弁の弁開度を減じ、クーラ5の
冷却能力を低下させる。これにより最終段の圧縮
部1nの入口温度が設定値以上に上昇し、これに
よつて吐出圧気の温度は規定値以上へ上昇させる
ことができる。
Therefore, when the cooling capacity of the intercooler 5 increases and the discharge port temperature of the compressor 1 falls below a preset value, the temperature detector 18 detects that the final stage compression section 1
The refrigerant supply amount adjusting means 20 detects the inlet temperature of n.
The valve opening degree of the flow rate control valve is reduced to reduce the cooling capacity of the cooler 5. As a result, the inlet temperature of the final stage compression section 1n rises above the set value, and thereby the temperature of the discharged pressurized air can rise above the specified value.

また、圧縮部1nの入口側圧気温度を検出する
ので、圧縮機2の下流側において圧力変動が生
じ、吐出圧力が変動してもこれに関係なく安定し
た温度検出をなし得る。
Moreover, since the pressure air temperature on the inlet side of the compression section 1n is detected, stable temperature detection can be performed regardless of pressure fluctuations occurring on the downstream side of the compressor 2 and fluctuations in the discharge pressure.

従つて、圧縮機1の負荷条件等の変化により、
インタークーラ5の冷却能力が増大する傾向にあ
つた場合に、これを事前に検出し圧縮機1からの
圧気を所望する設定値以上に保持することができ
る。これにより、圧気需要機器への系外へ圧気を
予め設定された露点値以下に自動的にコントロー
ルすることができる。
Therefore, due to changes in the load conditions of the compressor 1,
If the cooling capacity of the intercooler 5 tends to increase, this can be detected in advance and the pressure from the compressor 1 can be maintained at a desired set value or higher. Thereby, the pressure air to the outside of the system to the pressure air demand equipment can be automatically controlled to be below the preset dew point value.

[発明の効果] 以上要するに本発明によれば次のごとき優れた
効果を発揮する。
[Effects of the Invention] In summary, the present invention exhibits the following excellent effects.

(1) 吸着筒を圧縮機から吐出される圧気の保有す
る熱で加熱再生することができ、省エネルギ化
対策上極めて有効である。
(1) The adsorption cylinder can be heated and regenerated using the heat possessed by the pressure air discharged from the compressor, which is extremely effective as an energy saving measure.

(2) 多段圧縮機等のインタークーラを備えた圧縮
機に採用することができる。
(2) Can be used in compressors equipped with intercoolers such as multi-stage compressors.

(3) 圧気需要機器等へ予め設定された露点値以下
の乾燥された圧気を連続的に供給することがで
きる。
(3) Dried pressurized air below a preset dew point value can be continuously supplied to pressurized air-demanding equipment.

