JPH05106031A - Thin film forming equipment - Google Patents

Thin film forming equipment

Info

Publication number
JPH05106031A
JPH05106031A JP26790291A JP26790291A JPH05106031A JP H05106031 A JPH05106031 A JP H05106031A JP 26790291 A JP26790291 A JP 26790291A JP 26790291 A JP26790291 A JP 26790291A JP H05106031 A JPH05106031 A JP H05106031A
Authority
JP
Japan
Prior art keywords
grid
thin film
film forming
supply source
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26790291A
Other languages
Japanese (ja)
Inventor
Makoto Tanabe
誠 田辺
Makoto Tanaka
田中  誠
Wasaburo Ota
和三郎 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP26790291A priority Critical patent/JPH05106031A/en
Publication of JPH05106031A publication Critical patent/JPH05106031A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide thin film forming equipment capable of performing ion-species- selected film production and also capable of forming a thin film having high adhesive strength even on, e.g. a large-area substrate without heat resistance. CONSTITUTION:The equipment has a vacuum tank 11 where active gas and/or inert gas is introduced, a material supply source 1 arranged in the central part of the vacuum tank and uniformly emitting a material toward a substrate 10, a counter electrode 4 cylindrically disposed along the internal wall of the vacuum tank and holding the substrate, a grid 3 cylindrically arranged between the material supply source and the counter electrode, a filament 2 cylindrically disposed between the material supply source and the grid, a means 9 of providing positive potential to the grid with respect to the filament, means 6a-6d of generating magnetic field in the direction orthogonal to the direction of the electric field between the grid and the counter electrode, a means of controlling the intensity of the magnetic field, a means of providing positive potential to the material supply source with respect to the filament and heating the material supply source by means of electron bombardment, means 8, 9 of electric power source, and an electrically conducting means electrically connecting the inside of the vacuum tank to the means of electric power source.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜形成装置に関し、特
に、CVD法の長所である強い反応性と、PVD法の長
所である高真空中での製膜(高いエネルギー加速による
緻密な堅い膜が形成できる)とを同時に実現し、尚且
つ、アモルファスシリコンやダイヤモンドライクカーボ
ン膜などの生成に重要な基板面へのイオン種の選択的な
取り込みを大面積で可能とする、新規な薄膜形成装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film forming apparatus, and particularly to strong reactivity, which is an advantage of the CVD method, and film formation in a high vacuum, which is an advantage of the PVD method. A thin film forming apparatus that enables the selective formation of ionic species on the surface of a substrate, which is important for the formation of amorphous silicon or diamond-like carbon film, in a large area. Regarding

【0002】[0002]

