JPH0124531B2 - - Google Patents

Info

Publication number
JPH0124531B2
JPH0124531B2 JP55056519A JP5651980A JPH0124531B2 JP H0124531 B2 JPH0124531 B2 JP H0124531B2 JP 55056519 A JP55056519 A JP 55056519A JP 5651980 A JP5651980 A JP 5651980A JP H0124531 B2 JPH0124531 B2 JP H0124531B2
Authority
JP
Japan
Prior art keywords
compressor
adsorption
adsorption cylinder
switching valve
pressure air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55056519A
Other languages
Japanese (ja)
Other versions
JPS56152725A (en
Inventor
Kazumi Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
Ishikawajima Harima Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima Harima Heavy Industries Co Ltd filed Critical Ishikawajima Harima Heavy Industries Co Ltd
Priority to JP5651980A priority Critical patent/JPS56152725A/en
Publication of JPS56152725A publication Critical patent/JPS56152725A/en
Publication of JPH0124531B2 publication Critical patent/JPH0124531B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】 本発明は圧縮機のドライヤ装置に係り、特に吸
着筒を用いたドライヤ装置において、吸湿飽和状
態にある吸着筒を圧縮機からの吐出圧気に保有す
る熱で加熱再生させると共に再生済の吸着筒と吸
湿飽和状態にある吸着筒とを圧縮機の給気圧力か
らその負荷時間を積分し自動的に切換えることが
できる圧縮機のドライヤ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dryer device for a compressor, and in particular, in a dryer device using an adsorption cylinder, the adsorption cylinder, which is saturated with moisture absorption, is regenerated by heating with the heat held in the discharge pressure from the compressor. The present invention also relates to a compressor dryer device that can automatically switch between a regenerated adsorption cylinder and an adsorption cylinder in a saturated moisture absorption state by integrating the load time from the air supply pressure of the compressor.

一般に複数個の吸着筒を圧縮機の吐出管路に並
列に配設し、そのうちのいくつかの吸着筒を吸湿
工程に用い、他方のいくつかの吸湿飽和状態にあ
る吸着筒を加熱再生する再生工程に置き、加熱再
生工程の完了にともない先に吸湿工程にある吸着
筒と再生吸着筒とを交換させる圧縮機のドライヤ
装置は知られている。
Generally, a plurality of adsorption cylinders are arranged in parallel in the discharge pipe of a compressor, and some of the adsorption cylinders are used for the moisture absorption process, while the other adsorption cylinders that are saturated with moisture absorption are regenerated by heating. A drying device for a compressor is known in which an adsorption cylinder in a moisture absorption process is replaced with a regenerated adsorption cylinder upon completion of a heating regeneration process.

この従来装置の一例について第1図に示し、そ
の問題点について詳述する。
An example of this conventional device is shown in FIG. 1, and its problems will be described in detail.

圧縮機1の吐出管路5にアフタークーラ2とド
レンセパレータ3を介設し、この後流側に切換弁
4を介して管路を分岐させ、これらの分岐管路6
のそれぞれに吸着筒7を設けている。また、ブロ
ア8からの送風をヒータ9で加熱し、この熱風を
それぞれの吸着筒7に導入する加熱手段10が設
けられている。
An aftercooler 2 and a drain separator 3 are interposed in the discharge pipe 5 of the compressor 1, and the pipe is branched on the downstream side via a switching valve 4, and these branch pipes 6
A suction tube 7 is provided in each of the two. Further, a heating means 10 is provided which heats the air blown from the blower 8 with a heater 9 and introduces the hot air into each suction tube 7 .

従つて、圧縮機1からの圧気はアフタークーラ
2で冷却され、ドレンセパレータ3でドレンが分
離される。このようにドレンが分離され且つ冷却
された圧気が切換弁4により加熱再生済の吸着筒
7を通過しつつ乾燥され系外の負荷機器11へ移
送される。
Therefore, the pressurized air from the compressor 1 is cooled by the aftercooler 2, and the drain is separated by the drain separator 3. The drain is separated and the cooled pressure air is dried by the switching valve 4 while passing through the adsorption cylinder 7 which has been heated and regenerated, and is transferred to the load equipment 11 outside the system.

