JPH0510501A - Waste heat recovery boiler - Google Patents

Waste heat recovery boiler

Info

Publication number
JPH0510501A
JPH0510501A JP18405091A JP18405091A JPH0510501A JP H0510501 A JPH0510501 A JP H0510501A JP 18405091 A JP18405091 A JP 18405091A JP 18405091 A JP18405091 A JP 18405091A JP H0510501 A JPH0510501 A JP H0510501A
Authority
JP
Japan
Prior art keywords
pressure
economizer
water supply
drum
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18405091A
Other languages
Japanese (ja)
Other versions
JP2971629B2 (en
Inventor
Toshinori Shigenaka
利則 重中
Tetsuo Mimura
哲雄 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP18405091A priority Critical patent/JP2971629B2/en
Publication of JPH0510501A publication Critical patent/JPH0510501A/en
Application granted granted Critical
Publication of JP2971629B2 publication Critical patent/JP2971629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To reduce the differential pressure across a water feed valve and prevent steam generation in an economizer. CONSTITUTION:An inlet control valve 38 is mounted on a water feed pipe 23 economizer 11 or an outlet control valve 42 is mounted can a drum water feed pipe 24. As steaming occurs in the economizer 11 with a decrease in load of a gas turbine, the differential pressure across a drum water feed valve 28 is shared by the inlet control valve 38 and the water feed valve 28 or by the water feed valve 28 and the outlet control valve 42 in order to keep the economizer 11 at the saturation pressure or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排熱回収ボイラ装置に係
り、特にコンバインドガスタービンプラント用の混圧型
排熱回収ボイラに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery boiler device, and more particularly to a mixed pressure type exhaust heat recovery boiler for a combined gas turbine plant.

【0002】[0002]

【従来の技術】急増する電力需要に応えるために大容量
の火力発電所が建設されているが、これらのボイラは部
分負荷時においても高い発電効率を得るために変圧運転
を行なうことが要求されている。これは最近の電力需要
の特徴として、原子力発電の伸びと共に、負荷の最大と
最小の差も増大し、火力発電はベースロード用から負荷
調整用へと移行する傾向にある。つまり、火力発電を負
荷調整用として運転する場合、ボイラ負荷を常に全負荷
で運転されるものは少なく、負荷を75%負荷、50%
負荷、25%負荷へと負荷を上げ、下げして運転した
り、運転を停止するなど、いわゆる毎日起動停止(Da
ily Start Stop以下単にDSSという)
運転などを行なつて中間負荷を担い、このDSS運転に
よつて電力需要の多い昼間のみ運転し、夜間は運転を停
止して発電効率を向上させるのである。例えば高効率発
電の一環として、最近コンバインドガスタービンプラン
トが注目されている。このコンバインドガスタービンプ
ラントは、まずガスタービンによる発電を行なうと共
に、ガスタービンから排出される排ガス中の排熱を排熱
回収ボイラによつて熱回収し、この排熱回収ボイラで発
生した蒸気によつて蒸気タービンを作動させて発電する
ものである。このようにコンバインドガスタービンプラ
ントはガスタービンによる発電と、蒸気タービンによる
発電を同時に行なうために発電効率が高いうえ、ガスタ
ービンの特性である負荷応答性に優れ、このために急激
な電力需要の上昇,下降にも十分対応でき、負荷追従性
にも優れており、DSS運転を行なうには好都合であ
る。
2. Description of the Related Art A large-capacity thermal power plant is constructed to meet a rapidly increasing power demand, but these boilers are required to perform a transformer operation in order to obtain a high power generation efficiency even at a partial load. ing. This is a feature of recent electric power demand, and the difference between the maximum and minimum loads increases along with the growth of nuclear power generation, and thermal power generation tends to shift from base load use to load adjustment use. In other words, when operating thermal power generation for load adjustment, few boiler loads are always operated at full load, with 75% load and 50% load.
Load, 25% load increase, decrease load to operate or stop operation, so-called daily start / stop (Da
ily Start Stop (hereinafter simply referred to as DSS)
By carrying out an operation or the like to carry an intermediate load, the DSS operation allows operation only in the daytime when power demand is high, and stops operation at night to improve power generation efficiency. For example, a combined gas turbine plant has recently attracted attention as a part of high-efficiency power generation. In this combined gas turbine plant, power is first generated by the gas turbine, and the exhaust heat in the exhaust gas discharged from the gas turbine is recovered by the exhaust heat recovery boiler, and the steam generated in the exhaust heat recovery boiler is used. Then, the steam turbine is operated to generate electricity. In this way, the combined gas turbine plant has high power generation efficiency due to simultaneous power generation by the gas turbine and power generation by the steam turbine, and is also excellent in load responsiveness, which is a characteristic of the gas turbine. , It can cope with the descent well and has excellent load following ability, which is convenient for performing the DSS operation.