【従来の技術】被薄膜形成基板(以下、基板という)上
に薄膜を形成する手段としては、従来、CVD法やPV
D法等を基にして種々のものが提案され、その方法も極
めて多岐にわたっている。しかし、従来の薄膜形成装置
にあっては、形成された膜の基板との密着性が弱かった
り、あるいは、耐熱性のない基板上への薄膜形成が困難
であったり、イオン種選択を元にした薄膜形成が困難で
あったりし、問題があった。そこで、本出願人は先に、
薄膜形成装置として、蒸発源と、基板を蒸発源に対向さ
せて保持する対向電極との間にグリッドを配し、グリッ
ドと蒸発源との間に熱電子発生用のフィラメントを配
し、グリッドをフィラメントに対して正電位にして薄膜
形成を行なう装置を提案した(特公平1−53351号
公報参照)。この装置では、蒸発源から蒸発した蒸発物
質は、先ず、フィラメントからの熱電子により、イオン
化される。このようにイオン化された蒸発物質がグリッ
ドを通過すると、グリッドから対電極に向かう電界の作
用により加速されて基板に衝突し、密着性の良い膜が形
成される。
2. Description of the Related Art As means for forming a thin film on a thin film forming substrate (hereinafter referred to as a substrate), there have been conventionally used a CVD method and a PV method.
Various methods have been proposed based on the D method and the like, and the methods are extremely diverse. However, in the conventional thin film forming apparatus, the adhesion of the formed film to the substrate is weak, or it is difficult to form the thin film on the substrate having no heat resistance. There is a problem that it is difficult to form the thin film. Therefore, the applicant first
As a thin film forming apparatus, a grid is arranged between an evaporation source and a counter electrode that holds a substrate so as to face the evaporation source, a filament for generating thermoelectrons is arranged between the grid and the evaporation source, and the grid is formed. An apparatus for forming a thin film with a positive potential applied to the filament has been proposed (see Japanese Patent Publication No. 1-53351). In this device, the evaporation material evaporated from the evaporation source is first ionized by thermoelectrons from the filament. When the ionized vaporized substance passes through the grid in this way, it is accelerated by the action of the electric field from the grid toward the counter electrode and collides with the substrate to form a film with good adhesion.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記薄
膜形成装置の場合においても、イオン種選択を元にした
薄膜形成が困難であり、特に、アモルファスシリコンや
ダイヤモンドライクカーボン等の製膜の際に有効な基板
に入射するイオン種の選択に対処しておらず、膜物性で
重要なsp3 結合の促進等が図れなかった。本発明は上
記事情に鑑みてなされたものであって、イオン種選択製
膜が可能で、且つ、基板に対して極めて強い密着性を持
った薄膜を形成でき、耐熱性の無い大面積プラスチック
等も基板として用いうることが可能となる、新規な薄膜
形成装置を提供することを目的とする。
However, even in the case of the above-mentioned thin film forming apparatus, it is difficult to form a thin film based on the selection of ion species, and it is particularly effective when forming a film of amorphous silicon or diamond-like carbon. The selection of the ion species incident on a different substrate was not dealt with, and promotion of sp 3 bonding, which is important for the physical properties of the film, could not be achieved. The present invention has been made in view of the above circumstances, and it is possible to form a film by ion species selection, form a thin film having extremely strong adhesion to a substrate, and a large area plastic without heat resistance, etc. It is an object of the present invention to provide a novel thin film forming apparatus that can be used as a substrate.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の薄膜形成装置は、活性ガスもしくは
不活性ガス、あるいは、これら両者の混合ガスが導入さ
れる真空槽と、上記真空槽内において、真空槽中心部に
配備され、放射ノズルが付加された被薄膜形成ガス材料
物質を基板に向け均一に放射する材料供給源、もしく
は、被薄膜形成個体材料物質を蒸気化し基板に向け均一
に放射する材料供給源と、真空槽内壁に沿って円筒状に
配備された、複数の被薄膜形成基板を保持する複数の平
板対電極、もしくは、単一円筒型対電極と、上記材料供
給源と上記対電極との間に円筒状に配備された材料物質
を通過させうるグリッドと、上記材料供給源と上記グリ
ッドとの間に円筒状に配備される熱電子発生用のフィラ
メントと、上記グリッドを上記フィラメントに対して正
電位とする手段と、上記グリッドと上記対電極との間に
発生する電界方向と直交する方向に磁界を発生させる磁
界生成手段(複数の電磁石もしくは永久磁石)と、上記
磁界の強度を制御せしめる手段と、上記材料供給源を上
記フィラメントに対して正電位にし、電子ボンバードに
よって材料供給源を加熱する手段と、上記真空槽内に所
定の電気的状態を実現するための電源手段と、上記真空
槽内と上記電源手段とを電気的に連結する導電手段とを
有し、上記材料供給源から放射状に材料物質を放出し、
放射方向の電界の強度と電界に対し直交する磁界の強度
を制御することによりイオン価数及び質量選択をせし
め、イオン種の選択製膜を可能とすることを特徴とす
る。
In order to achieve the above object, a thin film forming apparatus according to a first aspect of the present invention comprises a vacuum chamber into which an active gas or an inert gas or a mixed gas of both of them is introduced, and the above vacuum. Inside the chamber, a material supply source that is placed at the center of the vacuum chamber and has a radiation nozzle added to uniformly radiate the thin film forming gas material substance to the substrate, or vaporize the thin film forming solid material substance and direct it to the substrate Uniformly radiating material supply source, a plurality of flat plate counter electrodes holding a plurality of thin film forming substrates arranged in a cylindrical shape along the inner wall of the vacuum chamber, or a single cylindrical counter electrode, and the above material supply A grid capable of passing a cylindrically-arranged material substance between a source and the counter electrode; a filament for thermoelectron generation cylindrically arranged between the material supply source and the grid; Grit A positive potential with respect to the filament, a magnetic field generating means (a plurality of electromagnets or permanent magnets) for generating a magnetic field in a direction orthogonal to the electric field direction generated between the grid and the counter electrode, Means for controlling the strength of the magnetic field, means for heating the material supply source by electron bombardment to bring the material supply source to a positive potential with respect to the filament, and for realizing a predetermined electrical state in the vacuum chamber Power source means, having a conductive means for electrically connecting the inside of the vacuum chamber and the power source means, radially emits a material substance from the material supply source,
By controlling the intensity of the electric field in the radial direction and the intensity of the magnetic field orthogonal to the electric field, the ionic valence and the mass can be selected to enable selective film formation of ionic species.

【0005】また、請求項2記載の薄膜形成装置は、上
記薄膜形成装置において、グリッドと対電極との間に円
筒状の第二グリッドを設置し、グリッド−第二グリッド
間において発生する電界と直交するように磁界を加えイ
オン種の選択を可能にし、第二グリッド−対電極間でイ
オン種を基板面に加速せしめる方法を有することを特徴
とする。また、請求項3記載の薄膜形成装置は、上記薄
膜形成装置において、水素原子濃度を被薄膜形成基板に
高く供給せしめるため、熱フィラメントを用いた水素原
子銃を真空槽中心部に設置したことを特徴とする。ま
た、請求項4記載の薄膜形成装置は、上記薄膜形成装置
において、水素原子銃の放射口にノズルを設置し、ノズ
ル加速をせしめる方法を持つことを特徴とする。
According to a second aspect of the present invention, in the thin film forming apparatus, a cylindrical second grid is installed between the grid and the counter electrode, and an electric field generated between the grid and the second grid is applied. It is characterized by having a method of accelerating the ion species to the substrate surface between the second grid and the counter electrode by applying a magnetic field so as to be orthogonal to each other and enabling the selection of the ion species. Further, in the thin film forming apparatus according to claim 3, in the thin film forming apparatus, a hydrogen atom gun using a hot filament is installed in the center of the vacuum chamber in order to supply a high concentration of hydrogen atoms to the thin film forming substrate. Characterize. A thin film forming apparatus according to a fourth aspect of the present invention is characterized in that, in the thin film forming apparatus, a method is provided in which a nozzle is installed at a radiation port of a hydrogen atom gun to accelerate the nozzle.

