JPH05105593A - Single crystal of lithium tantalate and optical element - Google Patents

Single crystal of lithium tantalate and optical element

Info

Publication number
JPH05105593A
JPH05105593A JP27364091A JP27364091A JPH05105593A JP H05105593 A JPH05105593 A JP H05105593A JP 27364091 A JP27364091 A JP 27364091A JP 27364091 A JP27364091 A JP 27364091A JP H05105593 A JPH05105593 A JP H05105593A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
optical
lithium tantalate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27364091A
Other languages
Japanese (ja)
Inventor
Yasunori Furukawa
保典 古川
Masazumi Sato
正純 佐藤
Fumio Nitanda
文雄 二反田
Kohei Ito
康平 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP27364091A priority Critical patent/JPH05105593A/en
Publication of JPH05105593A publication Critical patent/JPH05105593A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain single crystal of lithium tantalate having excellent light damage resistance characteristics and to improve stability of SHG element and characteristics in rise of output by using the single crystal of lithium tantalate as a substrate for optical element utilizing short wavelength light and by taking advantage of a high nonlinear optical coefficient of the single crystal. CONSTITUTION:The objective single crystal of lithium tantalate has improved light damage resistance characteristics by adding <=10 atom % element of group IIB, IIIA and IIIB of the periodic table, and a strong light element using the single crystal is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ光を使用する情
報処理分野あるいは光応用計測制御および通信分野に利
用する単結晶に関するものであり、特には耐光損傷特性
に優れたタンタル酸リチウム単結晶およびこれを用いた
光素子に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal used in the field of information processing using laser light or in the field of optical measurement control and communication, and particularly to a lithium tantalate single crystal excellent in light damage resistance. And an optical element using the same.

【0002】[0002]