一方、吸湿飽和状態になつた吸着筒7bは加熱
手段10から送られてくる熱風により加熱再生さ
れ、この熱風は吸着筒7b外へ流出されることに
なる。このように、加熱手段10によつて加熱再
生された吸着筒7bは先に吸湿に用られている吸
着筒7aと置き換えられるべく圧縮機1からの圧
気が導入される。このように圧気の導入にともな
つて、吸着筒7bは吸湿工程に入ることになる。
On the other hand, the adsorption cylinder 7b, which has become saturated with moisture absorption, is heated and regenerated by the hot air sent from the heating means 10, and this hot air flows out of the adsorption cylinder 7b. In this way, pressure from the compressor 1 is introduced into the adsorption cylinder 7b which has been heated and regenerated by the heating means 10 to replace the adsorption cylinder 7a which has been previously used for moisture absorption. With the introduction of pressurized air in this manner, the adsorption cylinder 7b enters the moisture absorption process.

ところで、圧縮機から吐出される圧気は一般に
約110〜170℃の高温状態にあり、従来はこのよう
に高温状態にある圧気をアフタークーラにて約40
℃に冷却させた後吸着筒へ送つていたものであ
り、この熱を有効に利用されていなかつた。加え
て、吸着筒の加熱再生に際しては加熱手段を必要
としたものであり、その設備費及び電力費が嵩み
省エネルギ対策上好ましくなかつた。
By the way, the pressure air discharged from the compressor is generally at a high temperature of about 110 to 170 degrees Celsius, and conventionally, the pressure air at such a high temperature was cooled to about 40 degrees Celsius in an aftercooler.
It was sent to the adsorption cylinder after being cooled to ℃, and this heat was not used effectively. In addition, a heating means is required to heat and regenerate the adsorption column, which increases the equipment cost and power cost, which is not preferable from an energy saving measure.

また、並列に複数個設けられた吸着筒を一方を
吸湿工程と再生工程とに分けてこれらを置き換え
るに際して予め設定された稼働時間毎に機械的に
切換えていたため、吸着筒の吸湿能力の限界点が
超えたり、加熱再生が完全に終了していないうち
に吸湿工程に移行される等充分乾燥されていない
湿気のある圧気が系外の負荷機器へ移送されるお
それがあつた。(例えば、特開昭54−121461号公
報、特開昭54−109667号公報) そこで、本発明は従来のこの種ドライヤ装置に
おける問題点を有効に解決すべく創案されたもの
である。
In addition, because multiple adsorption cylinders installed in parallel were divided into one for the moisture absorption process and one for the regeneration process, and when replacing these processes, mechanical switching was required at each preset operating time, the limit of the moisture absorption capacity of the adsorption cylinders was reached. There was a risk that humid pressure air that had not been sufficiently dried would be transferred to load equipment outside the system, such as when the temperature exceeded the temperature or the moisture absorption step was started before heating and regeneration was completely completed. (For example, JP-A-54-121461, JP-A-54-109667) Therefore, the present invention was devised to effectively solve the problems in conventional dryer devices of this type.

本発明の目的は系外からの加熱手段を用いるこ
となく吸着筒の再生をなし得ると共に再生と吸湿
との最適切換時点に設定し得え、且つ自動的に切
換をなし得且つ容量調整もできる圧縮機のドライ
ヤ装置を提供する。
The object of the present invention is to be able to regenerate the adsorption cylinder without using heating means from outside the system, to set the optimal switching point between regeneration and moisture absorption, and to be able to automatically switch and adjust the capacity. Provides compressor dryer equipment.