【0003】図4はコンバインドガスタービンプラント
の概略系統図である。図4において、空気供給管1から
の燃焼用空気Aと燃料供給管2からの燃料Fを燃焼器3
で混合して燃焼させ、その燃焼ガスでガスタービン4を
回転させガスタービン4による発電を行なう。ガスター
ビン4を回転させた排ガスGは排熱回収ボイラ5の排ガ
ス通路6へ導入される。この排ガス通路6には下流側か
ら上流へ低圧節炭器7,低圧蒸発器8および低圧ドラム
9からなる低圧ボイラ10と、高圧節炭器11,高圧蒸
発器12,高圧ドラム13および過熱器14からなる高
圧ボイラ15が配置されている。
FIG. 4 is a schematic system diagram of a combined gas turbine plant. In FIG. 4, combustion air A from the air supply pipe 1 and fuel F from the fuel supply pipe 2 are supplied to the combustor 3
Are mixed and burned, and the combustion gas is used to rotate the gas turbine 4 to generate electricity. The exhaust gas G that has rotated the gas turbine 4 is introduced into the exhaust gas passage 6 of the exhaust heat recovery boiler 5. In the exhaust gas passage 6, from the downstream side to the upstream side, a low pressure boiler 10 including a low pressure economizer 7, a low pressure evaporator 8 and a low pressure drum 9, a high pressure economizer 11, a high pressure evaporator 12, a high pressure drum 13 and a superheater 14 are provided. A high-pressure boiler 15 composed of is arranged.

【0004】一方、被加熱流体である給水WF は給水ポ
ンプ16より給水管17を経て低圧節炭器7に供給さ
れ、所定の温度までに予熱された後、低圧ドラム給水管
18を通り低圧ドラム9に供給される。低圧ドラム9に
供給された給水WF は、低圧ドラム9の低圧下降管19
を経て低圧蒸発器8,低圧ドラム9の順で自然循環また
は強制循環され、その間に加熱されて低圧ドラム9内で
水と蒸気に分離された後、水は再び低圧下降管19,低
圧蒸発器8および低圧ドラム9へと再循環されるが、蒸
気は低圧主蒸気管20より蒸気タービン21へ供給され
る。
On the other hand, the feed water W F, which is the fluid to be heated, is supplied from the feed pump 16 to the low-pressure economizer 7 via the feed pipe 17, is preheated to a predetermined temperature, and then passes through the low-pressure drum feed pipe 18 to low pressure. It is supplied to the drum 9. The water supply W F supplied to the low-pressure drum 9 is supplied to the low-pressure down pipe 19 of the low-pressure drum 9.
After that, the low pressure evaporator 8 and the low pressure drum 9 are naturally circulated or forcedly circulated in that order, and then heated and separated into water and steam in the low pressure drum 9, and then the water is again reduced in pressure to the low pressure downcomer 19 and the low pressure evaporator. 8 and the low pressure drum 9, but the steam is supplied to the steam turbine 21 through the low pressure main steam pipe 20.