【従来の技術】タンタル酸リチウム単結晶は融点約16
50℃、キュリー温度約600℃の強誘電体結晶で、通
常還元雰囲気中もしくは酸素を含む還元雰囲気中でイリ
ジウム坩堝を用い、融液からチョクラルスキー法により
育成されている。育成された単結晶は多分域状態である
ので、結晶温度をキュリー温度以上に保ち大気中もしく
は酸素雰囲気中で、電界印加徐冷法により単一分域化処
理が行われる。この後、結晶はウエハ状に加工され表面
弾性波素子用の基板として大量に用いられている。タン
タル酸リチウム結晶は、比較的安価で大口径の結晶が育
成可能で、無機酸化物単結晶のなかでは比較的大きな非
線形光学定数を持つ。ニオブ酸リチウム単結晶よりも耐
光損傷特性に優れる特徴を有していることが従来から知
られていたが、定量的なデ−タは報告されていない。ま
た、育成した結晶をキュリー温度近傍で単一分域化する
電界焼鈍法によって結晶の耐光損傷特性が向上するとの
報告がされている(ジャーナル・オブ・アプライド・フ
ィジクス誌38巻3109ページ(1967年))。近
年、低損失な光導波路がプロトン交換法により形成可能
なことが報告されて以来、光導波路に基本波を挿入し擬
位相整合方式により第二高調波を発生する波長変換素子
の基板材料としてタンタル酸リチウム単結晶が注目され
てきた。
2. Description of the Related Art A single crystal of lithium tantalate has a melting point of about 16
It is a ferroelectric crystal having a Curie temperature of 50 ° C. and a Curie temperature of about 600 ° C., and is usually grown from the melt by the Czochralski method using an iridium crucible in a reducing atmosphere or a reducing atmosphere containing oxygen. Since the grown single crystal is in a multi-domain state, it is subjected to a single domainization treatment by an electric field applied gradual cooling method in the air or an oxygen atmosphere while keeping the crystal temperature at the Curie temperature or higher. After that, the crystal is processed into a wafer and used in large quantities as a substrate for a surface acoustic wave device. Lithium tantalate crystals are relatively inexpensive and can grow large diameter crystals, and have relatively large nonlinear optical constants among inorganic oxide single crystals. It has been conventionally known that the lithium niobate single crystal is superior in light damage resistance, but no quantitative data has been reported. Further, it has been reported that the optical damage resistance of the crystal is improved by an electric field annealing method in which the grown crystal is single-domained near the Curie temperature (Journal of Applied Physics, Vol. 38, page 3109 (1967). )). Since it was recently reported that a low loss optical waveguide can be formed by the proton exchange method, tantalum has been used as a substrate material for a wavelength conversion element that inserts a fundamental wave into the optical waveguide and generates a second harmonic by the quasi-phase matching method. Lithium oxide single crystals have received attention.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術により製
造されたタンタル酸リチウム単結晶の耐光損傷強度はニ
オブ酸リチウム単結晶のそれよりも大きいと言われてい
たが、必ずしもそうではなく、波長変換素子の光学用途
の実用に際しては光損傷が発生し、これが実用化を妨げ
る大きな問題となっている。ここで言う光損傷とは、レ
ーザ光入射により結晶の屈折率が局所的に変化する現象
で光誘起屈折率変化と呼ばれるものである。この光損傷
の発生原因は結晶内に含まれる遷移金属の不純物による
ものとされており、特に結晶内のFeイオンの原子価の
変化によりその現象が説明されている。 すなわち結晶
のZ軸(光学軸)に並行でない方向に光を入射した際
に、光の照射部内の光強度の強い部分に存在するFe2+
イオンが励起されて電子を放出しFe3+に変わる。この
ようにして発生した電子は、結晶内の非照射部もしくは
照射の弱い領域内にある他のFe3+によって一般に捕獲
され、このようなイオンはFe2+に変えられてしまう。
このような現象による全体的効果は、Fe2+イオンの分
布の変化として現れ、その結果、結晶自身のもつ電気光
学効果を介しての局所的屈折率分布の不均一性として現
れる。結晶を光変調器や波長変換素子等の光学用途の基
板として用いるときには、このような光照射部の屈折率
変化により素子が安定に動作しないことや、本来結晶が
有している特性を十分生かしきれないという非常に大き
な問題が生じる。この光損傷は使用する光波長が短波長
であるほど顕著になるので、短波長の光を用いる素子用
途ほど光損傷の問題が大きくなる。この光損傷はニオブ
酸リチウム単結晶で特に顕著に発生し、タンタル酸リチ
ウム単結晶の耐光損傷強度はニオブ酸リチウム単結晶の
