JPH05105515A - Production of silicon nitride-based ceramic compact - Google Patents

Production of silicon nitride-based ceramic compact

Info

Publication number
JPH05105515A
JPH05105515A JP3290464A JP29046491A JPH05105515A JP H05105515 A JPH05105515 A JP H05105515A JP 3290464 A JP3290464 A JP 3290464A JP 29046491 A JP29046491 A JP 29046491A JP H05105515 A JPH05105515 A JP H05105515A
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
surface area
specific surface
based ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3290464A
Other languages
Japanese (ja)
Inventor
Akio Nishida
明生 西田
Yukio Nakada
幸夫 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP3290464A priority Critical patent/JPH05105515A/en
Publication of JPH05105515A publication Critical patent/JPH05105515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

PURPOSE:To obtain an economically inexpensive silicon nitride-based ceramic compact, capable of preparing a highly dispersed slip at a high concentration without deterioration in compact density, having a small dry heat shrinkage factor and capable of forming products of a certain large size or a complicated shape without breaking at the time of forming. CONSTITUTION:A method for producing a silicon nitride-based ceramic compact is characterized by cast forming a slip composed of 50-95wt.% silicon nitride powder having 5-20m<2>/g specific surface area and 5-50wt.% sialon powder having 0.5-15m<2>/g specific surface area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原料セラミック粉末か
ら窒化珪素質セラミック成形体を製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride ceramic compact from a raw ceramic powder.

【0002】[0002]

【従来技術及びその問題点】窒化珪素質焼結体は、高強
度、耐熱性、耐衝撃性等に優れているため、近年ガスタ
ービン部品、自動車エンジン部品等の高温構造材料とし
て注目されている。このような窒化珪素質焼結体は、通
常、窒化珪素粉末から所望の成形体を製造し、これを焼
結することにより得られる。窒化珪素粉末から成形体を
製造する方法としては、プレス成形、ホットプレス成
形、射出成形、鋳込み成形等が用いられている。
2. Description of the Related Art Since a silicon nitride sintered body is excellent in high strength, heat resistance, impact resistance, etc., it has recently attracted attention as a high temperature structural material for gas turbine parts, automobile engine parts and the like. .. Such a silicon nitride sintered body is usually obtained by producing a desired compact from silicon nitride powder and sintering it. Press molding, hot press molding, injection molding, cast molding and the like are used as a method for producing a molded body from silicon nitride powder.

【0003】しかし、プレス成形やホットプレス成形に
よる方法では、製造方法に伴う制約から比較的簡単な形
状のものしか得られないという欠点がある。また、射出
成形では大型形状品の成形は不向きである。
However, the method by press molding or hot press molding has a drawback that only a relatively simple shape can be obtained due to the restrictions associated with the manufacturing method. Also, injection molding is not suitable for molding large-sized products.

【0004】鋳込み成形では、大型、複雑形状の成形体
を得ることができる特徴がある。ところで、窒化珪素粉
末は単独では焼結しがたく、MgO,Y2 3 ,Al2
3 等の焼結助剤を添加してから焼結を行っている。こ
のような焼結助剤を用いると、泥しょうを調製する際
に、イオンとして水中に解け出し、窒化珪素粉末のζ電
位の絶対値を小さくする。また、MgO,Y2 3 ,A
2 3 等の焼結助剤は水中での等電点が窒化珪素とは
異なるため、粉末の分散に好ましいPHが違ってくる。
このため、窒化珪素粉末の水中での分散が悪くなり、高
濃度の泥しょうが調製できず、良好な成形体を得ること
が困難であった。
The cast molding is characterized in that a large-sized and complex shaped body can be obtained. By the way, silicon nitride powder is hard to sinter by itself, and MgO, Y 2 O 3 , Al 2
Sintering is performed after adding a sintering aid such as O 3 . When such a sintering aid is used, it dissolves into water as ions when preparing mud and reduces the absolute value of the ζ potential of the silicon nitride powder. In addition, MgO, Y 2 O 3 , A
Since the sintering aid such as l 2 O 3 has a different isoelectric point in water from that of silicon nitride, the preferable PH for dispersing the powder is different.
For this reason, the dispersion of the silicon nitride powder in water becomes poor, a high concentration of mud cannot be prepared, and it is difficult to obtain a good molded product.