以上の目的を達成するために、圧縮機の圧気に
保有する熱により、吸着筒の加熱再生をなし程る
こと及び予め設定された値以上の給気圧力がある
時間を検出して、その積分をなし、その積分値が
再生工程にある負荷の再生度及び吸湿工程にある
吸湿能力によつて決められる値に達したとき、こ
れらの吸着筒の機能を交替させればよいとの知見
を得て本発明を完成するに至つた。
In order to achieve the above objectives, the adsorption cylinder is heated and regenerated using the heat held in the pressure of the compressor, and the time when the supply air pressure is higher than a preset value is detected and the integral value is calculated. When the integrated value reaches a value determined by the degree of regeneration of the load in the regeneration process and the moisture absorption capacity in the moisture absorption process, it was found that the functions of these adsorption cylinders should be replaced. As a result, the present invention was completed.

次に本発明の好適一実施例について添付図面に
従つて詳述する。
Next, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第2図に示す如く、圧縮機1の吐出管路5には
給気の脈動等の吸収するレシーバ12を介設され
ると共にその後流側に2つに分岐されるべく分岐
管13,14が連設される。これらの分岐管1
3,14のそれぞれには吸着筒15,16が設け
られる。吐出管路5と分岐管13,14との分岐
点には第1の切換弁17が設けられ、この切換弁
17はいずれか一方の吸着筒15あるいは16へ
上記圧縮機1からの高温圧気を導入させると同時
に他方の吸着筒16あるいは15から後述する通
り乾燥圧気を系外へ取り出す機能を有し少なくと
も2つの弁部を有する電磁四方弁によつて構成さ
れている。圧縮機1からの高温圧気の導入によつ
て加熱再生中の吸着筒15あるいは16の排出口
18にはこの吸着筒を通過した圧気を冷却すると
共に冷却された圧気中のドレンを除去するドレン
分離器19が第2の切換弁20を介して接続され
ている。
As shown in FIG. 2, a receiver 12 is interposed in the discharge pipe 5 of the compressor 1 to absorb the pulsation of the supply air, and branch pipes 13 and 14 are provided on the downstream side to be branched into two. Continuously installed. These branch pipes 1
Adsorption cylinders 15 and 16 are provided in each of the cylinders 3 and 14, respectively. A first switching valve 17 is provided at the branch point between the discharge pipe 5 and the branch pipes 13 and 14, and this switching valve 17 directs the high temperature pressure air from the compressor 1 to either one of the adsorption cylinders 15 or 16. It is constituted by an electromagnetic four-way valve having at least two valve parts, which has the function of introducing dry pressure air and simultaneously taking dry pressure air out of the system from the other adsorption cylinder 16 or 15 as described later. At the outlet 18 of the adsorption cylinder 15 or 16 which is being heated and regenerated by the introduction of high-temperature pressure air from the compressor 1, there is a drain separation device that cools the pressure air that has passed through the adsorption cylinder and removes condensate from the cooled pressure air. 19 is connected via a second switching valve 20.

この分離器19は主に上記吸着筒を通過した圧
気を冷却するクーラ21と、そのクーラ21によ
つて冷却された圧気中のドレンを除去するサイク
ロン22とによつて構成されている。
The separator 19 mainly includes a cooler 21 that cools the pressure air that has passed through the adsorption cylinder, and a cyclone 22 that removes drain from the pressure air that has been cooled by the cooler 21.

また、第2の切換弁20は加熱再生中の吸着筒
(図示例にあつては吸着筒15)から排出される
圧気をドレン分離器19へ移送させると同時にド
レン分離器19からのドレン除去済の圧気を別の
加熱再生済の吸着筒16へ移送させるように構成
された少なくとも2つの弁部を有する電磁四方弁
によつて形成される。
Further, the second switching valve 20 transfers the pressurized air discharged from the adsorption column (in the illustrated example, the adsorption column 15) during heating and regeneration to the drain separator 19, and simultaneously removes the drain from the drain separator 19. It is formed by an electromagnetic four-way valve having at least two valve parts configured to transfer the pressurized air to another adsorption cylinder 16 that has been heated and regenerated.

