JPH05106110A - Manufacture of un-spun highly-oriented acrylic short fiber - Google Patents

Manufacture of un-spun highly-oriented acrylic short fiber

Info

Publication number
JPH05106110A
JPH05106110A JP3192688A JP19268891A JPH05106110A JP H05106110 A JPH05106110 A JP H05106110A JP 3192688 A JP3192688 A JP 3192688A JP 19268891 A JP19268891 A JP 19268891A JP H05106110 A JPH05106110 A JP H05106110A
Authority
JP
Japan
Prior art keywords
temperature
acrylonitrile
extrudate
fiber
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3192688A
Other languages
Japanese (ja)
Other versions
JPH0713324B2 (en
Inventor
Han-Sik Yoon
漢 殖 尹
Tae-Won Son
泰 垣 孫
Chul Joo Lee
哲 周 李
Byung Kil Min
丙 吉 閔
再 煥 ▲ちよ▼
Jae Whan Cho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of JPH05106110A publication Critical patent/JPH05106110A/en
Publication of JPH0713324B2 publication Critical patent/JPH0713324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/11Flash-spinning
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/12Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/18Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylonitriles

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)
  • Paper (AREA)

Abstract

PURPOSE: To obtain the titled fiber having a large surface area, excellent physical properties and bonding properties and useful as an asbestos-substitutive fiber or the like. by fiber-forming a specified mixture under specific conditions and beating the formed fiber. CONSTITUTION: Acrylonitrile (co-)polymer having 10,000-600,000 viscosity average molecular weight obtained by polymerizing >=70 wt.% acrylonitrile and <=30 wt.% copolymerizable monomer is mixed with 5-100% water to the (co-)polymer. The mixture is heated to its melting temperature or higher under enclosed conditions to form an amorphous melt and then the resultant melt is cooled to the temperature between the melting and solidifying temperatures to obtain a semicrystalline melt phase. The obtained melt phase is extruded into an external atmosphere to obtain extrudates having cross-sectional structures of completely arrayed and laminated planar fibrils or the like, fibrous crystalline structures and >=70% degree of orientation. The extrudates are drawn in the gaseous atmosphere of 100-220 deg.C or passed between compression rollers of the same temperature in a drawn state and beaten after subjected to the drawing and heat treatment to obtain the objective short fibers having 0.1-100 μm thickness distribution and 0.1-100 mm length distribution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アクリロニトリル重合
体(以下PANと略称する)を使用して、一般的な紡糸
工程なしで、高度分子配向の繊維構造を有する高配向の
新たなパルプ状短繊維を製造する方法に関する。
FIELD OF THE INVENTION The present invention uses an acrylonitrile polymer (hereinafter abbreviated as PAN) and has a highly oriented new pulp-like short fiber having a highly molecularly oriented fiber structure without a general spinning process. It relates to a method for producing fibers.

【0002】[0002]

【従来の技術】アクリル繊維は衣類用としてのみなら
ず、最近においては、石綿代替繊維、保温耐熱繊維、セ
メント補強繊維等の産業用素材としても脚光を浴びてい
る。このような産業用素材に使用される繊維は、短繊維
形態で製造される。従来は溶媒を使用した溶液紡糸及び
延伸工程を経て長繊維を製造し、これを切断してステー
プル形態の短繊維を得ていた。このような従来の短繊維
製造方法においては、溶媒使用に伴う溶媒抽出、回収、
精製等の繁雑な工程が必須であり、経済的負担が大き
く、又公害問題なども誘発される欠点があった。
2. Description of the Related Art Acrylic fibers have come into the spotlight not only for clothing, but also as industrial materials such as asbestos substitute fibers, heat-retaining heat-resistant fibers, and cement-reinforcing fibers. The fibers used for such industrial materials are manufactured in the form of short fibers. Conventionally, long fibers have been manufactured through solution spinning and drawing steps using a solvent, and stapled short fibers have been obtained by cutting the long fibers. In such a conventional short fiber manufacturing method, solvent extraction, recovery, and
A complicated process such as refining is indispensable, resulting in a large economical burden and also causing a pollution problem.

【0003】又、従来のアクリル繊維の製造において
は、微細孔を通じたフィラメント紡糸及び高倍率の延伸
工程を経ないで分子配向を有する繊維を得ることはでき
なかった。更に、分子配向を有するパルプ用繊維の製造
においては、PANを溶媒に溶解する原液調製、紡糸、
固化、溶媒除去及び回収、延伸、切断、フィブリル化
等、多くの工程を経る繁雑な方法によってのみ製造が可
能であった。
Further, in the conventional production of acrylic fibers, it has not been possible to obtain fibers having a molecular orientation without going through a filament spinning through fine pores and a drawing process at a high magnification. Further, in the production of pulp fibers having a molecular orientation, a stock solution preparation in which PAN is dissolved in a solvent, spinning,
It could be produced only by a complicated method involving many steps such as solidification, solvent removal and recovery, stretching, cutting, and fibrillation.

【0004】米国特許第2,585,444号明細書に
は、PANと重量比で30%から85%までの水とを混
合した含水物を溶融温度以上に加熱し、溶融流動体を調
製し、これより溶融紡糸方式によりPAN繊維を製造す
ることが記載されている。米国特許第3,896,20
4号及び第3,984,601号明細書には、PANと
重量比で約20%から30%の水とを混合して、170
℃から205℃までの温度で加熱して得られた無定形の
溶融体を紡糸し、5倍以上に延伸して繊維を製造するこ
とが記載されている。
US Pat. No. 2,585,444 discloses a molten fluid prepared by heating a water-containing material obtained by mixing PAN and 30% to 85% by weight of water to a melting temperature or higher. From this, it is described that PAN fibers are produced by a melt spinning method. US Pat. No. 3,896,20
No. 4 and 3,984,601 describe mixing PAN with about 20% to 30% water by weight to give 170
It is described that an amorphous melt obtained by heating at a temperature of from ℃ to 205 ℃ is spun and stretched 5 times or more to produce a fiber.

【0005】米国特許第3,991,153号及び第
4,163,770号明細書には、重量比で10%から
40%の水を混合したPAN−含水物を溶融温度以上、
つまり溶融体が無定形の単一相を成す温度以上において
紡糸し、射出させたフィラメントを圧力チェンバー内に
おいて25倍から150倍に延伸し、繊維を製造するこ
とが記載されている。
In US Pat. Nos. 3,991,153 and 4,163,770, a PAN-hydrate containing a mixture of 10% to 40% by weight of water has a melting temperature above the melting temperature.
That is, it is described that the melt is spun at a temperature of forming an amorphous single phase or more, and the injected filament is drawn 25 to 150 times in a pressure chamber to produce a fiber.

【0006】米国特許第3,402,231号、第3,
774,387号及び第3,873,508号明細書に
は、PANに等量以上の水を加え、温度200℃程度に
おいて溶融体をつくり、この溶融体を紡糸してパルプ用
繊維を製造することが記載されている。しかし、過量の
水を使用し、高温において溶融体を得るために、これに
より紡糸されたPANフィラメントは、外形的に繊維が
形成されたように見えるが、実際には分子鎖の配向や繊
維構造を全く形成していない無配向連続発泡体に過ぎな
い。
US Pat. Nos. 3,402,231, 3,
In 774,387 and 3,873,508, an equal amount or more of water is added to PAN to form a melt at a temperature of about 200 ° C., and the melt is spun to produce pulp fibers. Is described. However, in order to obtain a melt at a high temperature by using an excessive amount of water, the PAN filament spun by this seems to have formed fibers externally, but in reality, the orientation of molecular chains and the fiber structure are It is just a non-oriented continuous foam that does not form any.

【0007】以上のように、従来のPAN−含水物の溶
融紡糸技術は、過量の水を使用したり、温度を溶融温度
以上に高めたり、又は共重合単量体の含量を多くしたり
した無定形溶融体から紡糸工程を経てフィラメントをつ
くり、これを高倍率例えば、5倍から30倍率に延伸し
て繊維を製造する方法であった。
As described above, in the conventional melt-spinning technique of PAN-hydrated material, an excessive amount of water is used, the temperature is raised to a temperature higher than the melting temperature, or the content of the comonomer is increased. This is a method of producing fibers from an amorphous melt through a spinning process to form filaments and stretching the filaments at a high magnification, for example, 5 to 30 times.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、従来
のアクリル短繊維製造における欠点を除去し、石綿代替
繊維、保温耐熱繊維及びセメント補強繊維等の産業用素
材として使用できるだけでなく、紙製造用パルプとして
も使用できる新たなパルプ状アクリル短繊維を提供する
ことである。
DISCLOSURE OF THE INVENTION The object of the present invention is to eliminate the drawbacks in the conventional production of acrylic short fibers, and to use them as industrial materials such as asbestos substitute fibers, heat insulating heat resistant fibers and cement reinforcing fibers, as well as paper. The purpose of the present invention is to provide a new pulp-like acrylic short fiber that can be used as a manufacturing pulp.

【0009】すなわち、従来技術の紡糸工程又は高倍率
の延伸工程を行うことなしに、高度分子配向の繊維構造
を有する新たな無紡糸高配向アクリル短繊維の製造方法
を提供することであり、更にPANを溶媒に溶解する原
液の調製工程、紡糸工程、固化工程、溶媒の除去及び回
収工程、延伸工程、フィブリル化工程等の複雑なパルプ
状短繊維の諸工程を単純化したパルプ状短繊維の新たな
製造方法を提供することである。
That is, it is an object of the present invention to provide a new method for producing a non-spun highly oriented acrylic short fiber having a highly molecularly oriented fiber structure without performing a spinning step or a high-stretching step of the prior art. A pulp-like short fiber that simplifies various steps of a complicated pulp-like short fiber such as a stock solution preparation process for dissolving PAN in a solvent, a spinning process, a solidification process, a solvent removal and recovery process, a drawing process, and a fibrillation process. It is to provide a new manufacturing method.

【0010】[0010]

【課題を解決するための手段】本発明は、重量比で70
%以上のアクリロニトリル及び重量比で30%以下の共
重合可能な単量体を重合させた、粘度平均分子量が1
0,000から600,000の間のアクリロニトリル
単独重合体又は共重合体と、上記重合体に対し重量比で
5%から100%の水との混合物を、密閉下において溶
融温度以上に加熱して無定形の溶融体を形成させ、これ
を溶融温度と固化温度の間の温度に冷却して、準結晶溶
融相を得た後、これを外部環境へ押出し、板状フィブリ
ル等が揃って配列積層された断面構造をもち、X線回折
パターンにおいて繊維状結晶構造と70%以上の配向度
を示す押出物を得、この押出物を、100℃から220
℃に維持した気体雰囲気中で引張るか、又は該温度の圧
縮ローラーの間を引張状態で通過させて、延伸熱処理を
行った後、これを機械的に叩解することを特徴とする、
0.1μmから100μmの太さの分布及び0.1mm
から100mmの長さの分布を有する高配向フィブリル
構造のパルプ状短繊維の製造方法である。
The present invention provides a weight ratio of 70
% Or more acrylonitrile and 30% or less by weight of a copolymerizable monomer are polymerized, and the viscosity average molecular weight is 1
A mixture of acrylonitrile homopolymer or copolymer of between 10,000 and 600,000 and 5% to 100% by weight of water of the above polymer is heated above the melting temperature under sealing. After forming an amorphous melt, cooling it to a temperature between the melting temperature and the solidifying temperature to obtain a quasi-crystalline melt phase, then extruding this into the external environment, and arranging and stacking plate-like fibrils etc. An extrudate having a cross-sectional structure that was formed and having a fibrous crystal structure and an orientation degree of 70% or more in an X-ray diffraction pattern was obtained.
It is characterized in that it is stretched in a gas atmosphere maintained at 0 ° C., or is passed in a tension state between compression rollers at the temperature, stretched and heat treated, and then mechanically beaten.
Thickness distribution from 0.1 μm to 100 μm and 0.1 mm
Is a method for producing pulp-like short fibers having a highly oriented fibril structure and having a distribution of a length of 1 to 100 mm.