【0005】他方、低圧節炭器7の出口で分流された高
温水WR の一部はボイラ移送ポンプ22より高圧給水管
23を経て高圧節炭器11に供給され、所定の温度まで
予熱された後、高圧ドラム給水管24を通り高圧ドラム
13に供給される。高圧ドラム13に供給された高温水
R は低圧ボイラ10と同様に高圧ドラム13の高圧下
降管25を経て高圧蒸発器12,高圧ドラム13の順で
循環し、高圧ドラム13内で分離された蒸気はドラム蒸
気出口管26を経て過熱器14へ送られ、ここでさらに
昇温された後、高圧主蒸気管27より蒸気タービン21
へ供給され、蒸気タービン21による発電を行なう。
On the other hand, part of the high temperature water W R split at the outlet of the low pressure economizer 7 is supplied from the boiler transfer pump 22 to the high pressure economizer 11 via the high pressure water supply pipe 23 and preheated to a predetermined temperature. Then, the water is supplied to the high-pressure drum 13 through the high-pressure drum water supply pipe 24. The high-temperature water W R supplied to the high-pressure drum 13 is circulated in the order of the high-pressure evaporator 12 and the high-pressure drum 13 via the high-pressure downcomer pipe 25 of the high-pressure drum 13 similarly to the low-pressure boiler 10, and is separated in the high-pressure drum 13. The steam is sent to the superheater 14 via the drum steam outlet pipe 26, where the temperature is further raised, and then the steam turbine 21 is supplied from the high pressure main steam pipe 27.
Is supplied to the steam turbine 21 to generate electric power.

【0006】なお、高圧ドラム13で分離された水は、
高圧下降管25,高圧蒸発器12,高圧ドラム13へと
再循環される。そして、高圧ドラム13および低圧ドラ
ム9の給水レベルはそれぞれ高圧ドラム給水弁28,低
圧ドラム給水弁29を操作して給水量が制御される。
The water separated by the high pressure drum 13 is
It is recirculated to the high-pressure downcomer 25, the high-pressure evaporator 12, and the high-pressure drum 13. The water supply levels of the high-pressure drum 13 and the low-pressure drum 9 are controlled by operating the high-pressure drum water supply valve 28 and the low-pressure drum water supply valve 29, respectively.

【0007】他方、蒸気タービン21で蒸気タービン2
1を回転させた蒸気は復水器30で水となり、給水ポン
プ16より再び排熱回収ボイラ5へ給水される。この給
水管17の給水WF は約30℃と低温であるために、そ
のままの給水温度で低圧節炭器7へ給水されると低圧節
炭器7で低温腐蝕が発生するので、低圧ボイラ10,高
圧ボイラ15内の高温水WR と混合させて、低温腐蝕が
おこらない所定の温度まで給水温度を昇温させて、低圧
節炭器7へ給水する必要がある。つまり、高圧給水管2
3の高温水WR の一部はボイラ移送ポンプ22の出口か
ら再循環流量調整弁32を有する再循環流路33を経て
給水管17へ供給され、低圧節炭器7の低温腐蝕を防止
している。
On the other hand, the steam turbine 21 uses the steam turbine 21.
The steam obtained by rotating 1 becomes water in the condenser 30, and is supplied to the exhaust heat recovery boiler 5 again from the water supply pump 16. Since the water supply W F of the water supply pipe 17 is as low as about 30 ° C., when the water is supplied to the low pressure economizer 7 at the same water supply temperature, low temperature corrosion occurs in the low pressure economizer 7, so the low pressure boiler 10 It is necessary to mix the hot water W R in the high-pressure boiler 15 to raise the feed water temperature to a predetermined temperature at which low-temperature corrosion does not occur, and then feed the low-pressure economizer 7. That is, the high pressure water supply pipe 2
A part of the high temperature water W R of No. 3 is supplied from the outlet of the boiler transfer pump 22 to the water supply pipe 17 through the recirculation flow path 33 having the recirculation flow rate adjusting valve 32 to prevent low temperature corrosion of the low pressure economizer 7. ing.

【0008】なお、31は発電機、34はガスタービン
4の排ガスG中の窒素酸化物を除去するために高圧蒸発
器12と高圧節炭器11の間、あるいは高圧蒸発器12
の中間に配置される脱硝装置、35は過熱蒸気連絡管、
36は過熱蒸気止弁、37は圧力調整弁である。
Reference numeral 31 is a generator, and 34 is between the high-pressure evaporator 12 and the high-pressure economizer 11 or the high-pressure evaporator 12 in order to remove nitrogen oxides in the exhaust gas G of the gas turbine 4.
Denitration device placed in the middle of the, 35 is a superheated steam communication pipe,
36 is a superheated steam stop valve, and 37 is a pressure regulating valve.