上記第1の切換弁17には吸湿中乃至吸湿工程
にある吸着筒16から乾燥圧気を系外の負荷機器
へ移送するための乾燥圧気移送路23が接続され
ている。従つて、第1の切換弁17を介していず
れか一方の吸湿工程中の吸着筒16あるいは15
の出口と乾燥圧気移送路23とは自動的に接続さ
れることになる。
A dry pressurized air transfer path 23 is connected to the first switching valve 17 for transferring dry pressurized air from the adsorption cylinder 16 which is in the process of absorbing moisture to a load device outside the system. Therefore, through the first switching valve 17, either one of the adsorption cylinders 16 or 15 during the moisture absorption process is
The outlet and the dry pressure air transfer path 23 will be automatically connected.

次に、第1の切換弁17と第2の切換弁20と
を切換操作する切換制御手段24は本発明にあつ
ては、特に圧縮機1からの圧気供給量を検出する
給気圧力検出器25とこの給気圧力検出器25か
ら圧縮機1の負荷時間を積分する積分制御器26
とによつて構成されている。給気圧力検出器25
はレシーバ12に設けられた圧力スイツチによつ
て構成され、この圧力スイツチの出力側は圧縮機
1の吸入弁101と吐出弁102との制御入力側
へも接続されている。尚図中27は圧縮機1吸入
口28に設けられたフイルタである。また、上記
積分制御器26は給気圧力検出器25により、流
量を測定しなくとも圧縮機の負荷時の積分だけで
積分制御し得るように構成されている。
Next, in the present invention, the switching control means 24 that switches between the first switching valve 17 and the second switching valve 20 is a supply pressure detector that specifically detects the amount of pressurized air supplied from the compressor 1. 25 and an integral controller 26 that integrates the load time of the compressor 1 from the supply pressure detector 25.
It is composed of: Air supply pressure detector 25
is constituted by a pressure switch provided in the receiver 12, and the output side of this pressure switch is also connected to the control input sides of the suction valve 101 and the discharge valve 102 of the compressor 1. Note that 27 in the figure is a filter provided at the suction port 28 of the compressor 1. Furthermore, the integral controller 26 is configured to be able to perform integral control using only the integral when the compressor is loaded, without measuring the flow rate, using the air supply pressure detector 25.

以上の構成からなる本実施例の作用について説
明する。図示例にあつては右側の吸着筒16が吸
湿工程中に、他方左側の吸着筒15が加熱再生工
程中にある。この状態にある場合には第1の切換
弁17と第2の切換弁20とは実線で示す方向へ
セツトされている。切換弁17,20をこのよう
にセツトすることにより、圧縮機1からの高温圧
気(160〜170℃)がレシーバ12を通して直接吸
湿飽和状態にある吸着筒15に導入され、吸着筒
15はこの高温圧気により加熱再生されることに
なる。加熱再生中の吸着筒15の排出口18から
流出する圧気は第2の切換弁20を介してドレン
分離器19へ流れる。この分離器19へ導入され
た圧気は先ずクーラ21で冷却され、サイクロン
22でドレンが除去される。サイクロン22を通
過する圧気は第2の切換弁20を通して既に加熱
再生された吸着筒16に移送される。この吸着筒
16に移送された圧気は吸湿されて第1の切換弁
17を通して乾燥圧気移送路23へ流れて系外の
負荷機器へ移送される。
The operation of this embodiment having the above configuration will be explained. In the illustrated example, the adsorption cylinder 16 on the right side is in the moisture absorption process, and the adsorption cylinder 15 on the left side is in the heating regeneration process. In this state, the first switching valve 17 and the second switching valve 20 are set in the direction shown by the solid line. By setting the switching valves 17 and 20 in this manner, high-temperature pressure air (160 to 170°C) from the compressor 1 is directly introduced through the receiver 12 into the adsorption cylinder 15 which is saturated with moisture absorption, and the adsorption cylinder 15 absorbs this high temperature. It will be heated and regenerated by pressurized air. Pressure air flowing out from the outlet 18 of the adsorption column 15 during heating and regeneration flows to the drain separator 19 via the second switching valve 20 . The pressurized air introduced into the separator 19 is first cooled by a cooler 21 and drained by a cyclone 22. The pressure air passing through the cyclone 22 is transferred through the second switching valve 20 to the adsorption cylinder 16 which has already been heated and regenerated. The pressure air transferred to the adsorption cylinder 16 absorbs moisture, flows through the first switching valve 17 to the dry pressure air transfer path 23, and is transferred to a load device outside the system.