【0011】図1に示すように、PANと水の2成分系
(以下PAN/H2 Oと略称する)は、溶融温度(T
m )において溶融熱を吸収した後、無定形溶融単一相を
形成し、更に溶融温度以下に冷却しても一定の温度範囲
(OR)まで結晶化が起らず、過冷却溶融状態を維持
し、更に固化温度(Tc )以下に冷却すると、PANが
結晶化し、元の状態に戻るのである。しかし、PAN/
2 O溶融体を過冷却状態で保持すると、無定形の高温
溶融体とは異なり、単一相のままPANと水が共に参与
して液晶に類似した特定の分子秩序を有する一種の準結
晶相を形成するようになる。
As shown in FIG. 1, the two-component system of PAN and water (hereinafter abbreviated as PAN / H 2 O) has a melting temperature (T
m ) absorbs the heat of fusion, then forms an amorphous single-phase melt, and even if cooled below the melting temperature, crystallization does not occur up to a certain temperature range (OR), maintaining a supercooled molten state Then, when cooled below the solidification temperature (T c ), PAN crystallizes and returns to its original state. However, PAN /
When an H 2 O melt is kept in a supercooled state, a kind of quasi-crystal that has a specific molecular order similar to that of liquid crystal by joining together PAN and water in a single phase, unlike an amorphous high-temperature melt To form a phase.

【0012】このように、PANと水の混合物が溶融温
度以下において液晶に類似した溶融準結晶相を形成する
ことは、本発明者等が初めて発見したものである。これ
は、図6に示すように溶融温度と固化温度との間の温度
で押出すときわめて容易に分子配向するというおどろく
べき現象によるものである。このような溶融準結晶相に
おいては、PAN分子鎖が水分子と共に、直鎖相の分子
秩序を有する微細な単位規則相を形成していると推定さ
れる。溶融準結晶内のPAN鎖は、自発的に配向する特
性を有しているので、これらに機械的押出操作によるわ
ずかな指向性剪断力が与えられれば、きわめて容易に高
配向繊維構造を形成する。即ち、溶融準結晶相が押出さ
れると、直鎖相のPAN分子鎖は、横に相互接近配向し
ながら、含有している水を系外に追出し、自動的に繊維
構造を形成することにより、別途の延伸工程無しでも高
配向繊維構造となる。
As described above, it was first discovered by the present inventors that a mixture of PAN and water forms a molten quasi-crystalline phase similar to liquid crystal at a temperature below the melting temperature. This is due to the surprising phenomenon that the molecules are extremely easily oriented when extruded at a temperature between the melting temperature and the solidifying temperature as shown in FIG. In such a melted quasicrystalline phase, it is presumed that the PAN molecular chain forms a fine unit ordered phase having a linear phase molecular order together with water molecules. Since the PAN chains in the melted quasicrystal have the property of spontaneously orienting, they can very easily form a highly oriented fiber structure if they are given a slight directional shear force by a mechanical extrusion operation. .. That is, when the molten quasi-crystalline phase is extruded, the PAN molecular chains of the linear phase are laterally approaching each other while expelling the contained water out of the system and automatically forming a fiber structure. A highly oriented fiber structure is obtained without a separate drawing step.

【0013】本発明においては、PANに適当量の水を
混合し、密閉状態において加熱し、無定形のPAN/H
2 O溶融体をつくった後、この無定形溶融体を冷却し、
溶融温度と固化温度の間において、液晶に類似した特性
の分子秩序を有する溶融準結晶相の過冷却溶融体を調製
し、これを適切な規格の押出口を通して押出し、繊維構
造形成と同時に、水を自動放出し、固化し、板状フィブ
リルが並んで配列積層した高配向押出物を得て、この押
出し物をさらに延伸熱処理して得た繊維を適当な長さに
切断、叩解し、パルプ状短繊維を製造する。
In the present invention, PAN is mixed with an appropriate amount of water and heated in a sealed state to obtain an amorphous PAN / H.
After making the 2 O melt, cool this amorphous melt,
Between the melting temperature and the solidifying temperature, a supercooled melt of a melted quasicrystalline phase having a molecular order similar to that of liquid crystal is prepared and extruded through an extrusion port of an appropriate standard, and simultaneously with the formation of the fiber structure, water is formed. Is automatically discharged and solidified to obtain a highly oriented extrudate in which plate-like fibrils are arranged and laminated side by side, and the extrudate is further stretched and heat-treated, and the obtained fiber is cut into a suitable length, beaten, and pulped. Manufacture short fibers.

【0014】本発明において、PAN/H2 O溶融体
を、従来の技術においては全く予測できなかった液晶に
類似した特性の分子秩序を有する溶融準結晶相とするこ
とにより、この溶融準結晶相を利用して既存の方法とは
画期的に異なる新たな方法で、今まで製造されたことの
ない新たな繊維を製造することができた。溶融準結晶相
を使用すれば、断面積が大きい押出口を通してテープ状
に押出したとき、小さな指向性剪断力でも容易に分子鎖
を配向させることができるため、高延伸繊維よりはるか
に高い分子配向性を有する繊維を製造することができ
る。
In the present invention, the PAN / H 2 O melt is made into a melted quasicrystalline phase having a molecular order similar to that of a liquid crystal, which cannot be predicted at all in the prior art. It was possible to manufacture a new fiber that has never been manufactured by using a new method, which is significantly different from the existing method. When a melted quasi-crystalline phase is used, when it is extruded in a tape shape through an extrusion port with a large cross-sectional area, the molecular chains can be easily oriented even with a small directional shearing force, so the molecular orientation is much higher than that of highly drawn fiber. It is possible to produce fibers having properties.

【0015】本発明におけるPANは、アクリロニトリ
ル単独重合体及びアクリロニトリルと一つ又は二つ以上
の共重合可能な単量体との共重合体を意味する。共重合
体の組成は、アクリロニトリルが重量比で70%以上、
共重合可能な単量体が重量比で30%以下であり、より
好ましくは、アクリロニトリルが重量比で85%以上、
共重合可能な単量体が重量比で15%以下である。
PAN in the present invention means an acrylonitrile homopolymer and a copolymer of acrylonitrile and one or more copolymerizable monomers. The composition of the copolymer is 70% or more by weight of acrylonitrile,
The copolymerizable monomer is 30% or less by weight, and more preferably 85% or more by weight of acrylonitrile.
The copolymerizable monomer is 15% or less by weight.

【0016】共重合可能な単量体としては、メチルアク
リレート、メチルメタクリレート、エチルアクリレー
ト、クロロアクリル酸、エチルメタクリレート、アクリ
ル酸、メタクリル酸、アクリルアミド、メタクリルアミ
ド、ブチルアクリレート、メタクリロニトリル、ブチル
メタクリレート、ビニルアセテート、ビニルクロリド、
ビニルブロマイド、ビニルフルオライド、ビニリデンク
ロライド、ビニリデンブロマイド、アリルクロライド、
メチルビニルケトン、ビニルホルメート、ビニルクロロ
アセテート、ビニルプロピオネート、スチレン、ビニル
ステアレート、ビニルベンゾエート、ビニルピロリド
ン、ビニルピペリジン、4−ビニルピリジン、2−ビニ
ルピリジン、N−ビニルフタルイミド、N−ビニルスク
シンイミド、メチルマロネート、N−ビニルカルバゾー
ル、メチルビニルエーテル、イタコン酸、ビニルスルホ
ン酸、スチレンスルホン酸、アリルスルホン酸、メタリ
ルスルホン酸、ビニルピラン、2−メチル−5−ビニル
ピリジン、ビニルナフタレン、イタコン酸エステル、ク
ロロスチレン、ビニルスルホン酸塩、スチレンスルホン
酸塩、アリルスルホン酸塩、メタリルスルホン酸塩、ビ
ニリデンフルオライド、1−クロロ−2−ブロモエチレ
ン、アルファメチルスチレン、エチレン、プロピレン
等、エチレン単位の二重結合を有する付加重合用単量体
をあげることができる。
The copolymerizable monomers include methyl acrylate, methyl methacrylate, ethyl acrylate, chloroacrylic acid, ethyl methacrylate, acrylic acid, methacrylic acid, acrylamide, methacrylamide, butyl acrylate, methacrylonitrile, butyl methacrylate, Vinyl acetate, vinyl chloride,
Vinyl bromide, vinyl fluoride, vinylidene chloride, vinylidene bromide, allyl chloride,
Methyl vinyl ketone, vinyl formate, vinyl chloroacetate, vinyl propionate, styrene, vinyl stearate, vinyl benzoate, vinyl pyrrolidone, vinyl piperidine, 4-vinyl pyridine, 2-vinyl pyridine, N-vinyl phthalimide, N-vinyl. Succinimide, methyl malonate, N-vinylcarbazole, methyl vinyl ether, itaconic acid, vinylsulfonic acid, styrenesulfonic acid, allylsulfonic acid, methallylsulfonic acid, vinylpyran, 2-methyl-5-vinylpyridine, vinylnaphthalene, itaconic acid Ester, chlorostyrene, vinyl sulfonate, styrene sulfonate, allyl sulfonate, methallyl sulfonate, vinylidene fluoride, 1-chloro-2-bromoethylene, alphamethyl Styrene, ethylene, propylene, etc., can be cited for addition polymerization monomer having a double bond of ethylene units.

【0017】PANの分子量は、N,N−ジメチルホル
ムアミドを溶媒に使用し、絶対粘度([η])を測定し
て次の関係式より粘度平均分子量(MV )として求めた
(T.Shibukawa等、Journal of Polymer Science, Part
A-l, Vol.6,147-159,1968)。
The molecular weight of the PAN, N, using N- dimethylformamide solvent, was determined as an absolute viscosity ([eta]) measured by the viscosity-average molecular weight than the following relation (M V) (T.Shibukawa Etc., Journal of Polymer Science, Part
Al, Vol.6, 147-159, 1968).

【0018】[η]=3.35×10-4V 0.72 絶対粘度は、PANをN,N−ジメチルホルムアミドに
溶解し、30℃において測定した。本発明におけるアク
リロニトリル重合体の分子量は、絶対粘度より換算され
た粘度平均分子量で、10,000から600,000
の間の値を有し、より好ましくは50,000から35
0,000の間の値を有する。
[Η] = 3.35 × 10 −4 M V 0.72 Absolute viscosity was measured at 30 ° C. by dissolving PAN in N, N-dimethylformamide. The molecular weight of the acrylonitrile polymer in the present invention is 10,000 to 600,000 as a viscosity average molecular weight converted from absolute viscosity.
Has a value between and more preferably between 50,000 and 35
It has a value between 10,000.

【0019】示差走査熱量計(DSC)を用いてPAN
−含水物の含水量、温度及びPAN成分の変化に伴う相
変化現象を測定した。密封が完全で、高圧下においても
耐えられる大容量の耐圧カプセル(Perkin−Elmer part
319−0128)を使用し、昇温時及び冷却時のPA
N−含水物の溶融吸熱ピーク及び固化発熱ピークをそれ
ぞれ得た。
PAN using a differential scanning calorimeter (DSC)
-A phase change phenomenon was measured with changes in water content, temperature and PAN component of the water-containing material. Large-capacity pressure-resistant capsule (Perkin-Elmer part) that is completely sealed and can withstand high pressure.
319-0128) and used for heating and cooling PA
A melting endothermic peak and a solidification exothermic peak of the N-hydrated product were obtained, respectively.