【0009】以上の説明はコンバインドガスタービンプ
ラントにおける排ガス、給水、蒸気等の一般的な流れを
説明したものであるが、以下低圧節炭器7、高圧節炭器
11の低圧ドラム給水管18、高圧ドラム給水管24に
高圧ドラム給水弁28、低圧ドラム給水弁29を配置し
ている理由について説明する。
While the above description has explained the general flow of exhaust gas, water supply, steam, etc. in a combined gas turbine plant, the low pressure drum water supply pipes 18 of the low pressure economizer 7 and the high pressure economizer 11 will be described below. The reason why the high-pressure drum water supply valve 28 and the low-pressure drum water supply valve 29 are arranged in the high-pressure drum water supply pipe 24 will be described.

【0010】ガスタービン4の排ガス特性を図5に示す
が排ガス量は図5の曲線Bで示すようにガスタービン負
荷が低負荷になつてもほとんど変化が少ないが、排ガス
温度は図5の曲線Cで示すようにガスタービン負荷が低
負荷になるほど下がつてくる。従つて、低負荷では排ガ
ス温度の低下に伴なつて蒸発量が減少し、給水量も低下
するが、排ガス量はほとんど変化しないため、節炭器
7,11で蒸気が発生する現象が生じる。この場合、ウ
オーターハンマーの発生等により付着機器を損傷する恐
れがあるため、従来は、給水ポンプ16、移送ポンプ2
2の流量が減少してくると吐出圧力が高くなる特性を利
用して、節炭器7,11の出口に位置する低圧ドラム給
水管18、高圧ドラム給水管24に高圧ドラム給水弁2
8、低圧ドラム給水弁29を設置して、節炭器7,11
を低負荷時に昇圧して、蒸気発生を防止していた。今ま
でのプラントでは運転圧力が高圧系で約60kg/cm
2 g、低圧系で約10kg/cm2 gを比較的低い圧力
であつたため、節炭器7,11の高圧ドラム給水弁2
8、低圧ドラム給水弁29の差圧も約5から100kg
/cm2 と小さく、問題は無かつた。
The exhaust gas characteristics of the gas turbine 4 are shown in FIG. 5. The exhaust gas amount hardly changes even when the load of the gas turbine is low as shown by the curve B in FIG. 5, but the exhaust gas temperature shows the curve in FIG. As indicated by C, the lower the gas turbine load, the lower the load. Therefore, when the load is low, the evaporation amount decreases and the water supply amount decreases as the exhaust gas temperature decreases, but since the exhaust gas amount hardly changes, a phenomenon occurs in which steam is generated in the economizers 7, 11. In this case, the attached equipment may be damaged due to the generation of a water hammer or the like.
By utilizing the characteristic that the discharge pressure increases as the flow rate of 2 decreases, the high pressure drum water supply valve 2 is connected to the low pressure drum water supply pipe 18 and the high pressure drum water supply pipe 24 located at the outlets of the economizers 7 and 11.
8, the low-pressure drum water supply valve 29 is installed, the economizer 7, 11
Was boosted at low load to prevent steam generation. In the conventional plant, the operating pressure is about 60 kg / cm in the high pressure system.
2 g, a low pressure system of about 10 kg / cm 2 g at a relatively low pressure.
8. The differential pressure of the low-pressure drum water supply valve 29 is also about 5 to 100 kg.
As small as / cm 2 , there was no problem.

【0011】[0011]

【発明が解決しようとする課題】しかし、最近ガスター
ビンの燃焼温度の高温化に伴なつて、排熱回収ボイラの
蒸気圧力も高くなり高効率化が指向されている。この場
合、圧力は高圧系で約100から150kg/cm2
となり高圧ドラム給水弁28、低圧ドラム給水弁29の
差圧も約5から200kg/cm2 と非常に高差圧とな
り、このために高圧ドラム給水弁28、低圧圧ドラム給
水弁29のエロージョン等の問題が生じる。本発明は従
来技術の欠点を解消しようとするもので、その目的とす
るところは給水弁の差圧を低減し、しかも節炭器での蒸
気発生を防止することができる排熱回収ボイラを提供す
ることにある。
However, with the recent increase in the combustion temperature of the gas turbine, the steam pressure of the exhaust heat recovery boiler is also increased, and high efficiency is aimed at. In this case, the pressure is about 100 to 150 kg / cm 2 g in the high pressure system.
Also, the differential pressure between the high-pressure drum water feed valve 28 and the low-pressure drum water feed valve 29 becomes a very high differential pressure of about 5 to 200 kg / cm 2, and therefore, the erosion of the high-pressure drum water feed valve 28 and the low-pressure drum water feed valve 29, etc. The problem arises. The present invention is intended to solve the drawbacks of the prior art, and an object thereof is to provide an exhaust heat recovery boiler capable of reducing the differential pressure of the water supply valve and preventing steam generation in the economizer. To do.