このような乾燥圧気を系外に供給中に、その需
要量がなくなり、給気圧力検出器25としての圧
力スイツチの設定値を上回わる値まで圧縮機1の
吐出圧が上昇すると、それまで一定電流を積分制
御器26へ給電していた圧力スイツチからの給電
は停止される。これと同時に圧縮機1の吸入弁1
01及び吐出弁102を閉弁して圧気の吐出を略
零にして容量調節を行う。
While supplying such dry pressurized air to the outside of the system, if the demand for it disappears and the discharge pressure of the compressor 1 rises to a value exceeding the set value of the pressure switch as the supply air pressure detector 25, the The power supply from the pressure switch that was supplying constant current to the integral controller 26 is stopped. At the same time, the suction valve 1 of the compressor 1
01 and the discharge valve 102 are closed to reduce the discharge of pressurized air to approximately zero to adjust the capacity.

このようにして、積分制御器26は圧縮機1か
らの圧気が系外へ給気されている時間のみを積分
する。
In this way, the integral controller 26 integrates only the time during which the pressure from the compressor 1 is being supplied to the outside of the system.

上述のような無負荷においては、再生工程にあ
る吸着筒15では加熱再生が行われないと共に、
吸湿工程にある吸着筒16では圧気中の湿気の吸
着も行われていない。従つて、上述の如き積分制
御器26による時間積分は真に吸着筒15,16
のそれぞれの再生時間及び吸湿時間を反映してお
り、その積分値が予じめ決められた設定値に達し
たときの積分制御器26による切換弁17及び2
0の切換えは同時且つ最適になし得る。
Under no load as described above, heating regeneration is not performed in the adsorption column 15 in the regeneration process, and
The adsorption cylinder 16 in the moisture absorption process is not even adsorbing moisture in the pressurized air. Therefore, the time integration by the integral controller 26 as described above is truly accurate to the adsorption cylinders 15, 16.
The switching valves 17 and 2 are controlled by the integral controller 26 when the integral value reaches a predetermined set value.
0 switching can be done simultaneously and optimally.

このように第1の切換弁17と第2の切換弁2
0とが同時に切換わることにより、吸湿工程の吸
着筒15と加熱再生された吸着筒16とは閉じら
れたループ内で自動的に置き換えることができ
る。積分制御器26から切換制御信号が発生せら
れることにより、切換弁17,20が切換わるこ
とにより、吸湿工程にあつた吸着筒16が今度は
圧縮機1からの大量の圧縮熱を有する高温圧気を
受ける再生工程の吸着筒になるのに対して、切換
え前まで再生工程にあつた吸着筒15が今度は、
ドレン分離器19からの圧気を受ける吸湿工程の
吸着筒になる。また、本発明にあつてはレシーバ
12内の圧力を検出しており、このため圧縮機1
が負荷状態にあることが容易かつ確実に検出でき
ると共に、信頼度の高い積分値を得ることができ
る。
In this way, the first switching valve 17 and the second switching valve 2
0 and 0 at the same time, the adsorption cylinder 15 in the moisture absorption process and the adsorption cylinder 16 which has been heated and regenerated can be automatically replaced within a closed loop. A switching control signal is generated from the integral controller 26, and the switching valves 17 and 20 are switched, so that the adsorption cylinder 16, which has been in the moisture absorption process, is now converted to high-temperature pressure gas having a large amount of compression heat from the compressor 1. The adsorption cylinder 15, which had been in the regeneration process before switching, will now become the adsorption cylinder in the regeneration process that receives the
This serves as an adsorption column for the moisture absorption process that receives pressurized air from the drain separator 19. In addition, in the present invention, the pressure inside the receiver 12 is detected, and therefore the compressor 1
It is possible to easily and reliably detect that the device is under load, and to obtain highly reliable integral values.