【0020】図1において、吸熱ピークの頂点は溶融温
度(Tm )を、発熱ピークの頂点は固化温度(Tc )を
示し、溶融温度と固化温度の間の温度範囲(OR)は溶
融準結晶相が形成される領域を示している。図3は、含
水量の変化に従い溶融準結晶相が形成される温度領域を
図示したものである。図5は、PAN成分による領域変
化の一例を図式化したものである。図2及び図4は、各
々図1及び図3で示した例に従い、重量比でアクリロニ
トリル89.2%及びメタクリレート10.8%を含有
するPANを使用し、図2は、重量比で20%の水を混
合した場合であり、図4は、含水量を重量比で5%から
50%まで変化させた場合の溶融準結晶相が形成される
温度領域を示したものである。
In FIG. 1, the apex of the endothermic peak shows the melting temperature (T m ) and the apex of the exothermic peak shows the solidifying temperature (T c ), and the temperature range (OR) between the melting temperature and the solidifying temperature is the melting level. The region where the crystal phase is formed is shown. FIG. 3 illustrates a temperature range in which a molten quasi-crystalline phase is formed according to changes in water content. FIG. 5 is a diagrammatic representation of an example of the area change due to the PAN component. 2 and 4 use PAN containing 89.2% acrylonitrile and 10.8% methacrylate by weight, according to the examples shown in FIGS. 1 and 3, respectively, and FIG. 2 shows 20% by weight. FIG. 4 shows a temperature range in which a molten quasi-crystal phase is formed when the water content is changed from 5% to 50% by weight.

【0021】PANに適当量の水を混合した含水物を耐
圧容器に入れ、溶融温度以上に加熱すれば、その温度で
の水蒸気圧の下で、重合体が水と会合してPAN/H2
O溶融体をつくる。このとき、加熱温度は、図1に示し
た溶融温度(Tm )以上とし、窒素、アルゴン等、不活
性ガスを注入して加圧状態を維持させてもよい。ここで
生成した溶融体は、無秩序な無定形溶融体である。この
無定形溶融体を冷却し、図3に示す溶融温度と固化温度
の間の温度に維持すれば、液晶に類似した特性を有する
溶融準結晶相の過冷却溶融体となる。
When a water-containing substance obtained by mixing PAN with an appropriate amount of water is placed in a pressure vessel and heated to a temperature higher than the melting temperature, the polymer associates with water under the steam pressure at that temperature to cause PAN / H 2
Create an O melt. At this time, the heating temperature may be equal to or higher than the melting temperature (T m ) shown in FIG. 1, and the pressurized state may be maintained by injecting an inert gas such as nitrogen or argon. The melt produced here is a disordered amorphous melt. When this amorphous melt is cooled and maintained at a temperature between the melting temperature and the solidifying temperature shown in FIG. 3, it becomes a supercooled melt having a melted quasicrystalline phase having characteristics similar to those of liquid crystals.

【0022】溶融準結晶相は、溶融温度より低い温度に
あるが、固化せず、流動体として存在する一種の過冷却
溶融体として、無秩序な無定形でなく、分子秩序を有す
る規則相を形成している。この規則相は、PAN分子鎖
と水の相互作用で、直鎖状のPAN分子鎖が平行に配列
しており、あたかも、液晶のような自発的な分子配向特
性を有する。つまり、図6に示すように、無定形溶融体
をつくる高温において押出された押出物は、後述する配
向度50%程度のほぼ無配向物として得られるが、無定
形溶融体より低い温度において押出された押出物は、同
一押出操作においても、配向度80%以上の高配向を示
す。
The molten quasi-crystalline phase, which is at a temperature lower than the melting temperature, does not solidify and forms a kind of supercooled melt existing as a fluid, which is not a disordered amorphous form but an ordered phase having a molecular order. is doing. In this ordered phase, the linear PAN molecular chains are arranged in parallel due to the interaction between the PAN molecular chain and water, and it has a spontaneous molecular orientation characteristic as if it were a liquid crystal. That is, as shown in FIG. 6, an extrudate extruded at a high temperature to form an amorphous melt is obtained as a substantially unoriented product having an orientation degree of about 50% described later, but it is extruded at a temperature lower than that of the amorphous melt. The extrudate thus obtained exhibits a high degree of orientation with a degree of orientation of 80% or more even in the same extrusion operation.

【0023】このような分子秩序を有する溶融準結晶相
を形成することができる温度範囲は、図5に示すように
PANのアクリロニトリル含量、又は図3に示すように
含水量等によって異なるが、常に図1に示す溶融温度と
固化温度の間の領域に属している。
The temperature range in which the molten quasi-crystalline phase having such a molecular order can be formed varies depending on the acrylonitrile content of PAN as shown in FIG. 5 or the water content as shown in FIG. It belongs to the region between the melting temperature and the solidifying temperature shown in FIG.

【0024】上記PAN/H2 O溶融体を製造すると
き、耐圧容器にかかる圧力は、温度に伴う当該発生水蒸
気圧か、又は1気圧から50気圧程度の圧力としてもよ
い。溶融体内に含まれている水の含量は、重量比で5%
から100%が好ましいが、より好ましくは10%から
50%の間である。
When the PAN / H 2 O melt is manufactured, the pressure applied to the pressure vessel may be the generated steam pressure with temperature or a pressure of about 1 to 50 atmospheres. Water content in the melt is 5% by weight
To 100% is preferred, more preferably between 10% and 50%.

【0025】無秩序な無定形PAN/H2 O溶融体にお
いては、個々のPAN分子鎖がより自由に動くので、分
子鎖が不規則に凝集しているだけでなく、分子鎖の間に
おいても何等の秩序も有しない。この無定形溶融体が冷
却され、適切な温度範囲内に入るようになれば、PAN
分子鎖と水が相互間の分子引力により分子鎖個々の活動
が抑制され、拘束されながら分子鎖が直鎖配座をなし
て、他の周辺分子鎖と揃って平行配列し、相互間の距離
を維持する溶融準結晶相をつくる。
In a disordered amorphous PAN / H 2 O melt, the individual PAN molecular chains move more freely, so that not only the molecular chains are irregularly aggregated, but also between the molecular chains. It also has no order. Once this amorphous melt has cooled and is within the proper temperature range, PAN
The activity of each molecular chain is suppressed by the molecular attractive force between the molecular chain and water, and the molecular chains form a linear conformation while being constrained and are aligned in parallel with other peripheral molecular chains, and the distance between them is large. Creates a molten quasi-crystalline phase that maintains

【0026】このようにして作られた溶融準結晶相にお
いては、PAN分子鎖が分子鎖間の秩序を維持している
ために、分子鎖一つ一つが個別的に活動することは難し
い。しかし、規則相をなす分子鎖全体が、一定の方向に
動かされるときは、図7に示すように、そのまま三次元
的配向構造を保持し、ついで図8に示すように、直鎖相
の分子鎖は一定の方向に配列し固化する。このようにし
て高度の分子配向を有する繊維をきわめて容易に製造す
ることができる。
In the molten quasi-crystal phase thus produced, it is difficult for each molecular chain to individually act because the PAN molecular chains maintain the order between the molecular chains. However, when the entire molecular chain forming the ordered phase is moved in a certain direction, the three-dimensional orientation structure is maintained as it is, as shown in FIG. 7, and then, as shown in FIG. The chains align in a certain direction and solidify. In this way fibers with a high degree of molecular orientation can be produced very easily.

【0027】すなわち、図7は、溶融状態においてアク
リロニトリル高分子鎖が、水分子との相互作用によって
三次元的分子秩序をなす構造を、図8は、押出固化後、
繊維が形成されたとき、アクリロニトリル高分子鎖が直
鎖配座の板状フィブリルをなす構造を模型によりそれぞ
れを図示したものである。矢印“C”方向へ高分子鎖が
延びていて、矢印“V”方向へファンデルワールス力が
作用しており、矢印“H”方向へ水素結合力が作用して
おり、繊維が形成されるとき、水が脱け出ると共に収縮
し、繊維形成後においては、水素結合力の代わりにニト
リル基間の双極子引力が、矢印“D”方向へ作用するよ
うになることを示している。
That is, FIG. 7 shows a structure in which acrylonitrile polymer chains form a three-dimensional molecular order by interaction with water molecules in a molten state, and FIG. 8 shows a structure after extrusion solidification.
FIG. 2 is a model of a structure in which acrylonitrile polymer chains form a linear conformation plate-like fibril when a fiber is formed. A polymer chain extends in the direction of arrow "C", van der Waals force acts in the direction of arrow "V", and hydrogen bonding force acts in the direction of arrow "H", forming fibers. At this time, it is shown that water escapes and shrinks, and after the fiber formation, the dipole attractive force between the nitrile groups acts in the arrow “D” direction instead of the hydrogen bonding force.

【0028】しかし、無定形の溶融体においては、PA
N分子鎖一つ一つが自由に動くので、分子鎖間の秩序を
保つことができないだけでなく、分子鎖自体も自由自在
に無秩序に凝集し、一定の方向にこの分子鎖を配列させ
ることが不可能である。
However, in the amorphous melt, PA
Since each N molecular chain moves freely, it is not only possible to maintain the order between the molecular chains, but also the molecular chains themselves freely aggregate and can be arranged in a certain direction. It is impossible.

【0029】本発明において、溶融準結晶相の過冷却溶
融体は、あたかも液晶のように自発的な分子配向特性を
有しているので、これをピストン式押出機による単純押
出によってもPAN分子鎖は高配向繊維構造を形成し、
板状フィブリルが並んで積層した断面構造の高配向押出
物となる。
In the present invention, since the supercooled melt of the molten quasi-crystal phase has a spontaneous molecular orientation characteristic as if it were a liquid crystal, the PAN molecular chain can be obtained by simple extrusion using a piston type extruder. Form a highly oriented fiber structure,
A highly oriented extrudate having a cross-sectional structure in which plate-like fibrils are laminated side by side.

【0030】押出機としては、ピストン式押出機の外に
スクリュー式押出機等も使用可能であり、押出口はスリ
ットダイ、チューブダイ、アーク形ダイ等が自由に使用
され、厚さ対長さの割合は1以上であり、この割合が大
きいほど高配向の押出物を得るのに効果的である。押出
し温度は、当該PAN−含水物の溶融温度と固化温度の
間の一定温度に維持する。押出し条件は、内部圧力を少
なくとも当該発生水蒸気圧以上に維持し、100℃未満
5気圧以下の気体中、100℃から150℃の自然水蒸
気圧雰囲気中、又は常温常圧及び空気雰囲気中、1秒当
り1mm以上の吐出速度で、外部環境へ押出し、吐出速
度以上の線速度で連続押出物を巻き取る。このとき、押
出速度を高めるためにはより高圧の内部圧力を加え、巻
き取り速度を早くしなければならない。吐出速度対巻き
取る速度の割合は1以上であり、この割合を大きくする
のが押出物の配向度向上に有利である。
As the extruder, a screw type extruder or the like can be used in addition to the piston type extruder, and a slit die, a tube die, an arc die or the like can be freely used as the extrusion port, and the thickness vs. length can be used. Is 1 or more, and the larger this ratio, the more effective it is to obtain a highly oriented extrudate. The extrusion temperature is maintained at a constant temperature between the melting temperature and the solidification temperature of the PAN-hydrate. Extrusion conditions are such that the internal pressure is maintained at least at the generated steam pressure or higher, in a gas of less than 100 ° C. and 5 atm or less, in a natural steam pressure atmosphere of 100 ° C. to 150 ° C., or in a normal temperature and normal pressure and air atmosphere for 1 second. It is extruded into the external environment at a discharge speed of 1 mm or more per roll, and the continuous extrudate is wound at a linear velocity higher than the discharge speed. At this time, in order to increase the extrusion speed, a higher internal pressure must be applied to increase the winding speed. The ratio of the discharge speed to the winding speed is 1 or more, and increasing the ratio is advantageous for improving the orientation degree of the extrudate.