【0006】[0006]

【作用】以下、本発明の薄膜形成装置の構成及び作用に
ついて詳細に説明する。請求項1記載の薄膜形成装置
は、上述したように、均一放射型のマルチノズル付き材
料ガス供給源もしくは蒸発源と、円筒状に配置された単
一型もしくは多角型の基板保持用対電極(以下、基板電
極と称す)と、材料供給源と基板電極との間に配備され
た円筒状な加速グリッドと、グリッドと材料ガス供給源
との間に配備された熱電子発生用の円筒状なフィラメン
トと、グリッドをフィラメントに対して正電位にせしめ
る電源手段と、導電手段と、加速グリッドと基板電極間
にかかる電界に直交する磁界を発生させる磁界生成手段
を有する。
The structure and operation of the thin film forming apparatus of the present invention will be described in detail below. The thin film forming apparatus according to claim 1 is, as described above, a uniform radiation type material gas supply source or evaporation source with a multi-nozzle, and a single type or polygonal type substrate holding counter electrode arranged in a cylindrical shape ( Hereinafter, referred to as a substrate electrode), a cylindrical acceleration grid arranged between the material supply source and the substrate electrode, and a cylindrical acceleration grid arranged between the grid and the material gas supply source for thermionic generation. It has a filament, a power supply means for making the grid a positive potential with respect to the filament, a conducting means, and a magnetic field generating means for generating a magnetic field orthogonal to the electric field applied between the acceleration grid and the substrate electrode.

【0007】真空槽は、その内部空間に活性ガス、ある
いは不活性ガス、もしくは、活性ガスと不活性ガスの混
合ガスを導入しうるようになっており、材料ガス供給源
と、基板電極と、グリッドと、フィラメントは真空槽内
に配備される。尚、磁界発生用の永久磁石または電磁石
は、真空槽内外のいずれに設置してもよいが、外付けの
場合、反応器壁材質は磁界を遮らないものを選ぶ必要が
ある。グリッドは、フィラメント部で解離された物質を
通過させうるものであって、材料ガス供給部と基板電極
の間に介設され、電源手段により、フィラメントに対し
正電位にされる。従って発生する電界はグリッドからフ
ィラメントに向かう。磁界生成手段の永久磁石もしくは
電磁石は、グリッドと基板電極間にかかる電界に直交す
るように磁界を発生すべく設置され、電界と磁界の相互
作用によりフィラメント部から通過してきたイオン種を
選択的に基板面に取り込むことを目的とする。
The vacuum chamber can introduce an active gas, an inert gas, or a mixed gas of an active gas and an inert gas into its internal space. The material gas supply source, the substrate electrode, and The grid and filament are placed in a vacuum chamber. The permanent magnet or electromagnet for generating a magnetic field may be installed inside or outside the vacuum chamber, but in the case of being externally attached, it is necessary to select a reactor wall material that does not block the magnetic field. The grid allows passage of the substance dissociated in the filament part, is interposed between the material gas supply part and the substrate electrode, and is made to have a positive potential with respect to the filament by the power supply means. Therefore, the electric field generated is directed from the grid to the filament. The permanent magnet or electromagnet of the magnetic field generation means is installed to generate a magnetic field so as to be orthogonal to the electric field applied between the grid and the substrate electrode, and selectively interacts with the magnetic field to selectively pass through the ion species passing through the filament portion. The purpose is to take in the substrate surface.

【0008】ここで、ダイヤモンドライクカーボンの製
膜を例に取ると、CH2 以下のイオンを除去するには、
質量mCH3 以下の質量を持つ荷電粒子とそれ以上の質量
を持つ荷電粒子を分けられればよく、半径r1 とr2
位置に設置された円筒状基板電極とグリッド間に下記の
式で与えられる電界Vを加えればよい。 V>{(eB2)/(8mCH3)}r1 2{1−(r2 2/r1 2)}2 ・・・(1) ここで、Bは電界Vに直交する方向にかけられた磁界で
ある。この式に表わされるように、電界か磁界、もしく
は、両方を制御することにより、イオン種の選択的通過
が可能になる。従って、基板表面での化学的表面反応の
促進という観点から重要な水素原子等は磁界・電界に影
響を受けずに基板に到達できる。
Here, taking a film of diamond-like carbon as an example, in order to remove ions of CH 2 or less,
It suffices to separate charged particles having a mass less than or equal to mass m CH3 and charged particles having a mass greater than m CH3 from the following formula between the cylindrical substrate electrodes installed at the positions of radii r 1 and r 2 and the grid. The applied electric field V may be applied. V> {(eB 2 ) / (8m CH3 )} r 1 2 {1- (r 2 2 / r 1 2 )} 2 (1) Here, B was applied in the direction orthogonal to the electric field V. It is a magnetic field. By controlling the electric field, the magnetic field, or both, as represented by this equation, selective passage of ionic species is possible. Therefore, hydrogen atoms and the like, which are important from the viewpoint of accelerating the chemical surface reaction on the substrate surface, can reach the substrate without being affected by the magnetic field and electric field.

【0009】フィラントは、熱電子発生用であり、材料
ガス供給源とグリッドの間に配備される。材料ガス供給
源は、ガス供給管に接続されたマルチノズル付きの空洞
筒、または、ガス供給管とは接続無しの蒸発源として、
カーボン、タンタル、タングステン、ボロンナイトライ
ド等で形成された坩堝状のものであり、内部で蒸発物質
を蒸気化して放出できるものである。電源手段は、真空
槽内に所定の電気的状態を実現するための手段であり、
この電源手段と真空槽内部が、導電手段により電気的に
連結される。
The fillant is for thermionic generation and is arranged between the source of material gas and the grid. The material gas supply source is a hollow cylinder with a multi-nozzle connected to the gas supply pipe, or as an evaporation source not connected to the gas supply pipe,
It is a crucible-shaped member formed of carbon, tantalum, tungsten, boron nitride, or the like, and is capable of vaporizing and releasing vaporized substances inside. The power supply means is a means for realizing a predetermined electric state in the vacuum chamber,
The power supply means and the inside of the vacuum chamber are electrically connected by a conductive means.

【0010】次に、請求項2の薄膜形成装置では、請求
項1の薄膜形成装置において、基板電極、グリッド、磁
石、フィラメントの構成に関して、円筒状に形成された
グリッドが真空槽中心から二箇所の距離にあり、これら
二つのグリッドと磁石で直交する電界と磁界を発生して
イオン種の選択的通過を促し、基板電極と基板電極に近
く位置するグリッドで選択されたイオン種の再加速をせ
しめる構成にする。この場合の電源手段は、真空槽中心
側のグリッドにはフィラメントに対し正電位になるよう
にし、基板電極側のグリッドは先のグリッド電位より低
くし、且つ、基板電極より高くなるように構成する。
Next, in the thin film forming apparatus of the second aspect, in the thin film forming apparatus of the first aspect, with respect to the structure of the substrate electrode, the grid, the magnet, and the filament, two grids formed in a cylindrical shape are located from the center of the vacuum chamber. These two grids and magnets generate orthogonal electric and magnetic fields to promote the selective passage of ion species, and to re-accelerate the ion species selected by the substrate electrode and the grid located near the substrate electrode. Use a strict configuration. In this case, the power supply means is configured such that the grid on the center side of the vacuum chamber has a positive potential with respect to the filament, and the grid on the substrate electrode side is lower than the previous grid potential and higher than the substrate electrode. ..

【0011】次に、請求項3の薄膜形成装置では、請求
項1、請求項2の薄膜形成装置において、水素ガス供給
源内に、真空槽内に供給する前に水素分子を原子化せし
める機能を持つ独立した水素原子供給機構を組み入れた
構成を持つ。また、請求項4の薄膜形成装置では、請求
項1、請求項2、請求項3の薄膜形成装置において、水
素原子供給機構において放出される水素原子流に加速を
与えるためのマルチ小孔ノズルを持つ。
Next, in the thin film forming apparatus of claim 3, in the thin film forming apparatus of claims 1 and 2, a function of atomizing hydrogen molecules in the hydrogen gas supply source before supplying the hydrogen gas into the vacuum chamber is provided. It has a configuration that incorporates an independent hydrogen atom supply mechanism. Further, in the thin film forming apparatus of claim 4, in the thin film forming apparatus of claim 1, claim 2, or claim 3, a multi-small-hole nozzle for accelerating the hydrogen atom flow released in the hydrogen atom supply mechanism is provided. To have.

【0012】[0012]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。 [実施例1]先ず、請求項1の一実施例を図1と図2に
示す。図1は薄膜形成装置の反応器12を上から見た平
面図であり、同図において、符号1は材料供給源(材料
ガス供給源もしくは蒸発源)であり、符号2は熱フィラ
メントであり、符号3は加速電極グリッドであり、符号
4は基板電極(対電極)であり、符号5は真空槽外壁で
ある。図2は薄膜形成装置の反応器12の側面断面図で
あり、符号1から5は図1と同様のものであり、符号6
a,6b,6c,6dは磁界を生成するための手段で永
久磁石もしくは電磁石であり、符号7は材料ガスを供給
する手段でガスラインと流量制御バルブであり、符号8
は熱フィラメント用の電源であり、符号9は加速電界を
生成するための電源であり、符号10は被薄膜形成基板
である。
Embodiments of the present invention will be described below with reference to the drawings. [Embodiment 1] First, an embodiment of claim 1 is shown in FIGS. FIG. 1 is a plan view of the reactor 12 of the thin film forming apparatus as seen from above, in which reference numeral 1 is a material supply source (material gas supply source or evaporation source), and reference numeral 2 is a hot filament. Reference numeral 3 is an accelerating electrode grid, reference numeral 4 is a substrate electrode (counter electrode), and reference numeral 5 is an outer wall of the vacuum chamber. 2 is a side sectional view of the reactor 12 of the thin film forming apparatus. Reference numerals 1 to 5 are the same as those in FIG.
Reference numerals a, 6b, 6c and 6d are means for generating a magnetic field and are permanent magnets or electromagnets. Reference numeral 7 is a means for supplying a material gas and is a gas line and a flow control valve.
Is a power supply for the hot filament, reference numeral 9 is a power supply for generating an accelerating electric field, and reference numeral 10 is a thin film formation substrate.