それに比べて強いと言われていた。これまでタンタル酸
リチウム単結晶は表面波弾性波素子用途に用いられてお
り、これらの用途においては、結晶内に含まれるサブグ
レインバウンダリーや遷移金属不純物などが多く含まれ
ているが素子特性には大きな問題をもたらしていなかっ
た。しかし、光学用途においては光損傷の発生により素
子特性の不安定動作やサブグレインバウンダリー部で光
が散乱されるなどの問題がある。また、タンタル酸リチ
ウムの耐光損傷性はニオブ酸リチウム単結晶の耐光損傷
性とほぼ同程度であるという問題点もある。さらに、鉄
などの遷移金属不純物量を低減したり、育成結晶の熱処
理による酸化処理によっても耐光損傷性は改善されるも
のの光学素子応用には不十分であるという問題点もあ
る。上述のごとく光損傷の発生の主原因は結晶中に含ま
れる選移金属不純物、特にFe不純物濃度であると言わ
れているので、これを例えば1ppm以下に低減すると
確かに耐光損傷特性が向上する効果はあるものの、完全
には除去する事は困難である。その理由は、酸化物単結
晶育成においては、購入可能な原料の純度は4N〜5N
程度であり、またルツボ材や炉内の耐火保温材等から育
成結晶への不純物取り込みもあるので半導体並みに高純
度化する事は不可能である為、不純物の低減にも限界が
あるからである。また、従来、耐光損傷強度の向上に有
効であると言われていた電界焼鈍法によっても、使用す
る素子のパワー密度が大きくなると光損傷が発生し、十
分ではなかった。このため短波長光を用いる素子用途に
おいてはこれまで耐光損傷強度を十分に満足する結晶は
得られないという問題点があった。本発明は、上述した
如き従来のタンタル酸リチウム単結晶の光損傷の問題を
解決すべくなされたものであって、2b,3a,3b元
素を添加することにより耐光損傷特性に優れたタンタル
酸リチウム単結晶を提供し、さらにレーザー光源からの
出射光を基本波として非線形光学結晶への通過により第
二高調波を発生するSHG素子、または、レーザー光源
からの出射光を電気光学結晶へ入射し電気光学効果によ
り光の強度・位相を制御する光変調素子にこの単結晶を
基板として用い、光素子を安定に作製、動作させんとす
るものである。
It has been said that the light damage resistance of the lithium tantalate single crystal produced by the above-mentioned conventional technique is higher than that of the lithium niobate single crystal, but this is not always the case and the wavelength conversion. When the device is used for optical applications, optical damage occurs, which is a serious problem that hinders its practical use. The optical damage referred to here is a phenomenon in which the refractive index of the crystal locally changes due to the incidence of laser light, and is called light-induced refractive index change. The cause of this optical damage is said to be due to impurities of the transition metal contained in the crystal, and the phenomenon is explained especially by the change in the valence of Fe ions in the crystal. That is, when light is incident in a direction that is not parallel to the Z axis (optical axis) of the crystal, Fe 2+ existing in the portion where the light intensity is strong in the light irradiation portion
Ions are excited to emit electrons and change to Fe 3+ . The electrons thus generated are generally trapped by other Fe 3+ in the non-irradiated part of the crystal or in the weakly irradiated region, and such ions are converted into Fe 2+ .
The overall effect due to such a phenomenon appears as a change in the distribution of Fe 2+ ions, and as a result, it appears as a non-uniformity in the local refractive index distribution due to the electro-optic effect of the crystal itself. When a crystal is used as a substrate for optical applications such as an optical modulator or a wavelength conversion element, the element does not operate stably due to such a change in the refractive index of the light irradiation part, and the characteristics originally possessed by the crystal are fully utilized. There is a very big problem of being unable to finish. This optical damage becomes more remarkable as the wavelength of light used becomes shorter, and therefore the problem of optical damage becomes more serious in device applications using light of shorter wavelength. It is said that this