【0031】又、機械的性質がさらに向上した緻密な組
織の押出物を製造するために、押出口と連結して易融合
金からなる低融点、高比重の溶融金属が詰められた垂直
チューブを通過させ5気圧以下の圧力を加えて行う。こ
のように、比重が大きな溶融金属の圧力により、水が抜
け出る空間を制限する方法も効果的である。ここで垂直
チューブの長さは、要求される圧力により調節され、垂
直チューブに詰められる易融合金としては、例えば、B
i(50%)/Pb(31%)/Sn(19%)、ある
いはBi(50%)/Pb(24%)/Sn(14%)
/Cd(12%)のような組成からなる融点が100℃
未満である合金が用いられる。
In order to produce an extrudate having a dense structure with further improved mechanical properties, a vertical tube filled with a low melting point, high specific gravity molten metal made of easy-melting metal is connected to the extrusion port. Pass it through and apply a pressure of 5 atm or less. Thus, the method of limiting the space through which water escapes by the pressure of the molten metal having a large specific gravity is also effective. Here, the length of the vertical tube is adjusted according to the required pressure, and as an easy fusion metal packed in the vertical tube, for example, B
i (50%) / Pb (31%) / Sn (19%) or Bi (50%) / Pb (24%) / Sn (14%)
/ Cd (12%) composition is 100 ℃
An alloy that is less than is used.

【0032】溶融準結晶相の押出及び固化により、微細
繊維束で構成されたテープ状押出物が製造される。この
ものは、フィブリルが、押出方向に配列され、図9の走
査電子顕微鏡写真で示すように、横断面に板状フィブリ
ルが、水が分離除去された空間、つまり、脱水空間を隔
てて並び、配列積層された断面構造及び縦断面に各々の
フィブリルが、マイクロフィブリルに分離され、繊維を
構成する内部構造を有する。
By extruding and solidifying the molten quasicrystalline phase, a tape-shaped extrudate composed of a fine fiber bundle is produced. In this product, the fibrils are arranged in the extrusion direction, and as shown in the scanning electron micrograph of FIG. 9, the plate-like fibrils are arranged in the cross section in a space where water is separated and removed, that is, in a dehydration space. Each of the fibrils has an internal structure in which the fibrils are separated into microfibrils in a cross-sectional structure in which the layers are arranged and laminated and a longitudinal cross-section is formed.

【0033】ここでフィブリルは、厚さ1μmから10
μmの板状であり、一つのフィブリルは太さ0.01μ
mから1.0μmのマイクロフィブリルが、緻密に集っ
て構成されている。更に、図10に模型で示したように
フィブリルは、個々のマイクロフィブリルに分離でき、
分離されたマイクロフィブリルは最少繊維単位になる。
Here, the fibril has a thickness of 1 μm to 10 μm.
It has a plate shape of μm, and one fibril has a thickness of 0.01μ.
Micro fibrils of m to 1.0 μm are densely gathered and configured. Furthermore, fibrils can be separated into individual microfibrils as shown in the model of FIG.
The separated microfibrils are the smallest fiber unit.

【0034】フィブリル及びマイクロフィブリルの微細
構造は、図11のテープ状押出物のX線回折による回折
パターン写真から、繊維状結晶と高配向構造を有してい
ることを確認した。配向度は、図12に示すX線回折パ
ターン上の赤道方向の主回折ピーク位置(2θ=16.
2°)における子午線方向へ走査した回折強度の半値幅
(OA)を、次の式に従って換算した値から70%以上
である。
The microstructure of fibrils and microfibrils was confirmed to have fibrous crystals and a highly oriented structure from the photograph of the diffraction pattern of the tape-shaped extruded product of FIG. 11 by X-ray diffraction. The degree of orientation is the main diffraction peak position in the equatorial direction (2θ = 16.
The full width at half maximum (OA) of the diffraction intensity scanned in the meridian direction at 2 ° is 70% or more from the value converted according to the following formula.

【0035】 配向度(%)=(180−OA)/180×100 図6は、同一押出機及び同一押出し条件において、温度
のみを変化させながら、PAN/H2 O溶融体を押出し
て各温度別押出物を得て、この押出物の配向度をX線回
折により測定し、押出温度による配向度の変化を示した
ものである。これによれば、本発明の溶融準結晶相を形
成する温度領域においては、押出しにより発生する小さ
な指向性剪断力でもPAN分子鎖を容易に高度に配向さ
せることができることを示している。しかし、無定形溶
融体を形成する高温においては、分子配向がほとんど起
らないことを示している。
Orientation degree (%) = (180-OA) / 180 × 100 FIG. 6 shows that the PAN / H 2 O melt was extruded at each temperature under the same extruder and the same extrusion conditions while changing only the temperature. Another extrudate was obtained, and the degree of orientation of this extrudate was measured by X-ray diffraction to show the change in the degree of orientation depending on the extrusion temperature. According to this, it is shown that, in the temperature range where the molten quasi-crystalline phase of the present invention is formed, the PAN molecular chain can be easily highly oriented even with a small directional shearing force generated by extrusion. However, it is shown that molecular orientation hardly occurs at the high temperature at which the amorphous melt is formed.

【0036】この高配向押出物の配向度をさらに向上さ
せるためには、この連続押出物を、100℃から220
℃の温度に維持した気体雰囲気中で引張るか、又は圧縮
力を加えた該温度のローラー間を引張状態で通過させ
て、延伸熱処理を行う。該高温気体雰囲気としては、例
えば、水蒸気、空気、窒素、アルゴン等のようなPAN
と化学反応が殆ど起らない気体があげられる。好ましい
延伸熱処理温度は、120から200℃である。延伸熱
処理過程において、はじめの長さに対して5%から10
0%延伸され、機械的強度が向上したフィブリル構造が
更に発達した押出物が製造される。この延伸熱処理した
連続押出物を前記のX線回析パターンから分析した結
果、配向度が延伸熱処理以前よりさらに向上し、引張強
度及び弾性率も延伸熱処理により向上していた。
In order to further improve the degree of orientation of the highly oriented extrudate, the continuous extrudate is treated at 100 ° C to 220 ° C.
Stretching heat treatment is carried out by pulling in a gas atmosphere maintained at a temperature of ° C or by passing between rollers at a temperature applied with a compressive force in a tensioned state. Examples of the high temperature gas atmosphere include PAN such as water vapor, air, nitrogen and argon.
And the gas that causes almost no chemical reaction. The preferred stretching heat treatment temperature is 120 to 200 ° C. In the stretching heat treatment process, 5% to 10% of the initial length
An extrudate is produced that is 0% stretched and further develops a fibril structure with improved mechanical strength. As a result of analyzing the X-ray diffraction pattern of the continuous extruded product subjected to the stretching heat treatment, the orientation degree was further improved as compared with that before the stretching heat treatment, and the tensile strength and the elastic modulus were also improved by the stretching heat treatment.

【0037】この延伸熱処理した連続押出物を任意の長
さに切断し、叩解すれば、図13の走査電子顕微鏡写真
に示すようなパルプ状繊維が製造され、切断の長さ及び
叩解条件に従い、種々の大きさの繊維を得ることができ
る。
If the continuous extrudate subjected to the stretching heat treatment is cut to an arbitrary length and beaten, a pulp-like fiber as shown in the scanning electron micrograph of FIG. 13 is produced. According to the cutting length and the beating condition, Fibers of various sizes can be obtained.

【0038】このパルプ状短繊維は、高配向繊維構造を
有するフィブリル及びマイクロフィブリルで構成されて
おり、ほとんど不規則な長楕円断面を有し、側面に多数
の割れた隙間と分岐を有しており、繊維の大きさは、太
さが0.1μmから100μmであり、長さが0.1m
mから100mmである。個々の繊維は、厚さ1μmか
ら10μmの板状フィブリル及び太さ0.01μmから
1.0μmのマイクロフィブリルで構成されている。パ
ルプ状短繊維の微細構造は、透過電子顕微鏡(TEM)
により、電子線回折パターンで確認され、叩解前のテー
プ状押出物におけるような繊維状結晶及び高配向構造を
示す。
The pulp-like short fibers are composed of fibrils and microfibrils having a highly oriented fiber structure, have an almost irregular elliptical cross section, and have a large number of cracked gaps and branches on the side surface. The size of the fibers is 0.1 μm to 100 μm in thickness and 0.1 m in length.
It is from m to 100 mm. The individual fibers are composed of plate-like fibrils having a thickness of 1 μm to 10 μm and microfibrils having a thickness of 0.01 μm to 1.0 μm. The fine structure of pulp-like short fibers is determined by transmission electron microscopy (TEM).
Shows a fibrous crystal and highly oriented structure as in the tape-shaped extrudate before beating, as confirmed by electron diffraction pattern.

【0039】[0039]

【実施例】以下に、実施例により本発明の繊維の製造方
法を、より具体的に説明するが、本発明がこれに限定さ
れるものでない。
EXAMPLES The method for producing the fiber of the present invention will be described in more detail below with reference to examples, but the present invention is not limited thereto.

【0040】実施例1 シリンダー、ピストン及びスリットダイ型押出口で構成
され、密閉及び加熱保温が可能な押出機のシリンダー内
に、アクリロニトリル92.8%及びメチルアクリレー
ト7.2%の化学組成で構成され、粘度平均分子量が1
02,000のアクリロニトリル共重合体100gと水
22gを混合した混合物を導入し、5kg/cm2 で加
圧した状態で175℃まで加熱して完全に溶融させた
後、148℃まで温度を下げ、そのまま維持し、ピスト
ンを作動させて60kg/cm2 の圧力をかけ、厚さ/
幅/長さが0.25mm/20mm/3mmのスリット
ダイを通して常温常圧の雰囲気中に押出し、テープ状の
連続押出物を1分当り2mの速度で巻き取った。
Example 1 A chemical composition of 92.8% acrylonitrile and 7.2% methyl acrylate was provided in a cylinder of an extruder which was composed of a cylinder, a piston, and a slit die type extrusion port and which was capable of being closed and kept warm. The viscosity average molecular weight is 1
A mixture of 100 g of 02,000 acrylonitrile copolymer and 22 g of water was introduced, heated to 175 ° C. under a pressure of 5 kg / cm 2 and completely melted, and then the temperature was lowered to 148 ° C. Keeping the condition as it is, operate the piston and apply a pressure of 60 kg / cm 2 ,
It was extruded through a slit die having a width / length of 0.25 mm / 20 mm / 3 mm into a normal temperature and normal pressure atmosphere, and a tape-shaped continuous extrudate was wound at a speed of 2 m per minute.

【0041】製造された押出物の構造は、走査電子顕微
鏡で観察すると、厚さ1μmから10μmの板状フィブ
リルが脱水空間を隔てて、揃って積層された断面構造
と、各フィブリルが厚さ0.01μmから1.0μmの
間のマイクロフィブリルに分離した内部構造を有し、X
線分析によれば、テープ状押出物は繊維状結晶を有し、
89%の分子配向度を示した。連続押出テープを長さの
方向に沿ってこまかく分離し、長繊維にして、機械的性
質を測定した結果、このものは、引張強度4.5g/デ
ニール、伸度11%、引張弾性率67g/デニールの値
を示した。このテープ状連続押出物を、150℃に維
持、かつ圧縮力を加えたローラーの間を引張下に通過さ
せ、30%延伸熱処理した。
The structure of the manufactured extrudate is observed by a scanning electron microscope, and a cross-sectional structure in which plate-like fibrils having a thickness of 1 μm to 10 μm are stacked in parallel with each other across a dehydration space, and each fibril has a thickness of 0. X has an internal structure separated into microfibrils of between 0.01 μm and 1.0 μm, and X
According to the line analysis, the tape extrudate has fibrous crystals,
The degree of molecular orientation was 89%. The continuous extrusion tape was finely separated along the length direction to obtain long fibers, and the mechanical properties were measured. As a result, it was found that the tensile strength was 4.5 g / denier, the elongation was 11%, the tensile modulus was 67 g / The value of denier was shown. The tape-shaped continuous extrudate was maintained at 150 ° C. and passed under tension between rollers to which a compressive force was applied, and subjected to a 30% stretching heat treatment.