【0013】図1と図2の実施例では、基板装着のため
に反応器上部が取外し可能になっており、一体成形の側
部と下部へOリングを介して装着される。反応器内の真
空槽11は下部に設けられた排気口で排気ポンプと連結
されており、排気ポンプで高真空状態に排気できるよう
になっている。ここで、反応器12の上部取外しのた
め、符号7の流量制御バルブ部とフィラメント・グリッ
ド用の電源接続部は脱着式である。また、上記真空槽1
1内中央には、図2の符号1で示すようなマルチノズル
が付いた材料ガス供給源または蒸発源の放出部が設置さ
れる。フィラメント2とグリッド3と基板電極4は真空
槽11中心部から均等な距離に配備され、図示されない
方法でそれぞれ反応器下部に接続支持されている。図2
中、フィラメント2には交流電源8が接続されている
が、これは特に交流電源には限定されず、直流電源であ
っても良い。また、直流電源を使用する際にその極性は
限定されない。グリッドには直流電源9が使用される
が、その極性に関しては、グリッド3がフィラメント2
に対して正電位になるように電源は配置される。図2中
では、基板電極4に加えられる電位はフィラメント2と
同電位にしてあるが、特に限定はされず、任意のバイア
ス電位をかけても良い。
In the embodiment shown in FIGS. 1 and 2, the upper part of the reactor is detachable for mounting the substrate, and is mounted on the integrally formed side and lower parts through O-rings. The vacuum chamber 11 in the reactor is connected to an exhaust pump through an exhaust port provided in the lower part, and the exhaust pump can exhaust to a high vacuum state. Here, in order to remove the upper part of the reactor 12, the flow control valve part 7 and the power supply connection part for the filament grid are detachable. Also, the vacuum chamber 1
At the center of the inside of 1, there is installed a discharge part of the material gas supply source or evaporation source with a multi-nozzle as shown by reference numeral 1 in FIG. The filament 2, the grid 3, and the substrate electrode 4 are arranged at equal distances from the center of the vacuum chamber 11 and are connected and supported to the lower part of the reactor by a method not shown. Figure 2
An AC power supply 8 is connected to the filament 2, but this is not particularly limited to an AC power supply and may be a DC power supply. Further, the polarity is not limited when using the DC power supply. A DC power supply 9 is used for the grid, but with respect to its polarity, the grid 3
The power supply is arranged so as to have a positive potential with respect to. In FIG. 2, the potential applied to the substrate electrode 4 is the same as that of the filament 2. However, the potential is not particularly limited, and any bias potential may be applied.

【0014】この装置例では、基板電極4の電位をフィ
ラメント2の電位と同等にしており、グリッド3とフィ
ラメント2の間では拡散移動するプラズマが、また、グ
リッド3から基板電極4の間では安定なプラズマが発生
することが判明している(基板電極4に与える電位によ
って、この空間に発生するプラズマの状態は異なる)。
ここで、グリッド3と基板電極4間にかかる電界に直交
する磁界を磁界生成手段(永久磁石もしくは電磁石)6
を使い発生せしめる。そして、前記(1)式に則り電界強
度を電源9を制御することにより、イオン種の選択的な
基板面への取り込みが可能になる。
In this device example, the potential of the substrate electrode 4 is made equal to the potential of the filament 2, and plasma that diffuses and moves between the grid 3 and the filament 2 and stabilizes between the grid 3 and the substrate electrode 4. It is known that various plasmas are generated (the state of the plasma generated in this space varies depending on the potential applied to the substrate electrode 4).
Here, a magnetic field orthogonal to the electric field applied between the grid 3 and the substrate electrode 4 is generated by the magnetic field generating means (permanent magnet or electromagnet) 6
To generate. Then, by controlling the power source 9 to control the electric field strength according to the equation (1), the ion species can be selectively taken into the substrate surface.

【0015】[実施例2]次に、請求項1の別の実施例
を図3に示す。図3は薄膜形成装置の反応器12を上か
ら見た平面図であり、同図において、符号3と4で示さ
れるグリッドと基板電極は多角柱状に形成され、真空槽
11中心部から均等な距離に配備され、図示されない方
法でそれぞれ反応器下部に接続支持されている。ここで
多面体の角数は特に限定されない。尚、他の符号は、上
記実施例1中の符号が表わすものと同じである。また、
材料ガス供給系と電源系に関しても上記実施例1と同じ
構成である。実施例1では、基板電極4として単一型の
円筒状電極の採用により、大面積に渡り可撓性のあるプ
ラスチック基板材等への製膜が可能となるが、実施例2
では、多角柱状電極の採用で、多数の平板状基板に対し
て同時にイオン種選択製膜を可能にする。
[Embodiment 2] Next, another embodiment of claim 1 is shown in FIG. FIG. 3 is a plan view of the reactor 12 of the thin film forming apparatus as seen from above. In FIG. 3, the grids and substrate electrodes denoted by reference numerals 3 and 4 are formed in a polygonal column shape, and are even from the center of the vacuum chamber 11. They are arranged at a distance and are connected to and supported by the lower part of the reactor in a manner not shown. Here, the number of angles of the polyhedron is not particularly limited. The other reference numerals are the same as the reference numerals in the first embodiment. Also,
The material gas supply system and the power supply system are also the same as those in the first embodiment. In Example 1, by adopting a single-type cylindrical electrode as the substrate electrode 4, it is possible to form a film on a flexible plastic substrate material or the like over a large area.
Then, by adopting a polygonal columnar electrode, ion species selective film formation can be simultaneously performed on a large number of flat substrates.

【0016】[実施例3]次に、請求項2の実施例を図
4に示す。図4は薄膜形成装置の反応器12を上から見
た平面図であり、同図において、符号3aは第一加速電
極グリッドであり、符号3bは第二加速電極グリッドで
ある。また、符号4は基板電極である。グリッド3aと
グリッド3bでイオン選択電界域を生成し、グリッド3
bと基板電極で選択されたイオン種の再加速を行なう加
速電界を生成する。尚、図中、その他の符号のものは実
施例1と同様の構成部材である。この実施例3の構成で
は、選択されたイオン種を上記グリッド3bと基板電極
4間の加速電界で最加速することにより、基板面への入
射エネルギーを制御可能にする。
[Embodiment 3] Next, an embodiment of claim 2 is shown in FIG. FIG. 4 is a plan view of the reactor 12 of the thin film forming apparatus as seen from above, in which the reference numeral 3a is a first accelerating electrode grid and the reference numeral 3b is a second accelerating electrode grid. Reference numeral 4 is a substrate electrode. The grid 3a and the grid 3b generate an ion selective electric field region, and the grid 3
An accelerating electric field for re-accelerating the ion species selected by b and the substrate electrode is generated. In the drawing, other reference numerals are the same constituent members as in the first embodiment. In the structure of the third embodiment, the incident energy on the substrate surface can be controlled by maximally accelerating the selected ion species with the acceleration electric field between the grid 3b and the substrate electrode 4.

【0017】次に、請求項3の実施例は図示しないが、
この請求項3の装置構成は、上記実施例1,2,3に表
現される装置構成に加えて、独立した水素原子供給部
に、水素原子流を加速するためのマルチ小孔ノズルを装
備するものである。また、請求項4の実施例も図示しな
いが、この請求項4の装置構成は、上記実施例1,2,
3に表現される装置構成に加えて、材料ガスの供給部
に、水素原子を多量に生成・供給ができる熱フィラメン
トと加速電界グリッドを独立に持つ水素原子銃を装備す
るものである。これらの実施により、基板表面での化学
反応を促進する上で重要な水素原子を任意の量で基板面
に取り込むことが可能となる。
Next, although the embodiment of claim 3 is not shown,
According to the apparatus configuration of claim 3, in addition to the apparatus configurations represented in the above-described Examples 1, 2, and 3, an independent hydrogen atom supply unit is equipped with a multi-small-hole nozzle for accelerating a hydrogen atom flow. It is a thing. Although the embodiment of claim 4 is not shown, the device configuration of claim 4 is the same as that of the above-mentioned embodiments 1, 2,
In addition to the apparatus configuration represented in 3, the material gas supply unit is equipped with a hydrogen atom gun that independently has a hot filament and an accelerating electric field grid that can generate and supply a large amount of hydrogen atoms. By implementing these, it becomes possible to take in an arbitrary amount of hydrogen atoms, which are important for promoting the chemical reaction on the surface of the substrate, into the surface of the substrate.

【0018】[0018]

【発明の効果】以上説明したように、本発明の薄膜形成
装置によれば、水素原子を介した基板表面での化学反応
性を必要とする製膜、基板への入射物質のイオン価数・
質量による選択を必要とする製膜において、材料物質及
び導入ガスのイオン化、電界加速により高いエネルギー
を電気的に与えられる(高電子・イオン温度)ので、基
板を加熱せしめ反応を促進するための熱エネルギーを与
えずに製膜を実現でき、低温での選択製膜が可能とな
る。従って、本発明の薄膜形成装置によれば、イオン種
選択製膜が可能で、且つ、基板に対して極めて強い密着
性を持った薄膜を形成でき、耐熱性の無い大面積プラス
チック等も基板として用いうることが可能となる。ま
た、本発明の薄膜形成装置によれば、複数の大面積基板
上に、イオン種の選択製膜において、密着性良く化学量
論的組成により近い状態で、均一な膜厚、均一な物性を
有する薄膜を作成することができるため、大量生産にも
十分対応することができる。
As described above, according to the thin film forming apparatus of the present invention, film formation requiring chemical reactivity on the surface of the substrate via hydrogen atoms, and ionic valency of incident substance on the substrate
In film formation that requires selection by mass, high energy can be electrically given by ionization of material and introduced gas and electric field acceleration (high electron / ion temperature), so heat to accelerate the reaction by heating the substrate. Film formation can be realized without giving energy, and selective film formation at low temperature becomes possible. Therefore, according to the thin film forming apparatus of the present invention, ion species selective film formation is possible, and a thin film having extremely strong adhesion to a substrate can be formed, and large area plastics having no heat resistance can be used as a substrate. It can be used. Further, according to the thin film forming apparatus of the present invention, a uniform film thickness and a uniform physical property can be obtained on a plurality of large area substrates in the selective film formation of ionic species with good adhesion and close to a stoichiometric composition. Since the thin film can be formed, it can be sufficiently applied to mass production.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1記載の発明の一実施例を示す図であっ
て、薄膜形成装置の反応器を上から見た平面図である。
FIG. 1 is a view showing an embodiment of the invention according to claim 1, and is a plan view of a reactor of a thin film forming apparatus as seen from above.

【図2】請求項1記載の発明の一実施例を示す図であっ
て、薄膜形成装置の反応器の側面断面図である。
FIG. 2 is a view showing an embodiment of the invention described in claim 1, and is a side sectional view of a reactor of a thin film forming apparatus.

【図3】請求項1記載の発明の別の実施例を示す図であ
って、薄膜形成装置の反応器を上から見た平面図であ
る。
FIG. 3 is a view showing another embodiment of the invention according to claim 1, and is a plan view of the reactor of the thin film forming apparatus as seen from above.

【図4】請求項2記載の発明の一実施例を示す図であっ
て、薄膜形成装置の反応器を上から見た平面図である。
FIG. 4 is a view showing an embodiment of the invention described in claim 2, and is a plan view of the reactor of the thin film forming apparatus as seen from above.

【符号の説明】[Explanation of symbols]

1・・・材料供給源(材料ガス供給源もしくは蒸発源) 2・・・フィラメント 3・・・グリッド 3a・・・第一グリッド 3b・・・第二グリッド 4・・・対電極(基板電極) 5・・・真空槽外壁 6a,6b,6c,6d・・・磁界生成手段(永久磁石
もしくは電磁石) 7・・・材料ガス供給手段 8・・・グリッド用電源 9・・・フィラメント用電源 10・・・被薄膜形成基板 11・・・真空槽 12・・・反応器
1 ... Material supply source (material gas supply source or evaporation source) 2 ... Filament 3 ... Grid 3a ... First grid 3b ... Second grid 4 ... Counter electrode (substrate electrode) 5 ... Outer wall of vacuum chamber 6a, 6b, 6c, 6d ... Magnetic field generating means (permanent magnet or electromagnet) 7 ... Material gas supplying means 8 ... Grid power supply 9 ... Filament power supply 10. ..Substrate on which thin film is formed 11 ... Vacuum tank 12 ... Reactor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】活性ガスもしくは不活性ガス、あるいは、
これら両者の混合ガスが導入される真空槽と、 上記真空槽内において、真空槽中心部に配備され、放射
ノズルが付加された被薄膜形成ガス材料物質を基板に向
け均一に放射する材料供給源、もしくは、被薄膜形成個
体材料物質を蒸気化し基板に向け均一に放射する材料供
給源と、 真空槽内壁に沿って円筒状に配備された、複数の被薄膜
形成基板を保持する複数の平板対電極、もしくは、単一
円筒型対電極と、 上記材料供給源と上記対電極との間に円筒状に配備され
た材料物質を通過させうるグリッドと、 上記材料供給源と上記グリッドとの間に円筒状に配備さ
れる熱電子発生用のフィラメントと、 上記グリッドを上記フィラメントに対して正電位とする
手段と、 上記グリッドと上記対電極との間に発生する電界方向と
直交する方向に磁界を発生させる磁界生成手段(複数の
電磁石もしくは永久磁石)と、 上記磁界の強度を制御せしめる手段と、 上記材料供給源を上記フィラメントに対して正電位に
し、電子ボンバードによって材料供給源を加熱する手段
と、 上記真空槽内に所定の電気的状態を実現するための電源
手段と、 上記真空槽内と上記電源手段とを電気的に連結する導電
手段とを有し、 上記材料供給源から放射状に材料物質を放出し、放射方
向の電界の強度と電界に対し直交する磁界の強度を制御
することによりイオン価数及び質量選択をせしめ、イオ
ン種の選択製膜を可能とすることを特徴とする薄膜形成
装置。
1. An active gas or an inert gas, or
A vacuum tank into which a mixed gas of these two is introduced, and a material supply source which is provided in the center of the vacuum tank in the vacuum tank and which is provided with a radiation nozzle to uniformly radiate a thin film forming gas material substance toward a substrate. Alternatively, a material supply source that vaporizes a solid material to be thin film-formed and uniformly radiates it toward the substrate, and a plurality of flat plate pairs that hold a plurality of thin-film-formed substrates arranged in a cylindrical shape along the inner wall of the vacuum chamber. An electrode or a single cylindrical counter electrode; a grid, which is arranged between the material supply source and the counter electrode and allows material to pass therethrough; and a grid between the material supply source and the grid A filament for thermoelectron generation arranged in a cylindrical shape, a means for making the grid a positive potential with respect to the filament, and a magnetic field in a direction orthogonal to an electric field direction generated between the grid and the counter electrode. Magnetic field generating means (a plurality of electromagnets or permanent magnets) to be generated, means for controlling the strength of the magnetic field, and means for heating the material supply source by electron bombardment by setting the material supply source to a positive potential with respect to the filament. A power source means for realizing a predetermined electric state in the vacuum chamber, and a conductive means for electrically connecting the vacuum chamber and the power source means, and the material is radially supplied from the material supply source. A thin film characterized by emitting a substance and controlling the strength of an electric field in the radial direction and the strength of a magnetic field orthogonal to the electric field so that ionic valence and mass can be selected to enable selective film formation of ionic species. Forming equipment.
【請求項2】請求項1記載の薄膜形成装置において、グ
リッドと対電極との間に円筒状の第二グリッドを設置
し、グリッド−第二グリッド間において発生する電界と
直交するように磁界を加えイオン種の選択を可能にし、
第二グリッド−対電極間でイオン種を基板面に加速せし
める方法を有することを特徴とする薄膜形成装置。
2. The thin film forming apparatus according to claim 1, wherein a cylindrical second grid is provided between the grid and the counter electrode, and a magnetic field is applied so as to be orthogonal to an electric field generated between the grid and the second grid. Allows selection of additional ion species,
A thin film forming apparatus comprising a method of accelerating ion species to a substrate surface between a second grid and a counter electrode.
【請求項3】請求項1、請求項2記載の薄膜形成装置に
おいて、水素原子濃度を被薄膜形成基板に高く供給せし
めるため、熱フィラメントを用いた水素原子銃を真空槽
中心部に設置したことを特徴とする薄膜形成装置。
3. The thin film forming apparatus according to claim 1, wherein a hydrogen atom gun using a hot filament is installed in the center of the vacuum chamber in order to supply a high concentration of hydrogen atoms to the thin film forming substrate. A thin film forming apparatus.
【請求項4】請求項1、請求項2、請求項3記載の薄膜
形成装置において、水素原子銃の放射口にノズルを設置
し、ノズル加速をせしめる方法を持つことを特徴とする
薄膜形成装置。
4. The thin film forming apparatus according to claim 1, 2, or 3, wherein the thin film forming apparatus has a method of accelerating the nozzle by installing a nozzle at a radiation port of a hydrogen atom gun. ..
JP26790291A 1991-10-16 1991-10-16 Thin film forming equipment Pending JPH05106031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26790291A JPH05106031A (en) 1991-10-16 1991-10-16 Thin film forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26790291A JPH05106031A (en) 1991-10-16 1991-10-16 Thin film forming equipment

Publications (1)

Publication Number Publication Date
JPH05106031A true JPH05106031A (en) 1993-04-27

Family

ID=17451211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26790291A Pending JPH05106031A (en) 1991-10-16 1991-10-16 Thin film forming equipment

Country Status (1)

Country Link
JP (1) JPH05106031A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048261A1 (en) * 2022-08-29 2024-03-07 株式会社神戸製鋼所 Ion bombardment device and ion bombardment processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048261A1 (en) * 2022-08-29 2024-03-07 株式会社神戸製鋼所 Ion bombardment device and ion bombardment processing method

Similar Documents

Publication Publication Date Title
CA1308689C (en) Method and apparatus for forming a thin film
JP4097695B2 (en) Parallel ion optical element and high current low energy ion beam device
KR20010113928A (en) Magnetron negative ion sputter source
JPH05331640A (en) Vapor deposition device by ionization
JPH05106031A (en) Thin film forming equipment
JP2843125B2 (en) Thin film forming equipment
JPS63472A (en) Vacuum device for forming film
JP2526182B2 (en) Method and apparatus for forming compound thin film
JP2843126B2 (en) Thin film forming equipment
JP3833284B2 (en) Thin film forming equipment
JP2774541B2 (en) Thin film forming equipment
JPH0375360A (en) Thin film forming device
JPH0377870B2 (en)
JPH04165065A (en) Thin film forming device
KR20040088650A (en) A apparatus for synthesis of thin films
JPH01180971A (en) Thin film forming device
JP3174313B2 (en) Thin film forming equipment
JPH01177366A (en) Thin film forming device
JPH04154962A (en) Thin film forming device
JPS63282257A (en) Ion plating device
JPH0559539A (en) Ion plating device
JPH01180972A (en) Thin film forming device
JP2005036252A (en) Ion plating system
JPH01177365A (en) Thin film forming device
JPH03153866A (en) Thin film forming device