JPH05104044A - Control of high viscosity material coating robot - Google Patents

Control of high viscosity material coating robot

Info

Publication number
JPH05104044A
JPH05104044A JP26914191A JP26914191A JPH05104044A JP H05104044 A JPH05104044 A JP H05104044A JP 26914191 A JP26914191 A JP 26914191A JP 26914191 A JP26914191 A JP 26914191A JP H05104044 A JPH05104044 A JP H05104044A
Authority
JP
Japan
Prior art keywords
coating
gun
coating gun
becomes
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26914191A
Other languages
Japanese (ja)
Inventor
Koji Watanabe
康次 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26914191A priority Critical patent/JPH05104044A/en
Publication of JPH05104044A publication Critical patent/JPH05104044A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To apply coating to a coating route in desired bead width and thickness, in the control of a high viscosity material coating robot constituted so as to control an emission amount corresponding to a moving speed by inclining the emission angle of a painting gun in a moving direction corresponding to the moving speed. CONSTITUTION:The emission pressure of a seal agent is controlled so that the emission amount thereof from a coating gun 1 becomes much as the moving speed of the coating gun 1 becomes faster in order to quantitatively apply coating to a coating route. Since the flow velocity of the seal agent at the time of the emission thereof from the nozzle of the coating gun 1 becomes fast when the emission amount increases, the energy of the emitted seal agent impinging against a coating position becomes large and the width of the seal agent becomes wider than predetermined bead width and a bead shape also becomes a cross-sectional shape whose central part is depressed. When the emission angle of the coating gun 1 is inclined when the emission amount is much, since emission energy is escaped in the direction opposite to the moving direction of the coating gun 1, the diffusion of the emitted seal agent is prevented and the coated bead shape becomes a desired cross-sectional shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,シール剤,接着剤等の
高粘度材料を所定経路に沿って定量塗布する高粘度材料
塗布ロボットの制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a high-viscosity material coating robot for quantitatively applying a high-viscosity material such as a sealant or an adhesive along a predetermined path.

【0002】[0002]

【従来の技術】教示・再生型の産業用ロボットは,ロボ
ットの手首部先端の指定されたポイントを基準ポイント
として,教示された経路を直線補間または円弧補間しな
がら指定された速度で基準ポイントが移動するよう各ア
ーム及び手首部が作動制御される。例えば,図5に示す
ように手首部24にシール剤の塗布ガン23を装着した
シーリングロボット21を,ワーク22の教示ポイント
Aから教示ポイントBに至るシーリング経路を移動させ
る。塗布ガン23はポイントAを速度ゼロから加速し
て,やがて定速になり,ポイントBに近づいて減速さ
れ,ポイントBで停止する。このとき,手首部24の角
度は図示するように変化して,塗布ガン23のワーク2
2に対する姿勢を図6に示すように一定に保って移動す
る。図6はポイントAからポイントBに移動するときの
時間tにおける塗布ガン23の移動速度の変化と,塗布
ガン23の姿勢を示している。ところで,例えばシーリ
ング作業においては,シーリング品質及び均一性を得る
ために,塗布されたシール材が一定のビード幅と高さに
なることが要求される。この要求を満たすため,上記の
ように塗布ガン23の姿勢を一定に保つと共に,シール
剤の吐出量が塗布ガン23の移動速度に比例して変化す
るよう塗布ガン23の吐出圧が制御される。上記シール
剤の他,接着剤等の高粘度材料を定量塗布する場合にも
同様の操作がなされる。
2. Description of the Related Art A teaching / playback type industrial robot uses a designated point at the tip of the wrist of the robot as a reference point, and linearly or circularly interpolates a taught path to set a reference point at a designated speed. Each arm and wrist are actuated to move. For example, as shown in FIG. 5, the sealing robot 21 having the gun 24 for applying the sealant on the wrist 24 is moved along the sealing path from the teaching point A to the teaching point B of the work 22. The coating gun 23 accelerates the point A from zero speed until it reaches a constant speed, then approaches the point B, is decelerated, and stops at the point B. At this time, the angle of the wrist portion 24 changes as shown in the drawing, and the work 2 of the application gun 23 changes.
The posture with respect to 2 is kept constant as shown in FIG. FIG. 6 shows changes in the moving speed of the coating gun 23 at time t when moving from the point A to the point B, and the posture of the coating gun 23. By the way, in sealing work, for example, in order to obtain sealing quality and uniformity, the applied sealing material is required to have a constant bead width and height. In order to satisfy this requirement, the posture of the coating gun 23 is kept constant as described above, and the discharge pressure of the coating gun 23 is controlled so that the discharge amount of the sealing agent changes in proportion to the moving speed of the coating gun 23. . The same operation is performed when a high-viscosity material such as an adhesive agent is quantitatively applied in addition to the above-mentioned sealing agent.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,塗布ガ
ンのノズル口径は通常一定であるため,吐出量を増すた
め吐出圧を大きくすると,吐出する高粘度材料の流速が
速くなり,高粘度材料がワークに当たるときのエネルギ
ーが大きくなる結果,シーリングにおいては図3(b)
に示すように,意図するビード幅よりも大きくなり,ビ
ード形状も図示するように中央部分が凹んだものとな
る。即ち,図4(b)に示すような,中央部分の高い所
望の形状と所定のビード幅が得られない問題点が発生す
る。本発明は上記問題点に鑑み,移動速度に比例した吐
出量制御を行う高粘度材料塗布において,安定したビー
ド幅と高さを得る高粘度材料塗布ロボットの制御方法を
提供することを目的とする。
However, since the nozzle diameter of the coating gun is usually constant, if the discharge pressure is increased to increase the discharge amount, the flow rate of the high-viscosity material to be discharged becomes faster, and the high-viscosity material becomes a work piece. As a result of the increase in the energy when hitting, Figure 3 (b)
The bead width becomes larger than the intended bead width as shown in Fig. 3, and the bead shape also has a recessed central portion as shown in the drawing. That is, as shown in FIG. 4B, there arises a problem that a desired shape with a high center portion and a predetermined bead width cannot be obtained. In view of the above problems, it is an object of the present invention to provide a control method for a high-viscosity material coating robot that obtains a stable bead width and height in high-viscosity material coating that controls discharge amount in proportion to moving speed. .