以上要するに本発明によれば次の如き優れた効
果を発揮する。
In summary, the present invention exhibits the following excellent effects.

(1) 吸着筒の加熱再生を圧縮機の吐出圧気に保有
される熱により達成することができるために省
エネルギ対策上極めて優れている。
(1) The heating regeneration of the adsorption column can be achieved using the heat held in the discharge pressure of the compressor, which is extremely advantageous in terms of energy saving.

(2) 圧縮機の負荷時間の積分値で吸着筒の吸湿工
程から再生工程への切換を自動的になし得、操
作性に優れている。
(2) The adsorption tube can automatically switch from the moisture absorption process to the regeneration process based on the integral value of the compressor load time, providing excellent operability.

(3) 給気圧力検出器により設定範囲内での容量調
整ができる。
(3) Capacity can be adjusted within the set range using the air supply pressure detector.

レシーバ内の圧力が検出されるので、安定した
信号が得られ、圧縮機が負荷状態にあることを確
実かつ容易に検出でき、積分値の信頼度が高い。
Since the pressure inside the receiver is detected, a stable signal is obtained, it is possible to reliably and easily detect that the compressor is under load, and the reliability of the integral value is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のドライヤ装置例を示す系統図、
第2図は本発明の一実施例を示す系統図である。 図中、1は圧縮機、15,16は吸着筒、17
は第1の切換弁、20は第2の切換弁、19はド
レン分離器、23は乾燥圧気移送路、25は給気
圧力検出器、26は積分制御器である。
Figure 1 is a system diagram showing an example of a conventional dryer device.
FIG. 2 is a system diagram showing one embodiment of the present invention. In the figure, 1 is a compressor, 15 and 16 are adsorption cylinders, and 17
20 is a first switching valve, 20 is a second switching valve, 19 is a drain separator, 23 is a dry pressure air transfer path, 25 is a supply air pressure detector, and 26 is an integral controller.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機の吐出管路に介設されたレシーバと、
そのレシーバの後流側に並列に少なくとも2以上
設けられた吸着筒と、これら吸着筒のうち吸湿飽
和に達した吸着筒にこれを加熱再生するために上
記圧縮機からの高温圧気を導入させる第1の切換
弁と、上記加熱再生中の吸着筒に接続され、これ
より通過した圧気を冷却しつつドレンを除去する
ドレン分離器と、該分離器からの圧気を上記並列
された吸着筒のうち加熱再生された吸着筒へ移送
させるための第2の切換弁と、上記加熱再生され
た吸着筒に接続され乾燥圧気を系外へ移送する乾
燥圧気移送路と、上記レシーバ内に所定圧力が加
わつているときに圧縮機の負荷時間を積分し、こ
の積分値が設定値に達したときに上記第1の切換
弁と第2の切換弁とを切換える積分制御器とを備
えたことを特徴とする圧縮機のドライヤ装置。
1 a receiver installed in the discharge pipe of the compressor;
There are at least two adsorption cylinders installed in parallel on the downstream side of the receiver, and a second adsorption cylinder that introduces high-temperature pressure air from the compressor to heat and regenerate the adsorption cylinders that have reached moisture absorption saturation among these adsorption cylinders. a drain separator that is connected to the adsorption column during heating and regeneration and removes condensate while cooling the pressure air that has passed through the separator; a second switching valve for transferring the dry pressurized air to the heat-regenerated adsorption cylinder; a dry pressure air transfer path that is connected to the heat-regenerated adsorption cylinder and transfers the dry pressure air to the outside of the system; and a predetermined pressure is applied in the receiver. and an integral controller that integrates the load time of the compressor when the load is on, and switches between the first switching valve and the second switching valve when the integrated value reaches a set value. Compressor dryer equipment.
JP5651980A 1980-04-28 1980-04-28 Dryer device for compressor Granted JPS56152725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5651980A JPS56152725A (en) 1980-04-28 1980-04-28 Dryer device for compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5651980A JPS56152725A (en) 1980-04-28 1980-04-28 Dryer device for compressor