【0042】X線分析によれば、この延伸熱処理したテ
ープ状押出物は、繊維状結晶を有し、91%の分子配向
度を示した。この延伸熱処理した連続押出テープを長さ
の方向に沿ってこまかく分離し長繊維にして、機械的性
質を測定した結果、このものは、引張強度5.7g/デ
ニール、伸度10%、引張弾性率86g/の値を示し
た。
According to X-ray analysis, this stretch-heat treated tape-shaped extrudate had fibrous crystals and showed a degree of molecular orientation of 91%. The continuous extruded tape subjected to the drawing heat treatment was finely separated along the length direction to obtain long fibers, and the mechanical properties were measured. As a result, it was found that the tensile strength was 5.7 g / denier, the elongation was 10%, the tensile elasticity was 10%. The rate was 86 g / value.

【0043】延伸熱処理したテープ状連続押出物を、2
0mmの長さに切断してビータで叩解し、パルプ状短繊
維を製造した。製造された短繊維は、0.1μmから2
0μmの太さの分布と及び1mmから20mmの長さの
分布を有した。
The tape-shaped continuous extrudate subjected to the drawing heat treatment was
It was cut to a length of 0 mm and beaten with a beater to produce pulp-like short fibers. The short fibers produced are from 0.1 μm to 2
It had a thickness distribution of 0 μm and a length distribution of 1 mm to 20 mm.

【0044】実施例2 シリンダー、ピストン及びスリットダイ形押出口で構成
され、密閉及び加熱保温が可能な押出機のシリンダー内
に、粘度平均分子量が93,000のアクリロニトリル
単独重合体100gと水30gを混合した混合物を導入
し、5kg/cm2 に加圧した状態で205℃まで加熱
して完全に溶融させた後、178℃まで温度を下げ、そ
のまま維持し、ピストンを作動させて70kg/cm2
の圧力をかけ、厚さ/幅/長さが0.35mm/20m
m/4mmのスリットダイを通して常温常圧の雰囲気中
に押出し、テープ状の連続押出物を1分当り1.5mの
速度で巻き取った。この連続押出物を、170℃に維
持、かつ圧縮力を加えたローラーの間を引張下に通過さ
せ、25%延伸熱処理した。
Example 2 100 g of an acrylonitrile homopolymer having a viscosity average molecular weight of 93,000 and 30 g of water were placed in a cylinder of an extruder which is composed of a cylinder, a piston and a slit die type extrusion port and which can be closed and kept warm by heating. The mixed mixture was introduced, heated to 205 ° C under a pressure of 5 kg / cm 2 to completely melt it, and then the temperature was lowered to 178 ° C and maintained, and the piston was operated to 70 kg / cm 2
Is applied, the thickness / width / length is 0.35mm / 20m
It was extruded through a slit die of m / 4 mm into an atmosphere of normal temperature and normal pressure, and a continuous tape-shaped extrudate was wound at a speed of 1.5 m per minute. This continuous extrudate was maintained at 170 ° C. and passed under tension between rollers to which a compressive force was applied, and subjected to a 25% stretching heat treatment.

【0045】X線分析によれば、この延伸熱処理したテ
ープ状押出物は、繊維状結晶を有し、90%の分子配向
度を示した。この延伸熱処理した連続押出テープを長さ
の方向に沿ってこまかく分離し長繊維にして、機械的性
質を測定した結果、このものは、引張強度6.0g/デ
ニール、伸度9%、引張弾性率93g/デニールの値を
示した。
According to X-ray analysis, the stretch-heat treated tape-shaped extrudate had fibrous crystals and showed a degree of molecular orientation of 90%. The continuous extruded tape subjected to the stretching heat treatment was finely separated along the length direction to obtain long fibers, and the mechanical properties were measured. As a result, it was found that the tensile strength was 6.0 g / denier, the elongation was 9%, the tensile elasticity was 9%. The rate was 93 g / denier.

【0046】延伸熱処理したテープ状連続押出物を15
mmの長さに切断してビータで叩解してパルプ状短繊維
を製造した。製造された短繊維は、0.1μmから20
μmの太さの分布及び1mmから15mmの長さの分布
を有した。
The tape-shaped continuous extrudate subjected to the stretching heat treatment was applied to 15
The pulp-like short fiber was manufactured by cutting into a length of mm and beating with a beater. The short fibers produced are from 0.1 μm to 20
It had a thickness distribution of μm and a length distribution of 1 mm to 15 mm.

【0047】実施例3 シリンダー、ピストン及びスリットダイ型押出口で構成
され、密閉及び加熱保温が可能な押出機のシリンダー内
に、アクリロニトリル94.2%及びメチルアクリレー
ト5.8%の化学組成で構成され、粘度平均分子量が1
78,000のアクリロニトリル共重合体100gと水
25gを混合した混合物を導入し、5kg/cm2 に加
圧した状態で180℃まで加熱して完全に溶融させた
後、155℃まで温度を下げ、そのまま維持し、ピスト
ンを作動させて60kg/cm2 の圧力をかけ、厚さ/
幅/長さが0.25mm/20mm/3mmのスリット
ダイを通して押出し、テープ状連続押出物を1分当り2
mの速度で巻き取った。この連続押出物を、160℃に
維持、かつ圧縮力を加えたローラーの間を引張下に通過
させ、25%延伸熱処理した。
Example 3 A chemical composition of 94.2% acrylonitrile and 5.8% methyl acrylate was placed in a cylinder of an extruder which was composed of a cylinder, a piston, and a slit die type extrusion port and which was capable of being closed and heated. The viscosity average molecular weight is 1
A mixture of 100 g of 78,000 acrylonitrile copolymer and 25 g of water was introduced, heated to 180 ° C. under a pressure of 5 kg / cm 2 and completely melted, and then the temperature was lowered to 155 ° C. Keeping the condition as it is, operate the piston and apply a pressure of 60 kg / cm 2 ,
Extruded through a slit die with a width / length of 0.25 mm / 20 mm / 3 mm, and tape-shaped continuous extrudate at 2 per minute.
It was wound up at a speed of m. This continuous extrudate was maintained at 160 ° C. and passed under tension between rollers to which a compressive force was applied, and subjected to 25% stretching heat treatment.

【0048】X線分析によれば、この延伸熱処理したテ
ープ状押出物は、繊維状結晶を有し、91%の分子配向
度を示した。この押出テープを長さの方向に沿ってこま
かく分離し長繊維にして、機械的性質を測定した結果、
引張強度6.1g/デニール、伸度10%、引張弾性率
97g/デニールの値を示した。
According to X-ray analysis, the stretch-heat treated tape-shaped extrudate had fibrous crystals and showed a degree of molecular orientation of 91%. This extruded tape is finely separated into long fibers along the length direction, and the result of measuring the mechanical properties,
The tensile strength was 6.1 g / denier, the elongation was 10%, and the tensile elastic modulus was 97 g / denier.

【0049】延伸熱処理したテープ状連続押出物を20
mmの長さに切断してビータで叩解してパルプ状短繊維
を製造した。製造された短繊維は、0.1μmから20
μmの太さの分布及び1mmから20mmの長さの分布
を有した。
The stretched and heat-treated tape-shaped continuous extrudate 20
The pulp-like short fiber was manufactured by cutting into a length of mm and beating with a beater. The short fibers produced are from 0.1 μm to 20
It had a thickness distribution of μm and a length distribution of 1 mm to 20 mm.

【0050】実施例4 シリンダー、ピストン及びスリットダイ型押出口で構成
され、密閉及び加熱保温が可能な押出機のシリンダー内
に、アクリロニトリル88.6%及びメチルアクリレー
ト11.4%の化学組成で構成され、粘度平均分子量が
215,000のアクリロニトリル共重合体100gと
水25gを混合した混合物を導入し、5kg/cm2
加圧した状態で175℃まで加熱して完全に溶融させた
後、145℃まで温度を下げ、そのまま維持し、ピスト
ンを作動させて70kg/cm2の圧力をかけ、厚さ/
幅/長さが0.40mm/20mm/4mmのスリット
ダイを通して押出し、テープ状連続押出物を1分当り1
mの速度で巻き取った。この連続押出物を、140℃に
維持、かつ圧縮力を加えたローラーの間を引張下に通過
させ、35%延伸熱処理した。
Example 4 A chemical composition of 88.6% acrylonitrile and 11.4% methyl acrylate was used in a cylinder of an extruder which was composed of a cylinder, a piston, and a slit die type extrusion port, and which was capable of being closed and heated. Then, a mixture obtained by mixing 100 g of an acrylonitrile copolymer having a viscosity average molecular weight of 215,000 and 25 g of water was introduced, heated to 175 ° C. under a pressure of 5 kg / cm 2 and completely melted, and then 145 Reduce the temperature to ℃, maintain it as it is, operate the piston and apply a pressure of 70 kg / cm 2 ,
Extrusion through a slit die having a width / length of 0.40 mm / 20 mm / 4 mm to give a tape-shaped continuous extrudate 1 per minute
It was wound up at a speed of m. This continuous extrudate was maintained at 140 ° C. and passed under tension between rollers to which a compressive force was applied, and subjected to a 35% stretching heat treatment.

【0051】X線分析によれば、この延伸熱処理したテ
ープ状押出物は、繊維状結晶を有し、89%の分子配向
度を示した。この延伸熱処理した連続押出テープを長さ
の方向に沿ってこまかく分離し長繊維にして、機械的性
質を測定した結果、引張強度6.3g/デニール、伸度
10%、引張弾性率84g/デニールの値を示した。
According to X-ray analysis, the stretch-heat treated tape-shaped extrudate had fibrous crystals and exhibited a degree of molecular orientation of 89%. The continuous extruded tape subjected to the stretching heat treatment was finely separated along the length direction to obtain long fibers, and the mechanical properties were measured. As a result, the tensile strength was 6.3 g / denier, the elongation was 10%, and the tensile elastic modulus was 84 g / denier. The value of was shown.

【0052】この延伸熱処理したテープ状連続押出物
を、10mmの長さに切断してビータで叩解してパルプ
状短繊維を製造した。製造された短繊維は、0.1μm
から30μmの太さの分布及び1mmから10mmの長
さの分布を有した。
This stretch-heat treated tape-shaped continuous extrudate was cut into a length of 10 mm and beaten with a beater to produce pulp-like short fibers. The short fibers produced are 0.1 μm
With a thickness distribution of 1 to 30 μm and a length distribution of 1 mm to 10 mm.