【0005】[0005]

【発明の目的】本発明の目的は、前記問題点を解決し、
高分散、高濃度の泥しょうが調製でき、成形体密度の低
下がなく、乾燥収縮率も小さく、成形時の割れもなく、
ある程度の大型形状品や複雑形状品の成形が可能であ
り、経済的にも安価である窒化珪素質セラミック成形体
の製造方法を提供するものである。
The object of the present invention is to solve the above problems,
High-dispersion, high-concentration mud can be prepared, the density of the molded body does not decrease, the drying shrinkage rate is small, and there is no cracking during molding.
It is intended to provide a method for manufacturing a silicon nitride ceramic molded body which is capable of molding a large-sized product to some extent or a complicated product and is economically inexpensive.

【0006】[0006]

【問題点を解決するための手段】本発明は、比表面積5
〜20m2/gの窒化珪素粉末50〜95重量%と比表面
積0.5〜15m2/gのサイアロン粉末5〜50重量%
からなる原料粉末の泥しょうを鋳込み成形することを特
徴とする窒化珪素質セラミック成形体の製造方法に関す
るものである。
The present invention has a specific surface area of 5
To 20 m 2 / g silicon nitride powder of 50 to 95 wt% and a specific surface area 0.5~15m 2 / g sialon powder 5-50 wt% of
The present invention relates to a method for producing a silicon nitride-based ceramic molded body, which comprises casting raw material powder, which is composed of

【0007】本発明では、焼結助剤としてサイアロン粉
末を用いる。従来のMgO,Y2 3 ,Al2 3 等の
焼結助剤は、前述のように水中で多価イオンを形成して
窒化珪素粉末のζ電位の絶対値を低下させたり、分散に
好ましいPHが異なったりする。このため、高分散、高
濃度の窒化珪素泥しょうを得ることが困難であった。サ
イアロン粉末を焼結助剤として用いることによりこのよ
うな問題が解決されて高分散、高濃度の泥しょうが得ら
れる。そして、この泥しょうを用いて高密度の成形体が
得られる。
In the present invention, sialon powder is used as a sintering aid. Conventional sintering aids such as MgO, Y 2 O 3 and Al 2 O 3 form polyvalent ions in water as described above to lower the absolute value of the ζ potential of the silicon nitride powder, or to disperse it. The preferred PH may be different. Therefore, it is difficult to obtain highly dispersed and highly concentrated silicon nitride slurry. By using sialon powder as a sintering aid, such a problem is solved and a highly dispersed and concentrated mud can be obtained. Then, a high-density molded body can be obtained by using this sludge.

【0008】本発明において用いられる窒化珪素粉末
は、α相を90重量%以上含み、比表面積が5〜20m2
/gのものである。α相が90重量%未満であると、得
られた成形体の焼結性が劣ったものになる。また、比表
面積が5m2/g未満の場合も焼結性が劣ったものにな
る。更に、比表面積が20m2/gを越えると、窒化珪素
粉末の水中での分散が困難になる。
The silicon nitride powder used in the present invention contains 90% by weight or more of α phase and has a specific surface area of 5 to 20 m 2.
/ G. When the α phase is less than 90% by weight, the obtained molded product has poor sinterability. Also, if the specific surface area is less than 5 m 2 / g, the sinterability will be poor. Further, if the specific surface area exceeds 20 m 2 / g, it becomes difficult to disperse the silicon nitride powder in water.

【0009】また、サイアロン粉末としては、サイアロ
ン相を80重量%以上含み、比表面積が0.5〜15m2
/gのものを用いる。サイアロン相が80重量%未満で
あると、水中へのイオンの溶出が多くなり、窒化珪素粉
末の分散を阻害する。なお、α−サイアロン粉末を用い
た場合は、ガラス相が少なく、高温強度に優れた窒化珪
素質焼結体が得られる。
The sialon powder contains a sialon phase in an amount of 80% by weight or more and has a specific surface area of 0.5 to 15 m 2.
/ G is used. When the sialon phase is less than 80% by weight, the amount of ions eluted into water increases, which hinders the dispersion of the silicon nitride powder. In addition, when the α-sialon powder is used, a silicon nitride-based sintered body having less glass phase and excellent in high temperature strength can be obtained.

【0010】原料粉末を泥しょう化する方法としては、
特に制限はないが、例えば、カルボン酸アンモニウム
系、アミン系等の分散剤を添加し、水にて68〜80重
量%の泥しょう濃度とし、ボールミル等により混合解砕
する。次いで、有機バインダーを添加し、超音波混合、
又は機械的に攪拌混合することにより、鋳込み用泥しょ
うを調製することができる。次に、この泥しょうを脱泡
後、所定の形状の石膏型を用い、排泥鋳込み成形、固形
鋳込み成形、加圧鋳込み成形等により、任意の形状の成
形体とすることができる。
As a method for mudifying raw material powder,
Although not particularly limited, for example, an ammonium carboxylate-based or amine-based dispersant is added, water is used to adjust the sludge concentration to 68 to 80% by weight, and the mixture is crushed by a ball mill or the like. Then add the organic binder, ultrasonic mixing,
Alternatively, the slurry for casting can be prepared by mechanically stirring and mixing. Next, after degassing the mud, using a plaster mold of a predetermined shape, a molded product of any shape can be obtained by drainage mud casting, solid casting, pressure casting, or the like.

【0011】このようにして得られたセラミック成形体
は、乾燥後の収縮率が小さく、クラックも入り難いた
め、これを非酸化性雰囲気下に常圧又は加圧焼結するこ
とにより、機械的特性が優れた窒化珪素質セラミック焼
結体とすることができる。
The ceramic compact thus obtained has a small shrinkage after drying and is less prone to cracking. Therefore, it is mechanically sintered by subjecting it to normal pressure or pressure sintering in a non-oxidizing atmosphere. A silicon nitride ceramic sintered body having excellent characteristics can be obtained.

【0012】[0012]

【実施例】以下に実施例を示し、本発明をさらに具体的
に説明する。 実施例1 比表面積10m2/gのα型窒化珪素粉末(宇部興産
(株)製E−10)60重量%に、比表面積1m2/gの
α−サイアロン粉末を40重量%添加し、さらに、分散
剤を前記粉末の合計に対して0.3重量%添加し、泥し
ょう濃度が74%になるようにイオン交換水を加え、4
0時間ボールミルで混合解砕した。ボールを分離後、有
機系バインダーを粉末に対して3重量%添加し、攪拌機
にて混合し、鋳込み用泥しょうとした。
EXAMPLES The present invention will be described more concretely with reference to the following examples. Example 1 To 60% by weight of α-type silicon nitride powder having a specific surface area of 10 m 2 / g (E-10 manufactured by Ube Industries, Ltd.) was added 40% by weight of α-sialon powder having a specific surface area of 1 m 2 / g, and Add 0.3% by weight of the dispersant to the total amount of the powder, and add ion-exchanged water so that the concentration of sludge becomes 74%.
The mixture was crushed by a ball mill for 0 hours. After separating the balls, an organic binder was added to the powder in an amount of 3% by weight and mixed with a stirrer to obtain a pouring slurry.

【0013】この泥しょうを脱泡後、E型粘度計にて2
0℃、0.5rpmの条件で粘度を測定したところ、2
50cpであった。石膏型上に100×100×高さ7
0mmの塩ビ製型枠をセットし、泥しょうを流し込み約
5mm厚に着肉したところで余分の泥しょうを排泥し
た。排泥後、着肉体を乾燥し、乾燥収縮率、成形体密度
を測定した。得られた結果を表1に示す。また、300
φ×高さ200mmの石膏型を用い、排泥鋳込みを行
い、肉厚10mmでクラックのない成形体を得た。
After degassing this mud, use an E-type viscometer to
When the viscosity was measured at 0 ° C. and 0.5 rpm, 2
It was 50 cp. 100 x 100 x height 7 on the plaster mold
A 0 mm PVC mold was set, and the excess mud was drained when pouring the mud into a thickness of about 5 mm. After the mud discharge, the adhered body was dried, and the dry shrinkage ratio and the density of the molded body were measured. The results obtained are shown in Table 1. Also, 300
Using a gypsum mold of φ × 200 mm in height, drainage sludge casting was performed to obtain a molded product having a wall thickness of 10 mm and no cracks.

【0014】実施例2〜3 実施例1においてα型窒化珪素粉末とα−サイアロン粉
末の割合を70:30(実施例2)、80:20(実施
例3)としたほかは実施例1と同様にして成形体を製造
した。結果を表1に示す。
Examples 2 to 3 As in Example 1, except that the ratio of α-type silicon nitride powder to α-sialon powder was 70:30 (Example 2) and 80:20 (Example 3). A molded body was manufactured in the same manner. The results are shown in Table 1.

【0015】比較例1 α型窒化珪素粉末(宇部興産(株)E−10)90重量
%に、焼結助剤として酸化イットリウム粉末5重量%、
アルミナ粉末5重量%を添加し、さらに、分散剤を前記
粉末の合計に対して0.3重量%添加し、泥しょう濃度
が65%になるようにイオン交換水を加え、40時間ボ
ールミルで混合解砕した。この後は実施例1と同様に泥
しょうを調製し、成形体を製造した。結果を表1に示
す。
Comparative Example 1 90% by weight of α-type silicon nitride powder (E-10, Ube Industries, Ltd.), 5% by weight of yttrium oxide powder as a sintering aid,
5% by weight of alumina powder was added, 0.3% by weight of the dispersant was added to the total amount of the powder, ion-exchanged water was added so that the concentration of sludge became 65%, and the mixture was mixed by a ball mill for 40 hours. Crushed. After this, a slurry was prepared in the same manner as in Example 1 to produce a molded body. The results are shown in Table 1.

【0016】 [0016]

【0017】[0017]

【発明の効果】本発明で得られる成形体は、鋳込み成形
後の乾燥収縮率が小さく、そのために乾燥時によく発生
するクラックが入り難く、従来窒化珪素粉末を用いた鋳
込み成形では難しいとされている大型形状品、複雑形状
品の成形が可能となる。
EFFECTS OF THE INVENTION The molded product obtained according to the present invention has a small dry shrinkage ratio after cast molding, and therefore cracks that often occur during drying are hard to enter, and it is considered that it is difficult by conventional cast molding using silicon nitride powder. It is possible to mold large shaped products and complex shaped products.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 比表面積5〜20m2/gの窒化珪素粉末
50〜95重量%と比表面積0.5〜15m2/gのサイ
アロン粉末5〜50重量%からなる原料粉末の泥しょう
を鋳込み成形することを特徴とする窒化珪素質セラミッ
ク成形体の製造方法。
1. A specific surface area 5 to 20 m 2/50 to 95 wt% silicon nitride powder of g and Slip of the raw material powder consisting of sialon powder 5-50 wt% of the specific surface area 0.5~15m 2 / g casting A method for manufacturing a silicon nitride ceramic molded body, which comprises molding.
JP3290464A 1991-10-11 1991-10-11 Production of silicon nitride-based ceramic compact Pending JPH05105515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3290464A JPH05105515A (en) 1991-10-11 1991-10-11 Production of silicon nitride-based ceramic compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3290464A JPH05105515A (en) 1991-10-11 1991-10-11 Production of silicon nitride-based ceramic compact

Publications (1)

Publication Number Publication Date
JPH05105515A true JPH05105515A (en) 1993-04-27

Family

ID=17756361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3290464A Pending JPH05105515A (en) 1991-10-11 1991-10-11 Production of silicon nitride-based ceramic compact

Country Status (1)

Country Link
JP (1) JPH05105515A (en)

Similar Documents

Publication Publication Date Title
KR0168303B1 (en) Aluminum nitride sinter and process for the production thereof
CN100999411A (en) Aluminium nitride reinforced sibicon carbide ceramic and its preparation method
WO1994026678A1 (en) Sintered self-reinforced silicon nitride
JPH09165265A (en) Silicon nitride ceramic having high heat conduction and its production
JPH06219840A (en) Silicon nitride sintered compact and its production
JPH05105515A (en) Production of silicon nitride-based ceramic compact
US4810678A (en) Gas pressure sintering of silicon nitride with addition of rare earth oxides
Rabinovich et al. Slip casting of silicon nitride for pressureless sintering
JPS60131865A (en) Manufacture of silicon nitride ceramics
JP3126059B2 (en) Alumina-based composite sintered body
JPH09227236A (en) Silicon nitride-base sintered compact and its production
JP3932349B2 (en) Reaction synthesis of non-oxide boron nitride composites
JPS6141872B2 (en)
JPH06100359A (en) Production of ceramic sintering auxiliary and production of mullite ceramic using the same
JP2687633B2 (en) Method for producing silicon nitride sintered body
JPH06157152A (en) Fiber reinforced composite gradient material and it production
JPH04187555A (en) Preparation of ceramic raw material and apparatus therefor
JP2687634B2 (en) Method for producing silicon nitride sintered body
JPH01246178A (en) Production of refractory for molten steel
Fang et al. Bimodal Microstructure in Silicon Nitride–Barium Aluminum Silicate Ceramic‐Matrix Composites by Pressureless Sintering
JPS643068A (en) Production of alumina silica-based sintered material
JP2672229B2 (en) Method for forming non-oxide ceramics
JPH0656532A (en) Production of silicon nitride-based sintered compact
KR100383102B1 (en) Slip of silicon carbide-water system and a method for manufacturing the same
JP2001322874A (en) Aluminum nitride sintered body and method for manufacturing the same