Publications (2)

Publication Number Publication Date
JPS56152725A JPS56152725A (en) 1981-11-26
JPH0124531B2 true JPH0124531B2 (en) 1989-05-12

Family

ID=13029359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5651980A Granted JPS56152725A (en) 1980-04-28 1980-04-28 Dryer device for compressor

Country Status (1)

Country Link
JP (1) JPS56152725A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316028A (en) * 1986-07-04 1988-01-23 Daido Plant Kogyo Kk Gas dryer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113663A (en) * 1973-02-07 1974-10-30
JPS50161466A (en) * 1974-06-20 1975-12-27
JPS5148139B2 (en) * 1972-09-30 1976-12-18
JPS54109667A (en) * 1978-02-16 1979-08-28 Daido Steel Co Ltd Pressurized gas dehumidifier
JPS54121461A (en) * 1978-03-14 1979-09-20 Toshiba Corp Dehumidifier for ozone generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148139U (en) * 1974-10-08 1976-04-10

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148139B2 (en) * 1972-09-30 1976-12-18
JPS49113663A (en) * 1973-02-07 1974-10-30
JPS50161466A (en) * 1974-06-20 1975-12-27
JPS54109667A (en) * 1978-02-16 1979-08-28 Daido Steel Co Ltd Pressurized gas dehumidifier
JPS54121461A (en) * 1978-03-14 1979-09-20 Toshiba Corp Dehumidifier for ozone generator

Also Published As

Publication number Publication date
JPS56152725A (en) 1981-11-26

Similar Documents

Publication Publication Date Title
US8425673B2 (en) Regenerative dryers with a bypass
EP3075433B1 (en) Blower purge dryer with cooling apparatus and methology
MX2008011813A (en) Device for drying compressed gas and method applied thereby.
US3766660A (en) Adsorption gas drying method and apparatus
JPH0124531B2 (en)
CN114901379B (en) Method for drying compressed gas
GB1596568A (en) Removal of vapour from gases
US3282027A (en) Pressure differential control apparatus and a method for adsorption
KR20250002764A (en) Method for controlling a compressor device and a compressor device
KR100467064B1 (en) Air drier and method drying compressed hot air of using the air drier
KR102696333B1 (en) Drying device and drying method for drying compressed gas
JPS56152726A (en) Dryer device for compressor
JPH05106560A (en) Multi-stage compressor system
JPS6314069Y2 (en)
JPH0214998B2 (en)
CN208765453U (en) It is a kind of it is effective mitigate frosting wheel hub processing use cooling driers
RU2798846C1 (en) Compressed gas drying method
JP7509726B2 (en) Dehumidifier
JPH0140645B2 (en)
KR20230020369A (en) Device and method for drying compressed gas
CN217988891U (en) Regeneration device and drying equipment for drying compressed gas
SU663611A1 (en) Air conditioning system
JPH0659380B2 (en) Method for regenerating desiccant in gas dehumidifier
CZ282033B6 (en) Adsorption bed regeneration method by employing compression heat
JPS6295117A (en) Air dehumidifier