(4) 圧縮部の入口側の圧気温度を検出するので、
吐出圧力の変動に関係なく安定した温度検出が
できる。
(4) Since the pressure air temperature on the inlet side of the compression section is detected,
Stable temperature detection is possible regardless of fluctuations in discharge pressure.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明装置の実施例を示す図である。 図中、1は多段圧縮機、1aは第1段目(前
段)圧縮部、1nは第2段目(最終段)圧縮部、
3は最終段の圧縮部1nの入口、5はインターク
ーラ、6は最終段の圧縮部に接続された吐出管
路、8,9は吸着筒、10は第1の切換弁、12
はドレン分離器、13は第2の切換弁、17は前
段の圧縮部からインタークーラを介して最終段の
圧縮部に圧気を導入する管路、18は温度検出
器、20は冷媒供給量調節手段である。
The drawings are diagrams showing an embodiment of the device of the present invention. In the figure, 1 is a multistage compressor, 1a is a first stage (first stage) compression section, 1n is a second stage (last stage) compression section,
3 is an inlet of the final stage compression section 1n, 5 is an intercooler, 6 is a discharge pipe connected to the final stage compression section, 8 and 9 are adsorption cylinders, 10 is a first switching valve, 12
13 is a drain separator, 13 is a second switching valve, 17 is a pipe that introduces pressurized air from the compression section in the previous stage to the compression section in the final stage via the intercooler, 18 is a temperature detector, and 20 is a refrigerant supply amount adjustment. It is a means.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮部を多段に接続した多段圧縮機のドライ
ヤ装置において、最終段の圧縮部から吐出される
圧気で加熱再生される吸湿飽和に至つた吸着筒
と、加熱再生に用いた圧気を冷却してドレンを除
去するドレン分離器と、ドレン分離器によりドレ
ンの除去された圧気を乾燥させる加熱再生済の吸
着筒と、上記最終段の圧縮部の入口側に設けられ
た温度検出器と、最終段の圧縮部とその前段の圧
縮部間に設けられたインタークーラにその冷媒供
給量を調節する冷媒供給量調節手段とを備えて、
上記温度検出器により最終段の圧縮部の入口に前
段の圧縮部から導入される圧気の温度を検出し、
この検出値から上記冷媒供給量調節手段でインタ
ークーラの冷却能力を調節し、圧縮機からの吐出
される圧気を一定値以上に制御するように構成し
たことを特徴とする多段圧縮機のドライヤ装置。
1. In a multi-stage compressor dryer device in which compression sections are connected in multiple stages, an adsorption cylinder that has reached moisture absorption saturation is heated and regenerated by the pressure air discharged from the final stage compression section, and the pressure air used for heating regeneration is cooled. A drain separator that removes condensate, a heated and regenerated adsorption cylinder that dries the pressure air from which condensate was removed by the drain separator, a temperature detector provided on the inlet side of the compression section of the final stage, and a final stage. and a refrigerant supply amount adjusting means for adjusting the amount of refrigerant supplied to the intercooler provided between the compression section and the compression section at the preceding stage,
The temperature detector detects the temperature of the pressurized air introduced from the previous stage compression section to the inlet of the final stage compression section,
A dryer device for a multi-stage compressor, characterized in that the cooling capacity of the intercooler is adjusted by the refrigerant supply amount adjusting means based on this detected value, and the pressure air discharged from the compressor is controlled to be above a certain value. .
JP58245056A 1983-12-28 1983-12-28 Drier unit for multistage compressor Granted JPS60142070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58245056A JPS60142070A (en) 1983-12-28 1983-12-28 Drier unit for multistage compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58245056A JPS60142070A (en) 1983-12-28 1983-12-28 Drier unit for multistage compressor

Publications (2)

Publication Number Publication Date
JPS60142070A JPS60142070A (en) 1985-07-27
JPH0214998B2 true JPH0214998B2 (en) 1990-04-10

Family

ID=17127923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58245056A Granted JPS60142070A (en) 1983-12-28 1983-12-28 Drier unit for multistage compressor

Country Status (1)

Country Link
JP (1) JPS60142070A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100377960B1 (en) * 2000-11-06 2003-03-29 은하기공 주식회사 temperature controlling method for compressed air drier
ITCO20120008A1 (en) 2012-03-01 2013-09-02 Nuovo Pignone Srl METHOD AND SYSTEM FOR MONITORING THE CONDITION OF A GROUP OF PLANTS

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129455Y2 (en) * 1979-12-26 1986-08-30
JPS5698328U (en) * 1979-12-26 1981-08-04

Also Published As

Publication number Publication date
JPS60142070A (en) 1985-07-27

Similar Documents

Publication Publication Date Title
US5087178A (en) Oil flooded screw compressor system with moisture separation and heated air dryer regeneration, and method
US8425673B2 (en) Regenerative dryers with a bypass
US7691183B2 (en) Method for drying compressed gas and device used thereby
JP5268401B2 (en) Heat pump dryer
CN105682776B (en) Compression heat dryer system
KR20100048887A (en) Refrigeration air dryer
US6767390B2 (en) Energy efficient desiccant dryer regeneration system
RU2506986C1 (en) Device and method for gas drying
US20130298580A1 (en) Desiccant dehumidification system with chiller boost
CN106642470A (en) Water-cooling type thermostatic and humidity-static air conditioner
CN205090527U (en) New trend dehumidification system
CN107726480B (en) Semi-decoupling type graded dehumidification and cooling dehumidification heat pump system and method
WO2023214270A1 (en) Method for controlling a compressor installation and compressor installation
JPH0214998B2 (en)
CN209893554U (en) Take temperature adjustment dehumidifier of steam bypass
CN112742060B (en) Suspension bridge integrated condensation and rotating wheel cooperative dehumidification system and control method
JPS56152726A (en) Dryer device for compressor
CN213984485U (en) Closed low-temperature heat pump system with return air bypass
JPH05106560A (en) Multi-stage compressor system
CN110645646A (en) Heat recovery type double-cold-source fresh air dehumidifier and control method thereof
JPS5833364Y2 (en) Exhaust heat recovery equipment such as compressors
TWI841406B (en) Atmospheric heat exchange system
CN220453826U (en) Rotary dehumidifier
CN108378128B (en) Multistage temperature control and humidity control cooling system
JPH0124531B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term