【0012】[0012]

【課題を解決するための手段】本発明は前述の目的を達
成するために、給水管とドラム給水管の少なくとも一方
に節炭器の圧力を調整する調節弁を設けたものである。
In order to achieve the above-mentioned object, the present invention provides a control valve for adjusting the pressure of the economizer in at least one of the water supply pipe and the drum water supply pipe.

【0013】[0013]

【作用】節炭器の圧力をドラム給水弁と調節弁で分担す
るので、給水弁の差圧を低減でき、給水弁のエロージヨ
ン、節炭器でのスチーミングが防止できる。
[Function] Since the pressure of the economizer is shared by the drum water supply valve and the control valve, the differential pressure of the water supply valve can be reduced, and erosion of the water supply valve and steaming of the economizer can be prevented.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。図1は本発明の実施例に係る排熱回収ボイラの要部
系統図、図2は縦軸に圧力と給水温度、横軸にガスター
ビン負荷を示した特性曲線図、図3は図1の他の実施例
を示した要部系統図である。図1および図3において、
符号11から符号28は従来のものと同一のものを示
す。38は高圧給水管23に設けた入口調節弁、39は
圧力検出器、40は給水温度検出器、41は圧力制御
器、42は高圧ドラム給水管24に設けた出口調節弁で
ある。また、図2の曲線Dは高圧給水ポンプ(ボイラ移
送ポンプ)出口の圧力、曲線Eは高圧ドラム13の運転
圧力、曲線Hは高圧節炭器11の出口給水温度に相当す
る飽和圧力、曲線Iは高圧節炭器11の運転圧力、曲線
Jは高圧節炭器11の出口給水温度をそれぞれ示す。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a system diagram of a main part of an exhaust heat recovery boiler according to an embodiment of the present invention, FIG. 2 is a characteristic curve diagram showing pressure and feed water temperature on the vertical axis, and gas turbine load on the horizontal axis, and FIG. It is a principal part system diagram which showed other Examples. 1 and 3,
Reference numerals 11 to 28 are the same as conventional ones. 38 is an inlet control valve provided in the high pressure water supply pipe 23, 39 is a pressure detector, 40 is a feed water temperature detector, 41 is a pressure controller, and 42 is an outlet control valve provided in the high pressure drum water supply pipe 24. Curve D in FIG. 2 is the pressure at the outlet of the high-pressure feed pump (boiler transfer pump), curve E is the operating pressure of the high-pressure drum 13, curve H is the saturation pressure equivalent to the outlet feed water temperature of the high-pressure economizer 11, and curve I. Represents the operating pressure of the high-pressure economizer 11, and curve J represents the outlet water temperature of the high-pressure economizer 11.

【0015】従来技術のように高圧節炭器11の出口の
みに高圧ドラム給水弁28を1台設置した場合、低負荷
において図2に示すように、非常に大きな差圧Kを高圧
ドラム給水弁28で負担することになり、高圧ドラム給
水弁28のエロージヨン発生により寿命が短くなつた
り、騒音が大きくなる問題がある。これに対し、本発明
の実施例においては図1に示すように高圧節炭器11の
高圧給水管23にも入口調節弁38を設置し、高圧節炭
器11出口の給水温度を給水温度検出器40で検出し高
圧節炭器11の運転圧力(図2の曲線I)を高圧節炭器
11で蒸気が発生しない飽和圧力(図2の曲線H)以上
に制御することによつて、高圧ドラム給水弁28の差圧
Kを図2に示すように高圧ドラム給水弁28と入口調節
弁38でその差圧L,Mを分担し、低減するのである。
これによりエロージヨン、騒音の問題も生じ無くなる。
When one high-pressure drum water feed valve 28 is installed only at the outlet of the high-pressure coal economizer 11 as in the prior art, as shown in FIG. 2 under a low load, a very large differential pressure K is applied to the high-pressure drum water feed valve. However, there is a problem that the life of the high-pressure drum water supply valve 28 is shortened and noise is increased due to the generation of erosion of the high-pressure drum water supply valve 28. On the other hand, in the embodiment of the present invention, as shown in FIG. 1, the inlet control valve 38 is also installed in the high pressure water supply pipe 23 of the high pressure economizer 11, and the feedwater temperature at the outlet of the high pressure economizer 11 is detected. By controlling the operating pressure of the high-pressure economizer 11 (curve I in FIG. 2) detected by the vessel 40 to be equal to or higher than the saturation pressure (curve H in FIG. 2) at which steam is not generated in the high-pressure economizer 11, As shown in FIG. 2, the high pressure drum water supply valve 28 and the inlet control valve 38 share and reduce the differential pressure L of the drum water supply valve 28.
This eliminates the problems of erosion and noise.