【0053】実施例5 シリンダー、ピストン及びスリットダイ型押出口で構成
され、密閉及び加熱保温が可能な押出機のシリンダー内
に、アクリロニトリル94.8%及びビニルアセテート
5.2%の化学組成で構成され、粘度平均分子量が9
7,000のアクリロニトリル共重合体100gと水2
6gを混合した混合物を導入し、5kg/cm2 に加圧
した状態で180℃まで加熱して完全に溶融させた後、
155℃まで温度を下げ、そのまま維持し、ピストンを
作動させて65kg/cm2 の圧力をかけ、厚さ/幅/
長さが0.30mm/15mm/4mmのスリットダイ
を通して押出し、テープ状連続押出物を1分当り1.8
mの速度で巻き取った。この連続押出物を、160℃に
維持、かつ圧縮力を加えたローラーの間を引張下に通過
させ、27%延伸熱処理した。
Example 5 A chemical composition of 94.8% acrylonitrile and 5.2% vinyl acetate was used in a cylinder of an extruder which was composed of a cylinder, a piston, and a slit die type extrusion port and which was capable of being closed and heated. And the viscosity average molecular weight is 9
100 g of 7,000 acrylonitrile copolymer and water 2
After introducing a mixture obtained by mixing 6 g and heating the mixture to 180 ° C. under a pressure of 5 kg / cm 2 to completely melt it,
The temperature was lowered to 155 ° C and kept as it was, and the piston was operated to apply a pressure of 65 kg / cm 2 to the thickness / width /
Extrusion through a slit die having a length of 0.30 mm / 15 mm / 4 mm to give a tape-shaped continuous extrudate at 1.8 per minute.
It was wound up at a speed of m. This continuous extrudate was maintained at 160 ° C. and passed under tension between rollers to which a compressive force was applied, and subjected to a stretching heat treatment by 27%.

【0054】X線分析によれば、この延伸熱処理したテ
ープ状押出物は、繊維状結晶を有し、90%の分子配向
度を示した。この延伸熱処理した連続押出テープを長さ
の方向に沿ってこまかく分離し長繊維にして、機械的性
質を測定した結果、引張強度5.8g/デニール、伸度
10%、引張弾性率88g/デニールの値を示した。
According to X-ray analysis, the stretch-heat treated tape-shaped extrudate had fibrous crystals and showed a degree of molecular orientation of 90%. This stretch-heat treated continuous extruded tape was finely separated along the length direction to obtain long fibers, and the mechanical properties were measured. As a result, the tensile strength was 5.8 g / denier, the elongation was 10%, and the tensile elastic modulus was 88 g / denier. The value of was shown.

【0055】この延伸熱処理したテープ状連続押出物を
10mmの長さに切断してビータで叩解してパルプ状短
繊維を製造した。製造された短繊維は、0.1μmから
30μmの太さの分布及び1mmから10mmの長さの
分布を有した。
The tape-shaped continuous extrudate subjected to the drawing heat treatment was cut into a length of 10 mm and beaten with a beater to produce pulp-like short fibers. The short fibers produced had a thickness distribution of 0.1 μm to 30 μm and a length distribution of 1 mm to 10 mm.

【0056】実施例6 シリンダー、ピストン及びスリットダイ型押出口で構成
され、密閉及び加熱保温が可能な押出機のシリンダー内
に、アクリロニトリル83.8%及びビニルアセテート
16.2%の化学組成で構成され、粘度平均分子量が1
76,000のアクリロニトリル共重合体100gと水
20gを混合した混合物を導入し、5kg/cm2 に加
圧した状態で165℃まで加熱して完全に溶融させた
後、135℃まで温度を下げ、維持し、ピストンを作動
させて55kg/cm2 の圧力をかけ、厚さ/幅/長さ
が0.25mm/20mm/3mmのスリットダイを通
して押出し、テープ状連続押出物を1分当り2.4mの
速度で巻き取った。この連続押出物を、140℃に維
持、かつ圧縮力を加えたローラーの間を引張下に通過さ
せ、43%延伸熱処理した。
Example 6 A chemical composition of 83.8% acrylonitrile and 16.2% vinyl acetate was placed in a cylinder of an extruder which was composed of a cylinder, a piston and a slit die type extrusion port and was capable of sealing and keeping heat. The viscosity average molecular weight is 1
A mixture of 100 g of 76,000 acrylonitrile copolymer and 20 g of water was introduced, heated to 165 ° C. under a pressure of 5 kg / cm 2 and completely melted, and then cooled to 135 ° C., Maintaining the pressure of 55 kg / cm 2 by actuating the piston and extruding through a slit die having a thickness / width / length of 0.25 mm / 20 mm / 3 mm, a tape-shaped continuous extrudate of 2.4 m / min. It was wound up at the speed of. This continuous extrudate was maintained at 140 ° C. and passed under tension between rollers to which a compression force was applied, and subjected to a 43% stretching heat treatment.

【0057】X線分析によれば、この延伸熱処理したテ
ープ状押出物は、繊維状結晶を有し、86%の分子配向
度を示した。この延伸熱処理した連続押出テープを長さ
の方向に沿ってこまかく分離し長繊維にして、機械的性
質を測定した結果、引張強度5.3g/デニール、伸度
12%、引張弾性率72g/デニールの値を示した。
According to X-ray analysis, the stretch-heat treated tape-shaped extrudate had fibrous crystals and exhibited a degree of molecular orientation of 86%. This stretch-heat treated continuous extruded tape was finely separated along the length direction to obtain long fibers, and the mechanical properties were measured. As a result, the tensile strength was 5.3 g / denier, the elongation was 12%, the tensile modulus was 72 g / denier. The value of was shown.

【0058】この延伸熱処理したテープ状連続押出物
を、15mmの長さに切断してビータで叩解してパルプ
状短繊維を製造した。製造された短繊維は0.1μmか
ら40μmの太さの分布及び1mmから15mmの長さ
の分布を有した。
The stretched and heat-treated tape-shaped continuous extrudate was cut into a length of 15 mm and beaten with a beater to produce pulp-like short fibers. The short fibers produced had a thickness distribution of 0.1 μm to 40 μm and a length distribution of 1 mm to 15 mm.

【0059】実施例7 シリンダー、ピストン及びスリットダイ型押出口で構成
され、密閉及び加熱保温が可能な押出機のシリンダー内
に、アクリロニトリル89.5%及びスチレン10.5
%の化学組成で構成され、粘度平均分子量が126,0
00のアクリロニトリル共重合体100gと水21gを
混合した混合物を導入し、5kg/cm2 に加圧した状
態で170℃まで加熱して完全に溶融させた後、142
℃まで温度を下げ、維持し、ピストンを作動させて55
kg/cm2の圧力をかけ、厚さ/幅/長さが0.3m
m/20mm/4mmのスリットダイを通して押出し、
テープ状の連続押出物を1分当り2mの速度で巻き取っ
た。この連続押出物を、155℃に維持、かつ圧縮力を
加えたローラーの間を引張下に通過させ、30%延伸熱
処理した。
Example 7 89.5% of acrylonitrile and 10.5 of styrene were placed in the cylinder of an extruder which was composed of a cylinder, a piston and a slit die type extrusion port and which was capable of being closed and kept warm by heating.
% Chemical composition with a viscosity average molecular weight of 126,0
A mixture of 100 g of acrylonitrile copolymer of 00 and 21 g of water was introduced, heated to 170 ° C. while being pressurized to 5 kg / cm 2 , and completely melted.
Lower the temperature to ℃, maintain it, and operate the piston
0.3 kg in thickness / width / length by applying pressure of kg / cm 2.
Extruded through m / 20mm / 4mm slit die,
The tape-shaped continuous extrudate was wound at a speed of 2 m / min. This continuous extrudate was maintained at 155 ° C. and passed under tension between rollers to which a compressive force was applied, and subjected to a 30% stretching heat treatment.

【0060】X線分析によれば、この延伸熱処理したテ
ープ状押出物は、繊維状結晶を有し、87%の分子配向
度を示した。この連続押出テープを長さの方向に沿って
こまかく分離し長繊維にして、機械的性質を測定した結
果、引張強度4.8g/デニール、伸度12%、引張弾
性率82g/デニールの値を示した。
According to X-ray analysis, this stretch-heat treated tape-shaped extrudate had fibrous crystals and showed a degree of molecular orientation of 87%. The continuous extruded tape was finely separated along the length direction to obtain long fibers, and the mechanical properties were measured. As a result, the tensile strength was 4.8 g / denier, the elongation was 12%, and the tensile elastic modulus was 82 g / denier. Indicated.

【0061】実施例8 シリンダー、ピストン及びスリットダイ型押出口で構成
され、密閉及び加熱保温が可能な押出機のシリンダー内
に、アクリロニトリル87.1%及びメチルメタアクリ
レート12.9%の化学組成で構成され、粘度平均分子
量が112,000のアクリロニトリル共重合体100
gと水18gを混合した混合物を導入し、5kg/cm
2 に加圧した状態で170℃まで加熱して完全に溶融さ
せた後、140℃まで温度を下げ、そのまま維持し、ピ
ストンを作動させて50kg/cm2 の圧力をかけ、厚
さ/幅/長さが0.20mm/20mm/3mmである
スリットダイを通して常温常圧の雰囲気中に押出し、テ
ープ状連続押出物を1分当り2mの速度で巻き取った。
この連続押出物を、145℃に維持、かつ圧縮力を加え
たローラーの間を引張下に通過させ、40%延伸熱処理
した。
Example 8 A chemical composition of 87.1% acrylonitrile and 12.9% methyl methacrylate was placed in a cylinder of an extruder which was composed of a cylinder, a piston, and a slit die type extrusion port and which was capable of being closed and kept warm by heating. Acrylonitrile copolymer 100 having a viscosity average molecular weight of 112,000
g and 18 g of water were introduced into the mixture, and 5 kg / cm
After pressurizing to 2 and heating to 170 ℃ to completely melt, lower the temperature to 140 ℃, maintain it as it is, operate the piston to apply a pressure of 50 kg / cm 2 , thickness / width / It was extruded through a slit die having a length of 0.20 mm / 20 mm / 3 mm into an atmosphere at normal temperature and normal pressure, and the tape-shaped continuous extrudate was wound at a speed of 2 m per minute.
This continuous extrudate was maintained at 145 ° C. and passed under tension between rollers to which a compression force was applied, and subjected to a 40% stretching heat treatment.

【0062】X線分析によれば、この延伸熱処理したテ
ープ状押出物は、繊維状結晶を有し、90%の配向度を
示した。この延伸熱処理した連続押出テープを長さの方
向に沿ってこまかく分離し長繊維にして、機械的性質を
測定した結果、引張強度6.3g/デニール、伸度10
%、引張弾性率83g/デニールの値を示した。
According to X-ray analysis, the stretch-heat treated tape-shaped extrudate had fibrous crystals and showed a degree of orientation of 90%. The continuous extruded tape which had been subjected to the stretching heat treatment was finely separated along the length direction to obtain long fibers, and the mechanical properties were measured. As a result, the tensile strength was 6.3 g / denier and the elongation was 10
%, And the tensile modulus of elasticity was 83 g / denier.

【0063】比較例1 比較試験のために、実施例1と同様な押出機のシリンダ
ー内に、アクリロニトリル92.8%及びメチルアクリ
レート7.2%の化学組成で構成され、粘度平均分子量
が102,000のアクリロニトリル共重合体100g
と水22gを混合した混合物を導入し、5kg/cm2
に加圧した状態で175℃まで加熱して完全に溶融させ
た後、そのままピストンを作動させて60kg/cm2
の圧力をかけ、厚さ/幅/長さが0.25mm/20m
m/3mmのスリットダイを通して常温常圧の大気中に
押出し、発泡が甚だしい連続押出物を得た。この発泡体
は、X線回折パターンにおいてまったく配向性を示さ
ず、パルプ状短繊維を製造できなかった。
Comparative Example 1 For the purpose of a comparative test, a cylinder of an extruder similar to that of Example 1 was used, which had a chemical composition of 92.8% acrylonitrile and 7.2% methyl acrylate and had a viscosity average molecular weight of 102, 000 acrylonitrile copolymer 100g
And a mixture of 22 g of water and 5 g / cm 2 were introduced.
After heating up to 175 ° C and melting it completely, press the piston to operate 60kg / cm 2
Is applied, the thickness / width / length is 0.25mm / 20m
It was extruded into the atmosphere of normal temperature and normal pressure through a slit die of m / 3 mm to obtain a continuous extrudate with remarkable foaming. This foam did not show any orientation in the X-ray diffraction pattern and could not produce short pulp fibers.

【0064】比較例2 比較試験のために、実施例1と同様な押出機のシリンダ
ー内に、アクリロニトリル92.8%及びメチルアクリ
レート7.2%の化学組成で構成され、粘度平均分子量
が102,000のアクリロニトリル共重合体100g
と水22gを混合した混合物を導入し、5kg/cm2
に加圧した状態で175℃まで加熱して完全に溶融させ
た後、そのままピストンを作動させて30kg/cm2
の圧力をかけ、厚さ/幅/長さが0.25mm/20m
m/3mmのスリットダイを通して常温2kg/cm2
の圧力チャンバー内に押出し、テープ状連続押出物を1
分当り5mの速度で巻き取った。X線分析によれば、こ
のテープ状押出物は、56%の配向度を示したが、パル
プ状短繊維を製造することができなかった。
Comparative Example 2 For the purpose of a comparative test, the composition of the chemical composition of acrylonitrile 92.8% and methyl acrylate 7.2% was used in a cylinder of an extruder similar to that of Example 1, and a viscosity average molecular weight of 102, 000 acrylonitrile copolymer 100g
And a mixture of 22 g of water and 5 g / cm 2 were introduced.
After heating up to 175 ° C and completely melting it, press the piston to operate 30kg / cm 2
Is applied, the thickness / width / length is 0.25mm / 20m
2kg / cm 2 at room temperature through m / 3mm slit die
Extruded into the pressure chamber of the
It was wound at a speed of 5 m per minute. According to X-ray analysis, this tape-shaped extrudate showed a degree of orientation of 56%, but pulp-like short fibers could not be produced.

【0065】[0065]

【発明の効果】以上説明したように、本発明の製造法に
おいては、PANに共融体として少量の水のみを混合
し、溶融押出し、次いでこの押出物を延伸熱処理する画
期的な単純工程により、高配向のパルプ状アクリル短繊
維を製造するので、既存の方法に比べて製造原価が大き
く節減されるだけでなく、有機溶媒による公害問題もな
く、短繊維自体は高配向フィブリルで構成される構造的
特徴を有し、この方法により製造された繊維は、性能面
においても、高度の分子配向により物理的性質が優れ、
マイクロフィブリルで構成されているので、表面積が非
常に大きく、不規則な断面構造を有しているために、他
物質との結着性も極めてよい。
As described above, in the production method of the present invention, an epoch-making simple process in which PAN is mixed with a small amount of water as a eutectic, melt-extruded, and then the extrudate is stretched and heat-treated. As a result of producing highly oriented pulp-like acrylic short fibers, not only is the production cost significantly reduced compared to existing methods, but there is also no problem of pollution by organic solvents, and the short fibers themselves are composed of highly oriented fibrils. The fiber produced by this method has excellent physical properties due to a high degree of molecular orientation,
Since it is composed of microfibrils, it has a very large surface area and has an irregular cross-sectional structure, and therefore has very good binding properties with other substances.

【0066】このように本発明の方法により製造された
パルプ状短繊維は、石綿代替繊維、保温耐熱繊維、セメ
ント補強繊維等の産業用素材として有利に使用できるだ
けでなく、パルプ素材としても最適な条件を有し、単純
工程により、安価に製造できるので、天然パルプに代っ
て紙の原料として有利に使用できる。更に、このパルプ
状短繊維は、微細なフィブリルで構成されており、不規
則な長楕円断面と側面に多数の割れた隙間及び分枝を有
しているので、紙用のパルプとして有利な特性を有す
る。
Thus, the pulp-like short fibers produced by the method of the present invention can be advantageously used not only as an industrial material such as asbestos substitute fiber, heat-resistant heat-resistant fiber, cement reinforcing fiber, etc., but also as a pulp material. Since it has the conditions and can be produced at a low cost by a simple process, it can be advantageously used as a raw material for paper instead of natural pulp. Further, this pulp-like short fiber is composed of fine fibrils, and has an irregular elliptical cross section and a large number of cracked gaps and branches on the side surface, so that it has advantageous properties as a pulp for paper. Have.

【図面の簡単な説明】[Brief description of drawings]

【図1】アクリロニトリル重合体の含水物の示差走査熱
量計(DSC)による典型的な溶融吸熱温度(Tm )と
固化発熱温度(Tc )を示したグラフである。
FIG. 1 is a graph showing typical melting endothermic temperature (T m ) and solidification exothermic temperature (T c ) measured by a differential scanning calorimeter (DSC) of an acrylonitrile polymer hydrate.

【図2】図1の一例として、重量比でアクリロニトリル
89.2%とメチルアクリレート10.8%を含有する
アクリロニトリル重合体に、水20%を混合した含水物
の溶融温度(Tm )と固化温度(Tc )を示したグラフ
である。
FIG. 2 shows, as an example of FIG. 1, an acrylonitrile polymer containing 89.2% of acrylonitrile and 10.8% of methyl acrylate in a weight ratio, and 20% of water mixed with the melting temperature (T m ) of the water-containing substance and solidification thereof. It is a graph which showed temperature ( Tc ).

【図3】アクリロニトリル重合体の含水物の含水量によ
る溶融温度(Tm)と固化温度(Tc )の典型的な変化
を示したグラフである。
FIG. 3 is a graph showing typical changes in melting temperature (T m ) and solidification temperature (T c ) depending on the water content of the water-containing substance of the acrylonitrile polymer.

【図4】図3の一例として、重量比でアクリロニトリル
89.2%とメチルアクリレート10.8%を含有する
アクリロニトリル重合体の含水物の含水量変化による溶
融温度(Tm )と固化温度(Tc )の変化を示したグラ
フである。
FIG. 4 shows, as an example of FIG. 3, a melting temperature (T m ) and a solidification temperature (T m ) of a water content of a water content of an acrylonitrile polymer containing 89.2% of acrylonitrile and 10.8% of methyl acrylate in a weight ratio. It is a graph which showed change of c ).

【図5】アクリロニトリル共重合体の含水物のメチルア
クリレートの含量変化による溶融温度(Tm )及び固化
温度(Tc )の変化を示したグラフである。
FIG. 5 is a graph showing changes in melting temperature (T m ) and solidification temperature (T c ) due to changes in the content of methyl acrylate in the hydrous acrylonitrile copolymer.

【図6】アクリロニトリル重合体の含水物の、溶融体の
押出温度による押出物の配向度の変化を示したグラフで
ある。
FIG. 6 is a graph showing changes in the degree of orientation of an extrudate of a hydrous acrylonitrile polymer depending on the extrusion temperature of the melt.

【図7】溶融状態において、アクリロニトリル高分子鎖
と、水分子との相互作用による三次的分子秩序をなす構
造模型図である。
FIG. 7 is a structural model diagram showing tertiary molecular order due to interaction between acrylonitrile polymer chains and water molecules in a molten state.

【図8】押出固化後、繊維が形成されたとき、アクリロ
ニトリル高分子鎖が直鎖配座の板状フィブリルをなす構
造模型図である。
FIG. 8 is a structural model view in which acrylonitrile polymer chains form a linear conformation plate-like fibril when a fiber is formed after extrusion solidification.

【図9】テープ状押出物の横断面及び縦断面の走査電子
顕微鏡写真である。
FIG. 9 is a scanning electron micrograph of a transverse section and a longitudinal section of a tape-shaped extrudate.

【図10】図9のテープ状押出物の横断面及び縦断面構
造を示す模型図である。
FIG. 10 is a model diagram showing a cross-sectional structure and a vertical sectional structure of the tape-shaped extrudate of FIG. 9.

【図11】図9のテープ状押出物のX線回折パターン写
真である。
11 is an X-ray diffraction pattern photograph of the tape-shaped extrudate of FIG.

【図12】図11のX線回折パターン上の赤道方向の主
回折ピーク(2θ=16.2°)位置における子午線方
向へ走査した回折強度曲線図である。
12 is a diffraction intensity curve diagram scanned in the meridian direction at the position of the main diffraction peak (2θ = 16.2 °) in the equatorial direction on the X-ray diffraction pattern of FIG.

【図13】延伸熱処理したテープ状押出物を叩解(beati
ng) して得たパルプ状短繊維の走査電子顕微鏡写真であ
る。
FIG. 13: Beating of a tape-shaped extrudate subjected to stretching heat treatment (beati
ng) is a scanning electron micrograph of pulp-like short fibers.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年11月10日[Submission date] November 10, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】アクリロニトリル重合体の含水物の示差走査熱
量計(DSC)による典型的な溶融吸熱温度(Tm )と
固化発熱温度(Tc )を示したグラフである。
FIG. 1 is a graph showing typical melting endothermic temperature (T m ) and solidification exothermic temperature (T c ) measured by a differential scanning calorimeter (DSC) of an acrylonitrile polymer hydrate.

【図2】図1の一例として、重量比でアクリロニトリル
89.2%とメチルアクリレート10.8%を含有する
アクリロニトリル重合体に、水20%を混合した含水物
の溶融温度(Tm )と固化温度(Tc )を示したグラフ
である。
FIG. 2 shows, as an example of FIG. 1, an acrylonitrile polymer containing 89.2% of acrylonitrile and 10.8% of methyl acrylate in a weight ratio, and 20% of water mixed with the melting temperature (T m ) of the water-containing substance and solidification thereof. It is a graph which showed temperature ( Tc ).

【図3】アクリロニトリル重合体の含水物の含水量によ
る溶融温度(Tm)と固化温度(Tc )の典型的な変化
を示したグラフである。
FIG. 3 is a graph showing typical changes in melting temperature (T m ) and solidification temperature (T c ) depending on the water content of the water-containing substance of the acrylonitrile polymer.

【図4】図3の一例として、重量比でアクリロニトリル
89.2%とメチルアクリレート10.8%を含有する
アクリロニトリル重合体の含水物の含水量変化による溶
融温度(Tm )と固化温度(Tc )の変化を示したグラ
フである。
FIG. 4 shows, as an example of FIG. 3, a melting temperature (T m ) and a solidification temperature (T m ) of a water content of a water content of an acrylonitrile polymer containing 89.2% of acrylonitrile and 10.8% of methyl acrylate in a weight ratio. It is a graph which showed change of c ).

【図5】アクリロニトリル共重合体の含水物のメチルア
クリレートの含量変化による溶融温度(Tm )及び固化
温度(Tc )の変化を示したグラフである。
FIG. 5 is a graph showing changes in melting temperature (T m ) and solidification temperature (T c ) due to changes in the content of methyl acrylate in the hydrous acrylonitrile copolymer.

【図6】アクリロニトリル重合体の含水物の、溶融体の
押出温度による押出物の配向度の変化を示したグラフで
ある。
FIG. 6 is a graph showing changes in the degree of orientation of an extrudate of a hydrous acrylonitrile polymer depending on the extrusion temperature of the melt.

【図7】溶融状態において、アクリロニトリル高分子鎖
と、水分子との相互作用による三次的分子秩序をなす構
造模型図である。
FIG. 7 is a structural model diagram showing tertiary molecular order due to interaction between acrylonitrile polymer chains and water molecules in a molten state.

【図8】押出固化後、繊維が形成されたとき、アクリロ
ニトリル高分子鎖が直鎖配座の板状フィブリルをなす構
造模型図である。
FIG. 8 is a structural model view in which acrylonitrile polymer chains form a linear conformation plate-like fibril when a fiber is formed after extrusion solidification.

【図9】繊維形状のテープ状押出物の横断面及び縦断面
の走査電子顕微鏡写真である。
FIG. 9 is a scanning electron micrograph of a cross section and a vertical section of a fibrous tape-shaped extrudate.

【図10】図9のテープ状押出物の横断面及び縦断面構
造を示す模型図である。
FIG. 10 is a model diagram showing a cross-sectional structure and a vertical sectional structure of the tape-shaped extrudate of FIG. 9.

【図11】図9のテープ状押出物のX線回折パターン写
真である。
11 is an X-ray diffraction pattern photograph of the tape-shaped extrudate of FIG.

【図12】図11のX線回折パターン上の赤道方向の主
回折ピーク(2θ=16.2°)位置における子午線方
向へ走査した回折強度曲線図である。
12 is a diffraction intensity curve diagram scanned in the meridian direction at the position of the main diffraction peak (2θ = 16.2 °) in the equatorial direction on the X-ray diffraction pattern of FIG.

【図13】延伸熱処理したテープ状押出物を叩解(beati
ng) して得たパルプ状短繊維の繊維形状を示す走査電子
顕微鏡写真である。
FIG. 13: Beating of a tape-shaped extrudate subjected to stretching heat treatment (beati
2 is a scanning electron micrograph showing the fiber shape of pulp-like short fibers obtained by ng).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 李 哲 周 大韓民国ソウル特別市蘆原区孔陵2洞山53 番地1号 韓道住宅10棟206号 (72)発明者 閔 丙 吉 大韓民国ソウル特別市蘆原区上渓6洞765 番地 住公アパート120棟603号 (72)発明者 ▲ちよ▼ 再 煥 大韓民国京畿道安養市安養一洞1157番地54 号 東一住宅B棟302号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Lee Satoshi Zhou, No. 53, No. 53, Dong-dong, Goryeong-gu, Yangwon-gu, Seoul, Republic of Korea No. 206, 10 Korean houses 10 (72) Inventor, Min Ji-Yi No. 603, Jangxi 6-dong, Hara-gu, 120 No. 603, residential residence apartment 603 (72) Inventor ▲ Chiyo ▼ No. 1157 54, 1157 Anyang-dong, Anyang-si, Gyeonggi-do, South Korea

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 重量比で70%以上のアクリロニトリル
及び重量比で30%以下の共重合可能な単量体を重合さ
せた、10,000から600,000の粘度平均分子
量を有するアクリロニトリル単独重合体又は共重合体
と、上記重合体に対し重量比で5%から100%の水と
の混合物を、密閉下において溶融温度以上に加熱して無
定形溶融体を形成させ、これを溶融温度と固化温度の間
の温度に冷却して準結晶溶融相を得た後、これを外部環
境へ押出し、板状フィブリル等が揃って配列積層された
断面構造をもち、X線回折パターンにおいて繊維状結晶
構造と70%以上の配向度を示す押出物を得、この押出
物を100℃から220℃に維持した気体雰囲気中で引
張るか、又は該温度の圧縮ローラーの間を引張状態で通
過させて、延伸熱処理を行った後、これを機械的に叩解
することを特徴とする、0.1μmから100μmの太
さの分布及び0.1mmから100mmの長さの分布を
有する高配向フィブリル構造のパルプ状短繊維の製造方
法。
1. An acrylonitrile homopolymer having a viscosity average molecular weight of 10,000 to 600,000 obtained by polymerizing 70% or more by weight of acrylonitrile and 30% or less by weight of a copolymerizable monomer. Alternatively, a mixture of a copolymer and 5% to 100% by weight of water of the above polymer is heated to a melting temperature or higher in a closed state to form an amorphous melt, which is solidified with the melting temperature. After cooling to a temperature between temperatures to obtain a quasi-crystalline molten phase, this is extruded into the external environment and has a cross-sectional structure in which plate-like fibrils and the like are aligned and laminated, and has a fibrous crystal structure in an X-ray diffraction pattern. And an extrudate having a degree of orientation of 70% or more are obtained, and the extrudate is stretched by stretching in a gas atmosphere maintained at 100 to 220 ° C. or by passing it between the compression rollers at the temperature in a stretched state. Heat treatment And then mechanically beating the pulp-like short fibers of highly oriented fibril structure having a thickness distribution of 0.1 μm to 100 μm and a length distribution of 0.1 mm to 100 mm. Manufacturing method.
【請求項2】 該高配向フィブリル構造が、太さ0.0
1μmから1.0μmのマイクロフィブリル及び厚さ1
μmから10μmの板状フィブリルにより構成されてい
る請求項1の製造方法。
2. The highly oriented fibril structure has a thickness of 0.0.
1 μm to 1.0 μm microfibrils and thickness 1
The manufacturing method according to claim 1, wherein the manufacturing method is constituted by plate-like fibrils having a size of 10 μm to 10 μm.
【請求項3】 該延伸熱処理が、押出物を、120℃か
ら200℃の圧縮ローラーの間を引張状態で通過させて
行う請求項1の製造方法。
3. The production method according to claim 1, wherein the stretching heat treatment is performed by passing the extrudate in a tension state between compression rollers at 120 ° C. to 200 ° C.
【請求項4】 該延伸熱処理により、5%から100%
の延伸を行う請求項1の製造方法。
4. The stretching heat treatment results in 5% to 100%.
The method according to claim 1, wherein the stretching is performed.
【請求項5】 該外部環境への押出しを、100℃未満
5気圧以下の気体中、100℃から150℃の自然水蒸
気圧雰囲気中、あるいは溶融点が100℃未満の易融合
金が詰められた垂直チューブを通過させ、5気圧以下の
圧力を加えて行う請求項1の製造方法。
5. Extrusion into the external environment is carried out in a gas of less than 100 ° C. and 5 atm or less, in a natural steam pressure atmosphere of 100 ° C. to 150 ° C., or with a fusible alloy having a melting point of less than 100 ° C. The production method according to claim 1, wherein the production is carried out by passing through a vertical tube and applying a pressure of 5 atm or less.
【請求項6】 該外部環境への押出しを、常温常圧及び
空気雰囲気中で行う請求項1の製造方法。
6. The method according to claim 1, wherein the extrusion into the external environment is carried out at room temperature and atmospheric pressure and in an air atmosphere.
【請求項7】 該混合物が、重合体に対して重量比で1
0%から50%の水を含む請求項1の製造方法。
7. The mixture is used in a weight ratio of 1 to the polymer.
The method of claim 1, comprising 0% to 50% water.
【請求項8】 該無定形溶融体が、重合体含水物の溶融
温度以上から220℃迄の温度範囲にて形成される請求
項1の製造方法。
8. The method according to claim 1, wherein the amorphous melt is formed in a temperature range from the melting temperature of the polymer hydrous material to 220 ° C.
【請求項9】 該アクリロニトリル単独重合体及び共重
合体の粘度平均分子量が、50,000から350,0
00である請求項1の製造方法。
9. The acrylonitrile homopolymer and copolymer have a viscosity average molecular weight of 50,000 to 350,0.
The manufacturing method according to claim 1, which is 00.
【請求項10】 該アクリロニトリル単独重合体及び共
重合体が、重量比で85%以上のアクリロニトリルと1
5%以下の共重合可能な単量体から構成される請求項1
の製造方法。
10. The acrylonitrile homopolymer and copolymer are 85% by weight or more of acrylonitrile and 1% by weight.
A composition comprising 5% or less of a copolymerizable monomer.
Manufacturing method.
JP3192688A 1990-07-11 1991-07-08 Method for producing non-spun highly oriented acrylic short fibers Expired - Lifetime JPH0713324B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019900010459A KR920008998B1 (en) 1990-07-11 1990-07-11 Process for the production of highly-oriented acrylic short fibers without spinning
KR10459/1990 1990-07-11

Publications (2)

Publication Number Publication Date
JPH05106110A true JPH05106110A (en) 1993-04-27
JPH0713324B2 JPH0713324B2 (en) 1995-02-15

Family

ID=19301116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3192688A Expired - Lifetime JPH0713324B2 (en) 1990-07-11 1991-07-08 Method for producing non-spun highly oriented acrylic short fibers

Country Status (3)

Country Link
JP (1) JPH0713324B2 (en)
KR (1) KR920008998B1 (en)
DE (1) DE4122994A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940010313B1 (en) * 1992-10-01 1994-10-22 한국과학기술연구원 Spinless acryl staple fiber
DE19959532C1 (en) * 1999-12-10 2001-10-04 Seitz Schenk Filtersystems Gmb Method and device for the production of filtration-active fibers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966905A (en) * 1972-10-26 1974-06-28
JPS5128729A (en) * 1974-09-04 1976-03-11 Matsushita Electric Ind Co Ltd
JPS5145691A (en) * 1974-10-18 1976-04-19 Kobe Steel Ltd
JPS5313009A (en) * 1976-07-20 1978-02-06 Riyuuzou Tsukamoto Two stroke internal combustion engine
JPS5442023A (en) * 1977-09-07 1979-04-03 Kubota Ltd Method for preventing corrosion of underground buried iron member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017106B1 (en) * 1970-12-16 1975-06-18

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966905A (en) * 1972-10-26 1974-06-28
JPS5128729A (en) * 1974-09-04 1976-03-11 Matsushita Electric Ind Co Ltd
JPS5145691A (en) * 1974-10-18 1976-04-19 Kobe Steel Ltd
JPS5313009A (en) * 1976-07-20 1978-02-06 Riyuuzou Tsukamoto Two stroke internal combustion engine
JPS5442023A (en) * 1977-09-07 1979-04-03 Kubota Ltd Method for preventing corrosion of underground buried iron member

Also Published As

Publication number Publication date
JPH0713324B2 (en) 1995-02-15
KR920008998B1 (en) 1992-10-12
DE4122994C2 (en) 1993-02-18
DE4122994A1 (en) 1992-01-16
KR920002839A (en) 1992-02-28

Similar Documents

Publication Publication Date Title
EP0055001B1 (en) Filaments with high tensile strength and modulus and process for the production thereof
US4360488A (en) Removal of solvent from gels of poly(hydroxybutyrate) and shaped articles formed therefrom
KR900004839B1 (en) Process for producing polyethylene articles having a high tensile strength and modulus
EP0292074B1 (en) Process for the preparation of ultrastretchable polymer material as well as a process for the manufacture of objects
US5434002A (en) Non-spun, short, acrylic polymer, fibers
CA1277469C (en) Process for the preparation of polyvinyl alcohol articles of high strength and modulus
EP1308255A1 (en) Process for the manufacturing of a shaped part of ultra high molecular weight polyethylene and a fibre made with this process
JPH05179507A (en) Spinningless heat-resistant aclyric short fiber
KR0126128B1 (en) Process for preparation of fibers of stereoregular polystyrene
JPH06341014A (en) Pulp-like staple fiber of liquid crystal polyester
Atureliya et al. Continuous plasticized melt-extrusion of polyacrylonitrile homopolymer
JPH05106110A (en) Manufacture of un-spun highly-oriented acrylic short fiber
Udakhe et al. Melt Processing of polyacrylonitrile (PAN) polymers
JPH0593314A (en) Unspun short acrylic fiber and its preparation
US4913870A (en) Process for preparing polyacrylonitrile filaments having high tensile strength and modulus
US5589264A (en) Unspun acrylic staple fibers
Bashir et al. Production of oriented polyacrylonitrile films by flow-induced chain extension and crystallization from solution
US5219501A (en) Process for the production of acrylic short fibers without spinning
US5389431A (en) Nonwoven fabric and process for producing same
JPS6233816A (en) Production of fibrillated fiber
KR940010313B1 (en) Spinless acryl staple fiber
KR970010734B1 (en) Process for the production of new acrylic short fibers
JPS6241311A (en) Improved polypropylene monofilament and production thereof
KR930011936B1 (en) Process for manufacturing aromatic polyamide staple
CH498169A (en) Acrylonitrile-styrene copolymers for film and fibre prodn.