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する方法は,ロボットの手首部に装着し
た塗布ガンをロボット制御盤に格納された教示データに
従って塗布経路上に移動させ,この移動速度に応じて前
記塗布ガンからの高粘度材料の吐出量を制御してなる高
粘度材料塗布ロボットの制御方法において,前記塗布ガ
ンの吐出角度を移動速度に対応して移動方向に傾斜させ
ることを特徴とする高粘度材料塗布ロボットの制御方法
である。
In order to achieve the above object, a method adopted by the present invention is to move an application gun mounted on a wrist of a robot onto an application path according to teaching data stored in a robot control panel. In a control method of a high-viscosity material coating robot in which the discharge amount of the high-viscosity material from the coating gun is controlled according to the moving speed, the discharge angle of the coating gun is inclined in the moving direction according to the moving speed. This is a method for controlling a high-viscosity material coating robot, characterized by:

【0005】[0005]

【作用】本発明によれば,塗布ガンを塗布経路上に移動
させる移動速度が速くなるほど前記塗布ガンからの吐出
量が多くなるよう制御される高粘度材料塗布ロボットの
制御方法において,塗布ガンを移動速度が速いほど移動
方向に傾斜するようロボットの手首部を制御すると,吐
出量の増加に伴って大きくなる吐出流速のエネルギーは
塗布ガンが移動する反対方向に流れるので,塗布される
高粘度材料は周囲に広がらず,塗布経路上に所望のビー
ド幅とビード厚で塗布することができる。
According to the present invention, in the control method of the high-viscosity material coating robot, the coating gun is controlled so that the discharge amount from the coating gun increases as the moving speed for moving the coating gun on the coating path increases. When the robot's wrist is controlled so that it tilts in the moving direction as the moving speed increases, the energy of the discharge flow velocity, which increases as the discharge amount increases, flows in the direction opposite to the movement of the coating gun. Does not spread around, and can be applied with a desired bead width and bead thickness on the application path.

【0006】[0006]

【実施例】以下,添付図面を参照して,本発明を具体化
した実施例につき説明し,本発明の理解に供する。尚,
以下の実施例は本発明を具体化した一例であって,本発
明の技術的範囲を限定するものではない。本実施例は,
シール剤を所定塗布経路に沿って塗布するシーリングロ
ボットに本発明を適用したものである。ここに図1は塗
布ガンを移動速度に対応した傾斜角に変化させる動作説
明図,図2はシーリングロボットの構成を示す構成図,
図3,図4は塗布ガンの吐出角度変化による塗布形状の
変化を示す説明図である。まず,図2を用いてシーリン
グロボットの構成を説明する。ロボット2はアーム先端
の手首部2aに塗布ガン1を装着して,ロボット制御盤
3から出力されるロボット制御信号により動作して,前
記塗布ガン1を所定の塗布経路に移動させる。塗布ガン
1にはタンク5に貯溜されたシール剤6が圧送ポンプ4
により送給されている。また,塗布ガン1にはロボット
制御盤3から出力される吐出量信号とオン・オフ信号に
基づき塗布ガン1を制御する塗布ガン制御部7が接続さ
れている。
Embodiments of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. still,
The following examples are examples of embodying the present invention and do not limit the technical scope of the present invention. In this example,
The present invention is applied to a sealing robot that applies a sealant along a predetermined application path. FIG. 1 is an explanatory view of the operation of changing the coating gun to an inclination angle corresponding to the moving speed, and FIG. 2 is a configuration diagram showing the configuration of the sealing robot.
3 and 4 are explanatory views showing changes in the coating shape due to changes in the discharge angle of the coating gun. First, the configuration of the sealing robot will be described with reference to FIG. The robot 2 mounts the coating gun 1 on the wrist 2a at the tip of the arm and operates according to a robot control signal output from the robot control panel 3 to move the coating gun 1 to a predetermined coating path. The sealant 6 stored in the tank 5 is applied to the application gun 1 by the pressure pump 4
It has been sent by. Further, the coating gun 1 is connected to a coating gun control unit 7 which controls the coating gun 1 based on a discharge amount signal and an ON / OFF signal output from the robot control panel 3.

【0007】ロボット制御盤3は,ロボット2を動作制
御する教示データが格納された教示データ記憶部8と,
教示データから軌道計算してロボットアームの移動量を
計算する軌道計算部9と,軌道計算値からロボット2の
各関節軸の制御信号を作成するサーボ制御部10と,制
御信号を増幅するサーボアンプ11とを具備して,ロボ
ット2にロボット制御信号を出力する。更に,前記軌道
計算部9からのロボットアーム先端の移動速度に基づい
た吐出量を指示する吐出量信号を作成する吐出量計算部
12と,前記教示データ記憶部8からのデータに基づい
て塗布ガン1のオン・オフ信号を作成する出力指令部1
3を具備して,吐出量信号とオン・オフ信号とを塗布ガ
ン制御部7に出力する。上記のように構成されるシーリ
ングロボットは,ロボット制御盤3から出力されるロボ
ット制御信号によってロボット2を動作させ,塗布ガン
1を装着したロボットアーム先端の移動速度に対応して
塗布ガン制御部7から出力される塗布ガン制御信号によ
って塗布ガン1からのシール剤の吐出量を変化させる。
また,ロボット制御盤3のサーボ制御部10は,手首部
2aの駆動をロボットアーム先端の移動速度に対応させ
て制御し,塗布ガン1を移動速度に対応させて移動方向
に傾斜させるガン角度制御信号を作成してサーボアンプ
11からロボット2に出力する。
The robot control panel 3 includes a teaching data storage section 8 in which teaching data for controlling the operation of the robot 2 is stored,
A trajectory calculation unit 9 that calculates the trajectory of the robot arm by calculating the trajectory from the teaching data, a servo control unit 10 that creates a control signal for each joint axis of the robot 2 from the trajectory calculation value, and a servo amplifier that amplifies the control signal. 11, and outputs a robot control signal to the robot 2. Further, a discharge amount calculation unit 12 for generating a discharge amount signal for instructing a discharge amount based on the moving speed of the robot arm tip from the trajectory calculation unit 9, and a coating gun based on the data from the teaching data storage unit 8 Output command unit 1 for creating ON / OFF signal 1
3, and outputs the discharge amount signal and the on / off signal to the coating gun control unit 7. The sealing robot configured as described above operates the robot 2 in accordance with a robot control signal output from the robot control panel 3, and applies the coating gun control unit 7 according to the moving speed of the tip of the robot arm on which the coating gun 1 is mounted. The discharge amount of the sealant from the coating gun 1 is changed by the coating gun control signal output from the coating gun 1.
Further, the servo control unit 10 of the robot control panel 3 controls the drive of the wrist 2a in accordance with the moving speed of the tip of the robot arm, and the gun angle control for tilting the coating gun 1 in the moving direction in accordance with the moving speed. A signal is created and output from the servo amplifier 11 to the robot 2.

【0008】図1は,塗布ガン1を塗布経路のポイント
AからポイントBに移動させるときの移動速度の変化
と,塗布ガン1の吐出角度の変化を示している。ロボッ
ト2はロボット制御盤3からのロボット制御信号によっ
て動作し,手首部2aに装着した塗布ガン1をポイント
Aを速度ゼロから加速して,やがて定速になり,ポイン
トBに近づいて減速し,ポイントBで停止する。このと
き,手首部2aは図示するように塗布ガン1を移動速度
に対応して移動方向(矢印方向)に傾斜させるように制
御される。即ち,塗布ガン1からのシール剤の吐出角度
が移動速度に比例して移動方向の反対方向に傾斜され
る。塗布ガン1からの吐出量は,塗布経路に定量塗布す
るために塗布ガン1の移動速度が速いほど多くなるよう
に吐出圧が制御されている。そのため吐出量が増加する
と,塗布ガン1のノズルから吐出するときの流速が速く
なるため,吐出されたシール剤が塗布位置に当たるエネ
ルギーが大きくなって,図3(b)に示すように塗布さ
れたシール剤は,所定のビード幅よりも広くなり,ビー
ド形状も同図に示すように中央部分が凹んだ断面形状と
なってしまう。そこで,本実施例のように,吐出量の多
いときの塗布ガン1の吐出角度を傾斜させると,図4
(a)に示すように,吐出エネルギーは塗布ガン1の移
動方向の反対方向に逃がされるため,吐出されたシール
剤の拡散が防止され,塗布されたビード形状は,図4
(b)に示すように所望の断面形状が得られる。この塗
布ガン1の吐出角度は,図1に示すように塗布ガン1の
移動速度に対応して傾斜角を変化させることによって,
移動速度に対応して変化する吐出量に伴う吐出流量の変
化に対応させることができる。以上は,高粘度材料とし
てシール剤を対象とした実施例について説明したが,接
着剤等の高粘度材料の塗布ロボットの制御方法として
も,同様に適用できることは言うまでもない。また制御
される吐出角度を移動速度に完全に比例させる必要はな
く,移動速度に対して段階的に制御する等,種々の態様
が考えられる。
FIG. 1 shows changes in the moving speed when the coating gun 1 is moved from point A to point B in the coating path and changes in the discharge angle of the coating gun 1. The robot 2 operates in response to a robot control signal from the robot control panel 3, accelerates the application gun 1 attached to the wrist 2a from a speed of point A to zero, and eventually becomes a constant speed, and decelerates toward a point B. Stop at point B. At this time, the wrist 2a is controlled so as to incline the application gun 1 in the moving direction (arrow direction) according to the moving speed as shown in the figure. That is, the discharge angle of the sealant from the coating gun 1 is inclined in the direction opposite to the moving direction in proportion to the moving speed. The discharge pressure from the coating gun 1 is controlled so that the amount of discharge from the coating gun 1 increases as the moving speed of the coating gun 1 increases in order to perform quantitative coating on the coating path. Therefore, when the discharge amount is increased, the flow velocity at the time of discharging from the nozzle of the coating gun 1 is increased, so that the energy of the discharged sealing agent applied to the coating position is increased, and the sealing agent is coated as shown in FIG. 3B. The sealing agent becomes wider than a predetermined bead width, and the bead shape also has a cross-sectional shape with a depressed central portion as shown in the same figure. Therefore, when the discharge angle of the coating gun 1 when the discharge amount is large as in this embodiment is inclined, as shown in FIG.
As shown in (a), since the discharge energy is released in the direction opposite to the moving direction of the coating gun 1, the discharged sealing agent is prevented from diffusing, and the shape of the coated bead is as shown in FIG.
A desired cross-sectional shape is obtained as shown in (b). The discharge angle of the coating gun 1 is changed by changing the inclination angle according to the moving speed of the coating gun 1 as shown in FIG.
It is possible to deal with a change in the discharge flow rate that accompanies the discharge amount that changes according to the moving speed. Although the above description has been given of the embodiment in which the sealant is used as the high-viscosity material, it is needless to say that the same can be applied to a control method of a robot for coating a high-viscosity material such as an adhesive. Further, it is not necessary to make the controlled ejection angle completely proportional to the moving speed, and various modes such as stepwise control with respect to the moving speed are conceivable.

【0009】[0009]

【発明の効果】以上の説明の通り本発明によれば,塗布
ガンの移動速度が速いほど移動方向の傾斜するよう手首
部を制御すると,吐出量の増加に伴って大きくなる吐出
流速のエネルギーは塗布ガンが移動する反対方向に流れ
るので,塗布される高粘度材料は周囲に広がらず,塗布
経路上に所望のビード幅とビード厚で塗布することがで
きる。
As described above, according to the present invention, when the wrist portion is controlled so as to incline in the moving direction as the moving speed of the coating gun increases, the energy of the discharging flow velocity which increases with the increase of the discharging amount Since the coating gun moves in the opposite direction of movement, the high-viscosity material to be coated does not spread around, and can be coated with a desired bead width and bead thickness on the coating path.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る塗布ガン吐出角度変化制
御の説明図。
FIG. 1 is an explanatory diagram of application gun discharge angle change control according to an embodiment of the present invention.

【図2】実施例シーリングロボットの構成図。FIG. 2 is a configuration diagram of a sealing robot according to an embodiment.

【図3】吐出角度ゼロの吐出状態(a)とビード形状
(b)を示す説明図。
FIG. 3 is an explanatory view showing a discharge state (a) and a bead shape (b) at a discharge angle of zero.

【図4】吐出角度をつけたときの吐出状態(a)とビー
ド形状(b)を示す説明図。
FIG. 4 is an explanatory view showing a discharge state (a) and a bead shape (b) when a discharge angle is set.

【図5】従来例ロボットの手首部制御の説明図。FIG. 5 is an explanatory view of wrist control of a conventional robot.

【図6】従来例の塗布ガン姿勢と移動速度変化との関係
を示す説明図。
FIG. 6 is an explanatory diagram showing a relationship between a coating gun attitude and a change in moving speed in a conventional example.

【符号の説明】[Explanation of symbols]

1…塗布ガン 2…ロボット 2a…手首部 3…ロボット制御盤 7…塗布ガン制御器 1 ... Application gun 2 ... Robot 2a ... Wrist part 3 ... Robot control panel 7 ... Application gun controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ロボットの手首部に装着した塗布ガンをロ
ボット制御盤に格納された教示データに従って塗布経路
上に移動させ,この移動速度に応じて前記塗布ガンから
の高粘度材料の吐出量を制御してなる高粘度材料塗布ロ
ボットの制御方法において,前記塗布ガンの吐出角度を
移動速度に対応して移動方向に傾斜させることを特徴と
する高粘度材料塗布ロボットの制御方法。
1. A coating gun attached to a wrist of a robot is moved along a coating path according to teaching data stored in a robot control panel, and a discharge amount of a high-viscosity material from the coating gun is changed according to the moving speed. A method for controlling a high-viscosity material coating robot, comprising: controlling a discharge angle of the coating gun in a moving direction corresponding to a moving speed.
JP26914191A 1991-10-17 1991-10-17 Control of high viscosity material coating robot Pending JPH05104044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26914191A JPH05104044A (en) 1991-10-17 1991-10-17 Control of high viscosity material coating robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26914191A JPH05104044A (en) 1991-10-17 1991-10-17 Control of high viscosity material coating robot

Publications (1)

Publication Number Publication Date
JPH05104044A true JPH05104044A (en) 1993-04-27

Family

ID=17468260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26914191A Pending JPH05104044A (en) 1991-10-17 1991-10-17 Control of high viscosity material coating robot

Country Status (1)

Country Link
JP (1) JPH05104044A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07148449A (en) * 1993-07-19 1995-06-13 W R Grace & Co Jet spray applicator for viscous liquid containing adhesive agent/coagulating solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07148449A (en) * 1993-07-19 1995-06-13 W R Grace & Co Jet spray applicator for viscous liquid containing adhesive agent/coagulating solution

Similar Documents

Publication Publication Date Title
US20040011284A1 (en) Device for applying adhesive to a workpiece
JP2008132487A (en) Method for determining injection parameter for controlling coating instrument using injection means
JPH0550015A (en) Coating method
JP2009183942A (en) Robot re-starting method
JPH05216522A (en) Switch-process releasing method during machining of robot or machine tool
JPH05289722A (en) Automatic programming device for coating robot
JPH05104044A (en) Control of high viscosity material coating robot
JPH05285434A (en) Apparatus for discharging liquid
JP2019000814A (en) Orbit data simulation method in coating robot
JPH0596214A (en) Controlling device for discharge of sealing compound
JP3626808B2 (en) Control method and control device for painting robot
JPS6233573A (en) High-viscosity fluid sprayer
JPS62213868A (en) Sealing robot
JPH05168996A (en) Coating gun for high viscosity material
JP3351297B2 (en) Coating apparatus and coating material coating method
JP4486222B2 (en) Viscous material applicator
JP3827438B2 (en) Control method of coating film thickness in painting robot
JP3041427B2 (en) Painting robot
JP2976169B2 (en) Coating equipment for viscous materials
JP3412896B2 (en) Spray flux application method
JPH06285402A (en) Method of controlling rate of flow of sealing agent in sealing robot
JPH06210210A (en) Controlling method of robot which carries out sealing work
JP3076108B2 (en) How to set painting robot control variables
JPH07108212A (en) Spray painting method
JP2711349B2 (en) Industrial robot control method and control device used therefor