【0016】図3のものは図1の他の実施例を示すもの
で、図1のものにおいては高圧給水管23に入口調節弁
38を設けたが、図3のものにおいては高圧ドラム給水
管24に出口調節弁42を設け、図2の差圧L,Mを高
圧ドラム給水弁28と出口調節弁42で負担するように
したものであり、他の説明は図1のものと同一である。
この図3に示す実施例の効果は、高圧節炭器11の出口
給水温度で制御することが不要となり、常に高圧節炭器
11を蒸気が発生しない飽和高圧(図2の曲線H以上)
に維持することができることが挙げられる。
FIG. 3 shows another embodiment of FIG. 1. In FIG. 1, the high pressure water supply pipe 23 is provided with an inlet control valve 38, but in FIG. 3, it is a high pressure drum water supply pipe. 24 is provided with an outlet control valve 42 so that the differential pressures L and M in FIG. 2 are shared by the high-pressure drum water feed valve 28 and the outlet control valve 42, and other explanations are the same as those in FIG. ..
The effect of the embodiment shown in FIG. 3 is that it is not necessary to control the outlet feed water temperature of the high-pressure economizer 11, and the high-pressure economizer 11 does not generate steam at a saturated high pressure (curve H or higher in FIG. 2).
It can be maintained at.

【0017】[0017]

【発明の効果】本発明によれば、節炭器での蒸気発生を
防止することができるとともに弁の差圧を低減できエロ
ージヨン及び騒音を防止できる。
According to the present invention, the generation of steam in the economizer can be prevented, the differential pressure of the valve can be reduced, and erosion and noise can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る排熱回収ボイラの要部系
統図である。
FIG. 1 is a system diagram of essential parts of an exhaust heat recovery boiler according to an embodiment of the present invention.

【図2】縦軸に圧力および給水温度、横軸にガスタービ
ン負荷を示した特性曲線図である。
FIG. 2 is a characteristic curve diagram showing pressure and feed water temperature on the vertical axis and gas turbine load on the horizontal axis.

【図3】他の実施例を示す排熱回収ボイラの要部系統図
である。
FIG. 3 is a system diagram of main parts of an exhaust heat recovery boiler showing another embodiment.

【図4】コンバインドガスタービンプラントの概略系統
図である。
FIG. 4 is a schematic system diagram of a combined gas turbine plant.

【図5】縦軸に排ガス量および排ガス温度、横軸にガス
タービン負荷を示した特性曲線図である。
FIG. 5 is a characteristic curve diagram in which the vertical axis represents exhaust gas amount and exhaust gas temperature, and the horizontal axis represents gas turbine load.

【符号の説明】[Explanation of symbols]

7 低圧節炭器 9 低圧ドラム 11 高圧節炭器 13 高圧ドラム 17 給水管 18 低圧ドラム給水管 23 高圧給水管 24 高圧ドラム給水管 28 高圧ドラム給水弁 29 低圧ドラム給水弁 38 入口調節弁 42 出口調節弁 7 Low pressure economizer 9 Low pressure drum 11 High pressure economizer 13 High pressure drum 17 Water supply pipe 18 Low pressure drum water supply pipe 23 High pressure water supply pipe 24 High pressure drum water supply pipe 28 High pressure drum water supply valve 29 Low pressure drum water supply valve 38 Inlet control valve 42 Outlet adjustment valve