photodamage occurs remarkably in the lithium niobate single crystal, and the light damage resistance strength of the lithium tantalate single crystal is stronger than that of the lithium niobate single crystal. So far, lithium tantalate single crystals have been used for surface acoustic wave device applications, and in these applications, a lot of subgrain boundaries and transition metal impurities contained in the crystal are included Did not pose a big problem. However, in optical applications, there are problems such as unstable operation of element characteristics due to occurrence of optical damage and light scattering at the subgrain boundary. There is also a problem that the light damage resistance of lithium tantalate is almost the same as the light damage resistance of the lithium niobate single crystal. Further, although the light damage resistance is improved by reducing the amount of transition metal impurities such as iron and the oxidation treatment by heat treatment of the grown crystal, there is a problem that it is insufficient for optical element application. As described above, it is said that the main cause of the occurrence of optical damage is the concentration of the selective metal impurities contained in the crystal, especially the Fe impurity concentration. Therefore, if it is reduced to, for example, 1 ppm or less, the optical damage resistance is certainly improved. Although effective, it is difficult to remove completely. The reason is that in the growth of oxide single crystals, the purity of the raw material that can be purchased is 4N to 5N.
Since it is not possible to purify it to the same level as semiconductors because impurities are taken into the grown crystal from the crucible material and the refractory heat insulating material in the furnace, there is a limit to the reduction of impurities. is there. Further, even by the electric field annealing method which has been conventionally said to be effective in improving the light damage resistance strength, optical damage occurs when the power density of the element used is increased, which is not sufficient. For this reason, there has been a problem that a crystal that sufficiently satisfies the light damage resistance strength cannot be obtained in the device application using short wavelength light. The present invention has been made to solve the problem of optical damage of the conventional lithium tantalate single crystal as described above, and by adding the elements 2b, 3a, and 3b, lithium tantalate excellent in the optical damage resistance is provided. SHG element that provides a single crystal and generates the second harmonic by passing the light emitted from the laser light source to the non-linear optical crystal as the fundamental wave, or the light emitted from the laser light source is incident on the electro-optical crystal to generate electricity. This single crystal is used as a substrate for an optical modulation element that controls the intensity and phase of light by the optical effect, and the optical element is manufactured and operated stably.

【0004】[0004]

【課題を解決するための手段】上記目的の達成のため
に、本発明者は、タンタル酸リチウム単結晶の耐光損傷
特性を向上させるために、2b,3a,3b元素を含ま
せてタンタル酸リチウム単結晶を育成するという手段を
採用した。本発明によるタンタル酸リチウム単結晶の耐
光損傷強度が大幅に向上する理由はまだ明かではない
が、下記のような理由が考えられる。すなわち、タンタ
ル酸リチウム単結晶に2b,3a,3b元素を添加する
と、これらの元素は結晶中に浅い不純物レベルを形成す
る。結晶中へ光が入射されるとこれら不純物準位から電
子が励起され、結晶の光伝導度が大きくなることが耐光
損傷強度向上の原因であり、結晶中への光照射により励
起されたFe2+の正孔とFe3+の電子により作られる内
部電界が、大きな光伝導度によりシールドまたは弱めら
れることがその主要因であると考えられる。また、本発
明者は、これまで光損傷により動作不安定であった素子
の諸特性を改善するため、得られたタンタル酸リチウム
単結晶をウエハまたはブロック状に加工し、各種光素子
の基板として用い、光素子を作成した。上記の構成によ
り、結晶の耐光損傷強度を大幅に改善することができ、
さらに得られた結晶は、耐光損傷強度および均質性が向
上しているので特に短波長光を用いる波長変換素子、光
変調器、光偏向器などの種々の光学素子を安定に動作さ
せることが可能である。2b,3a,3b元素の添加量
は原子百分比で10%以下が好ましい。本発明におい
て、2b,3a,3b元素の添加は耐光損傷の向上とい
う点では効果があるものの、10at%以上添加した場
合は、結晶の品質が悪くなるためか、耐光損傷がかえっ
て低下してしまう。また、本発明において前記2b,3
a,3b元素の2種以上の複合添加は、各々の分配係数
の違いに注意を払いつつ配合比を工夫することに依って
相乗効果が期待できる。本発明を実施するに当たって単
結晶育成の手段に限定はなく、通常はチョクラルスキー
法によるのが一般的で、場合によってはブリッジマン
法,フローティングゾーン法やファイバーペディスタル
法により育成することも可能である。本発明において、
融液を収容する二重ルツボと、前記二重ルツボの外周に
設けられた加熱手段と、前記二重ルツボ内の融液に種結
晶を接触させ前記種結晶を引き上げて単結晶を得る手段
からなるタンタル酸リチウム単結晶の製造装置を用いる
と、均質で大型の単結晶を育成することが容易となる。
また原料としてのLi2CO3とTa25の配合比は通常
のコングルエント組成が、高品質単結晶が得られ易いた
めに単結晶育成の面からみると望ましいが、素子用途に
よっては単結晶基板の屈折率を変えたものが必要とされ
ることもある。このような場合にはLi2CO3とTa2
5の配合比を変えることにより所望の単結晶基板が得
られる。なお、該元素の添加は混合時に行うのが原料均
一化の上で望ましいが、また原料融体中に添加してもよ
い。
In order to achieve the above object, the present inventor has added lithium tantalate containing 2b, 3a and 3b elements in order to improve the light damage resistance of lithium tantalate single crystal. The means of growing a single crystal was adopted. The reason why the light damage resistance of the lithium tantalate single crystal according to the present invention is significantly improved is not clear yet, but the following reasons can be considered. That is, when elements 2b, 3a, 3b are added to a lithium tantalate single crystal, these elements form shallow impurity levels in the crystal. When light enters the crystal, electrons are excited from these impurity levels, and the photoconductivity of the crystal increases, which is the cause of improving the light damage resistance strength. Fe 2 excited by light irradiation into the crystal an internal electric field created by the holes and Fe 3+ of electrons + is, be shielded or weakened by a large photoconductivity believed that the main cause. Further, the present inventor has processed the obtained lithium tantalate single crystal into a wafer or a block in order to improve various characteristics of an element which has been unstable in operation due to optical damage, and used as a substrate for various optical elements. An optical device was prepared by using. With the above structure, the light damage resistance of the crystal can be significantly improved,
Furthermore, since the obtained crystal has improved light damage resistance and homogeneity, it is possible to stably operate various optical elements such as wavelength conversion elements, optical modulators, and optical deflectors that use short wavelength light. Is. The addition amount of the elements 2b, 3a and 3b is preferably 10% or less in terms of atomic percentage. In the present invention, the addition of the elements 2b, 3a and 3b is effective in improving the light damage resistance, but when 10 at% or more is added, the light damage resistance is rather lowered, probably because the crystal quality is deteriorated. .. Further, in the present invention, the above 2b, 3
The combined addition of two or more kinds of elements a and 3b can be expected to have a synergistic effect by paying attention to the difference in the distribution coefficient of each element and devising the mixing ratio. In carrying out the present invention, the means for growing a single crystal is not limited, and it is generally the Czochralski method, and in some cases, the Bridgman method, the floating zone method or the fiber pedestal method can also be used for the growth. is there. In the present invention,
A double crucible containing a melt, a heating means provided on the outer periphery of the double crucible, and a means for obtaining a single crystal by pulling the seed crystal by bringing a seed crystal into contact with the melt in the double crucible. Using the lithium tantalate single crystal manufacturing apparatus as described above, it becomes easy to grow a homogeneous and large single crystal.
The compounding ratio of Li 2 CO 3 and Ta 2 0 5 as a raw material is generally congruent composition, is desirable when viewed from the plane of the single crystal growth to easily high-quality single crystals were obtained, the single crystal by the element application A different substrate refractive index may be needed. In such a case, Li 2 CO 3 and Ta 2
A desired single crystal substrate can be obtained by changing the compounding ratio of O 5 . It is desirable to add the element at the time of mixing in order to make the raw material uniform, but it may be added to the raw material melt.

【0005】[0005]

【実施例】以下、実施例に基づいて本発明をより詳細に
説明する。 (実施例1)試料を次の作製法により作成した。まず、
直径100mm深さ120mmのイリジウムで作られた
ルツボ内に5kgのLiTaO3の原料粉(育成に用い
た原料は純度4NのLi2O,Ta25)に2b(純度
3N〜4NのZn,Cd,Hgの粉末),3a(純度3
N〜4NのSc,Y,ランタノイドの粉末),3b(純
度3N〜4NのB,Al,Ga,In,Tlの粉末)元
素を添加して溶解して融液を作り、その後シード付けを
行い、所定の方位に約3日間で、2インチの単結晶をチ
ョクラルスキ法により育成した。この時の育成速度は2
〜4mm/h、回転速度は10〜30rpmである。つ
ぎに、上記方法により育成した結晶体を単一分域化処理
を行った。結晶を結晶と非反応性の導電性粉末を介し
て、結晶のZ軸方向に対向するように例えばPt電極板
を設け、電気炉内に挿入して単一分域化処理を行う。そ
の後、それぞれの結晶から各稜がx軸方位,y軸方位,
およびz軸方位に平行な10×10×10mm3,の正方形
ブロックを切り出し、その各面を鏡面研磨した。あるい
はそれぞれの結晶から2インチのウエハを作成した。こ
れらウエハ中の各添加元素の含有量は5at%であっ
た。このようにしてタンタル酸リチウム単結晶を準備
し、耐光損傷強度の強度向上について調べた。耐光損傷
強度は2種類の測定法により行った。一つの測定法は結
晶中もしくは光導波路中に波長0.488μmのアルゴ
ンレーザーを入力し、その入出力特性を評価した。光損
傷が発生しなければ入出力特性は直線上に乗るが、光損
傷が発生すると結晶を通過した後の出力ビームがスポッ
ト状から変形するので光損傷を検出することができる。
この種々の結晶を用い出射光ビーム形状が変形しはじめ
るレーザーパワーをその結晶の光損傷閾値として求めそ
の結果を表1に示した。
The present invention will be described in more detail based on the following examples. (Example 1) A sample was prepared by the following manufacturing method. First,
In a crucible made of iridium having a diameter of 100 mm and a depth of 120 mm, 5 kg of LiTaO 3 raw material powder (the raw material used for the growth was 4 N purity of Li 2 O and Ta 2 O 5 ) was added to 2 b (purity of 3 N to 4 N Zn, Cd, Hg powder), 3a (purity 3
N-4N Sc, Y, lanthanoid powder), 3b (pure 3N-4N B, Al, Ga, In, Tl powder) elements are added and dissolved to form a melt, and then seeding is performed. A 2-inch single crystal was grown in a predetermined orientation for about 3 days by the Czochralski method. The growth rate at this time is 2
-4 mm / h, the rotation speed is 10-30 rpm. Next, the crystal grown by the above method was subjected to a single domainization treatment. For example, a Pt electrode plate is provided so as to face the crystal in the Z-axis direction through a conductive powder that is non-reactive with the crystal, and the crystal is inserted into an electric furnace to perform a single domainization process. Then, from each crystal, each ridge has an x-axis orientation, a y-axis orientation,
And a square block of 10 × 10 × 10 mm 3 parallel to the z-axis direction was cut out and each surface thereof was mirror-polished. Alternatively, a 2-inch wafer was prepared from each crystal. The content of each additive element in these wafers was 5 at%. Thus, a lithium tantalate single crystal was prepared and examined for improvement in light damage resistance. The light damage resistance strength was measured by two kinds of measuring methods. One measurement method was to input an argon laser having a wavelength of 0.488 μm into a crystal or an optical waveguide and evaluate the input / output characteristics. If the optical damage does not occur, the input / output characteristics are on a straight line, but if the optical damage occurs, the output beam after passing through the crystal is deformed from the spot shape, and therefore the optical damage can be detected.
Using these various crystals, the laser power at which the shape of the emitted light beam began to be deformed was determined as the optical damage threshold of the crystal, and the results are shown in Table 1.

【表1】 アルゴンレーザーの照射により、従来の無添加タンタル
酸リチウム単結晶はパワー密度0.1KW/cm2のア
ルゴンレーザ入射に対して照射後数秒で光損傷が生じ屈
折率が大きく変化し、出射ビーム形状が変形する。一
方、本発明に係る2b,3a,3b元素を添加したタン
タル酸リチウム単結晶の場合には、パワー密度10KW
/cm2のアルゴンレーザ入射に対して全く光損傷は観
測されなかった。 (実施例2)本発明者らは2b,3a,3b元素添加に
より耐光損傷強度が向上した結晶を、レーザー光源から
の出射光を基本波として非線形光学結晶への通過により
第二高調波を発生するSHG素子の基板に用いたとこ
ろ、約2mWのSHG出力が得られ、しかも光損傷は発
生せずにその動作は安定であることが確認された。今
後、素子構造を最適化することによりより高出力のSH
G光が得られると思われる。 (実施例3)本発明の2b,3a,3b元素添加により
耐光損傷強度が向上した結晶を基板に用い、レーザー光
源からの出射光を電気光学結晶へ入射し光の位相を変化
させる光変調器を試作したところ、しかも光損傷は発生
せずにその動作は安定であることが確認された。
[Table 1] By irradiation with an argon laser, the conventional undoped lithium tantalate single crystal undergoes optical damage several seconds after irradiation when an argon laser with a power density of 0.1 kW / cm 2 is incident, the refractive index changes significantly, and the shape of the emitted beam changes. Deform. On the other hand, in the case of the lithium tantalate single crystal containing the elements 2b, 3a and 3b according to the present invention, the power density is 10 KW.
No photodamage was observed with an argon laser incidence of / cm 2 . (Embodiment 2) The present inventors generate a second harmonic by passing a crystal whose light damage resistance is improved by adding 2b, 3a, and 3b elements to a nonlinear optical crystal using light emitted from a laser light source as a fundamental wave. It was confirmed that the SHG output of about 2 mW was obtained when used as the substrate of the SHG element, and the operation was stable without causing optical damage. In the future, SH of higher output will be achieved by optimizing the device structure.
It seems that G light can be obtained. (Embodiment 3) An optical modulator for changing the phase of light emitted from a laser light source into an electro-optic crystal by using a crystal having a light damage resistance improved by adding 2b, 3a and 3b elements of the present invention as a substrate. When a prototype was made, it was confirmed that the operation was stable with no optical damage.

【0006】[0006]

【発明の効果】本発明によりはじめて耐光損傷特性に優
れたタンタル酸リチウム単結晶を得ることができた。こ
れにより短波長光を用いる光素子用基板にタンタル酸リ
チウム単結晶を用いることができ、タンタル酸リチウム
単結晶の持つ大きな非線形光学定数を生かしたSHG素
子の安定性と高出力化の特性向上ができる。
According to the present invention, a lithium tantalate single crystal excellent in light damage resistance can be obtained for the first time. As a result, a lithium tantalate single crystal can be used as a substrate for an optical device that uses short-wavelength light, and it is possible to improve the stability and high output characteristics of the SHG device by utilizing the large nonlinear optical constant of the lithium tantalate single crystal. it can.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 康平 埼玉県熊谷市三ケ尻5200番地日立金属株式 会社磁性材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kohei Ito 5200 Mikashiri, Kumagaya, Saitama Hitachi Metals Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 周期表2b,3a,3b元素の1種また
は2種以上を含むことにより耐光損傷強度を向上させた
ことを特徴とするタンタル酸リチウム単結晶。
1. A lithium tantalate single crystal characterized by having improved optical damage resistance by containing one or more elements of Periodic Tables 2b, 3a and 3b.
【請求項2】 前記周期表2b,3a,3b元素の1種
または2種以上を原子百分比で10%以下含有すること
を特徴とする請求項1に記載のタンタル酸リチウム単結
晶。
2. The lithium tantalate single crystal according to claim 1, which contains 10% or less of one or two or more elements of the periodic tables 2b, 3a and 3b in terms of atomic percentage.
【請求項3】 レーザー光源からの出射光を基本波とし
て非線形光学結晶への通過により高調波を発生する非線
形光学素子であって、前記非線形光学結晶として請求項
1または2に記載のタンタル酸リチウム単結晶を用いた
ことを特徴とする非線形光学素子。
3. A non-linear optical element that generates harmonics by passing light emitted from a laser light source as a fundamental wave to a non-linear optical crystal, wherein the non-linear optical crystal is lithium tantalate. A non-linear optical element characterized by using a single crystal.
【請求項4】 レーザー光源からの出射光を光学結晶へ
入射し電気光学効果あるいは音響光学効果により光の強
度、位相を制御する光素子であって、前記光学結晶とし
て請求項1または2に記載のタンタル酸リチウム単結晶
を用いたことを特徴とする光素子。
4. An optical element for controlling the intensity and phase of light by making light emitted from a laser light source incident on an optical crystal by an electro-optic effect or an acousto-optic effect, wherein the optical crystal is the optical element. An optical device using the lithium tantalate single crystal of.
JP27364091A 1991-10-22 1991-10-22 Single crystal of lithium tantalate and optical element Pending JPH05105593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27364091A JPH05105593A (en) 1991-10-22 1991-10-22 Single crystal of lithium tantalate and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27364091A JPH05105593A (en) 1991-10-22 1991-10-22 Single crystal of lithium tantalate and optical element

Publications (1)

Publication Number Publication Date
JPH05105593A true JPH05105593A (en) 1993-04-27

Family

ID=17530508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27364091A Pending JPH05105593A (en) 1991-10-22 1991-10-22 Single crystal of lithium tantalate and optical element

Country Status (1)

Country Link
JP (1) JPH05105593A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004061397A1 (en) * 2003-01-04 2004-07-22 Deutsche Telekom Ag Increasing of resistance of crystals to optical damage
JP2008176335A (en) * 1999-11-09 2008-07-31 National Institute For Materials Science Wavelength conversion element consisting of lithium tantalate single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176335A (en) * 1999-11-09 2008-07-31 National Institute For Materials Science Wavelength conversion element consisting of lithium tantalate single crystal
JP4569911B2 (en) * 1999-11-09 2010-10-27 独立行政法人物質・材料研究機構 Wavelength conversion element made of lithium tantalate single crystal
WO2004061397A1 (en) * 2003-01-04 2004-07-22 Deutsche Telekom Ag Increasing of resistance of crystals to optical damage

Similar Documents

Publication Publication Date Title
JP3261594B2 (en) Lithium tantalate single crystal, single crystal substrate and optical device
Casey et al. Refractive index of AlxGa1− xAs between 1.2 and 1.8 eV
EP0515682B1 (en) Thin film of lithium niobate single crystal
JPH0597591A (en) Production of lithium niobate single crystal and optical element therefrom
JPH05105593A (en) Single crystal of lithium tantalate and optical element
Kumaragurubaran et al. Growth of 4-in diameter MgO-doped near-stoichiometric lithium tantalate single crystals and fabrication of periodically poled structures
Houlton et al. A study of growth defects in lead germanate crystals
JPH05105591A (en) Single crystal of lithium niobate and optical element
JPH05105592A (en) Single crystal of lithium niobate and optical element
JPH05105590A (en) Single crystal of lithium niobate and optical element
JPH05105595A (en) Single crystal of lithium tantalate, its production, production device therefor and optical element
JPH05105594A (en) Method for producing single crystal of lithium tantalate and optical element
JPH05313033A (en) Optical waveguide, manufacture thereof and optical element
JPH0585898A (en) Production of lithium tantalate single crystal and optical element
JPH05313219A (en) Lithium tantalate single crystal substrate formed with polarization inversion grating and optical element
JPH05310500A (en) Lithium tantalate single crystal, its production and optics
JPH05310499A (en) Lithium niobate single crystal, its production and optics
JPH06293597A (en) Production of lithium niobate single crystal and optical element
JPH05270992A (en) Lithium niobate single crystal free from optical damage
JP3725589B2 (en) Single crystal substrate product, optical component, method of manufacturing single crystal substrate product, and method of manufacturing optical component
JPH04300295A (en) Lithium niobate single crystal and production thereof
JPH10194900A (en) Manufacture of optical single crystal film, optical single crystal film and optical parts
JPH06191996A (en) Method for producing lithium niobate single crystal and optical element
JPH11199392A (en) Photorefractive crystal and its production
Furukawa et al. Optical damage resistance and transparency of MgO-doped LiTaO3 single crystals for SHG devices