Claims (1)

【特許請求の範囲】 【請求項1】 節炭器の入口に給水管を接続すると共
に、節炭器の出口とドラムをドラム給水管で接続し、ド
ラム給水管のドラム給水弁で節炭器の圧力を調整するも
のにおいて、 前記給水管とドラム給水管の少なくとも一方に節炭器の
圧力を調整する調節弁を設けたことを特徴とする排熱回
収ボイラ。
Claims: 1. A water supply pipe is connected to the inlet of the economizer, the outlet of the economizer is connected to the drum by a drum water pipe, and the drum water valve of the drum water pipe is used for the economizer. An exhaust heat recovery boiler, wherein at least one of the water supply pipe and the drum water supply pipe is provided with a control valve for adjusting the pressure of the economizer.
JP18405091A 1991-06-28 1991-06-28 Waste heat recovery boiler Expired - Fee Related JP2971629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18405091A JP2971629B2 (en) 1991-06-28 1991-06-28 Waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18405091A JP2971629B2 (en) 1991-06-28 1991-06-28 Waste heat recovery boiler

Publications (2)

Publication Number Publication Date
JPH0510501A true JPH0510501A (en) 1993-01-19
JP2971629B2 JP2971629B2 (en) 1999-11-08

Family

ID=16146499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18405091A Expired - Fee Related JP2971629B2 (en) 1991-06-28 1991-06-28 Waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JP2971629B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047399A1 (en) * 2014-09-26 2016-03-31 三菱日立パワーシステムズ株式会社 Boiler, combined cycle plant, and boiler operation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047399A1 (en) * 2014-09-26 2016-03-31 三菱日立パワーシステムズ株式会社 Boiler, combined cycle plant, and boiler operation method
JP2016070525A (en) * 2014-09-26 2016-05-09 三菱日立パワーシステムズ株式会社 Boiler, combined cycle plant and boiler operation method
KR20170024017A (en) * 2014-09-26 2017-03-06 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Boiler, combined cycle plant, and boiler operation method
CN106574769A (en) * 2014-09-26 2017-04-19 三菱日立电力系统株式会社 Boiler, combined cycle plant, and boiler operation method
CN106574769B (en) * 2014-09-26 2019-06-28 三菱日立电力系统株式会社 The operation method of boiler, combined cycle complete set of equipments and boiler
US10577985B2 (en) 2014-09-26 2020-03-03 Mitsubishi Hitachi Power Systems, Ltd. Boiler, combined cycle plant, and boiler operation method

Also Published As

Publication number Publication date
JP2971629B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
US4572110A (en) Combined heat recovery and emission control system
US20120272649A1 (en) Method for operating a forced-flow steam generator operating at a steam temperature above 650°c and forced-flow steam generator
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
US5367870A (en) Gas and steam turbine system
JP3140539B2 (en) Waste heat recovery boiler and method of supplying de-heated water
JPH08246814A (en) Combined cycle generation plant using refuse incinerator
JP2001108201A (en) Multiple pressure waste heat boiler
JP4718333B2 (en) Once-through exhaust heat recovery boiler
JP2592061B2 (en) Waste heat recovery boiler
JPH0510501A (en) Waste heat recovery boiler
JP2005214047A (en) Combined cycle power generation plant and method of operating the same
JP3133183B2 (en) Combined cycle power plant
JPS6291703A (en) Steaming preventive device for fuel economizer
JP2921947B2 (en) Waste heat recovery boiler
JP2002106804A (en) Feedwater flow-rate controller of variable once- through boiler
JP2001108202A (en) Waste heat recovery boiler
JPH08246813A (en) Operation method and device for coal gasification compound generation plant
JP2716442B2 (en) Waste heat recovery boiler device
JP3221738B2 (en) Steam temperature controller for variable-pressure once-through boiler
JPH09196301A (en) Exhaust heat recovery boiler and method for its operation
JP3722928B2 (en) Waste heat recovery boiler unit
SU941636A1 (en) Method of cooling down a power installation
JPS6124906A (en) Steam generator
JP2889271B2 (en) Waste heat recovery boiler device
JPS62162808A (en) Fuel-economizer steaming preventive device for thermal powerboiler system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees