JPH05102786A - Piezoelectric vibrator - Google Patents

Piezoelectric vibrator

Info

Publication number
JPH05102786A
JPH05102786A JP28917091A JP28917091A JPH05102786A JP H05102786 A JPH05102786 A JP H05102786A JP 28917091 A JP28917091 A JP 28917091A JP 28917091 A JP28917091 A JP 28917091A JP H05102786 A JPH05102786 A JP H05102786A
Authority
JP
Japan
Prior art keywords
electrode
sub
resonance frequency
frequency
main electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28917091A
Other languages
Japanese (ja)
Inventor
Haruyoshi Ota
治良 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP28917091A priority Critical patent/JPH05102786A/en
Publication of JPH05102786A publication Critical patent/JPH05102786A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To surely warrant stable suppression effect by making a main electrode and a sub electrode mismatching and connecting a damping impedance to the sub electrode. CONSTITUTION:A main electrode 1 and a sub electrode 2 are arranged separately on a front side of a piezoelectric plate 4 and a common electrode is disposed on a rear side opposite to the main electrode and the sub electrode 2 on the front side. When the electrode widths W1, W2 differ and both the electrodes 1, 2 are adjusted to a substrate resonance frequency, the thickness of the sub electrode 2 is made thicker than the thickness of the main electrode 1. When an oscillation circuit is formed by connecting the piezoelectric vibrators, the fundamental frequency component of an oscillation amplifier section is efficiently consumed by a damping impedance 5 connecting from the main electrode 1 to the sub electrode 2 and the oscillation at the fundamental frequency is efficiently suppressed, Since the thickness of the sub electrode 2 differs from the thickness of the main electrode 1, a ternary overtone frequency is delivered to the sub electrode 2 and oscillated excellently without consumption and attenuation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一対の主電極を圧電板
の表裏面上に配設した圧電振動子に関し、特に所定のオ
ーバトーン共振周波数を周波数選択的に抑圧しかつ所望
のオーバトーン共振周波数を周波数選択的に発振可能と
する副電極を配設しダンピングインピーダンスを接続し
た圧電振動子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric vibrator in which a pair of main electrodes are provided on the front and back surfaces of a piezoelectric plate, and in particular, a predetermined overtone resonance frequency is frequency-selectively suppressed and a desired overtone is obtained. The present invention relates to a piezoelectric vibrator in which a sub-electrode that allows frequency-selective oscillation of a resonance frequency is provided and a damping impedance is connected.

【0002】[0002]

【従来の技術】チップ型半導体素子を用いて所望のオー
バトーン共振周波数で発振する小型圧電発振回路を構成
するとき、小型圧電振動子とチップ型半導体素子で構成
する発振回路内に、チップ型インダクタとコンデンサの
同調タンク回路を挿入して周波数選択特性をもたせるよ
うにして、一般に圧電振動子の高次オーバトーン発振の
困難さを解決している。しかし、小型発振回路にあって
は、同調タンク回路の占める容積は比較的大きくなり、
周波数調整を必要とするだけでなく、温度変動により発
振周波数の安定性を著しく損なうことがあるので、同調
タンク回路は除却したい構成要素の一つであった。この
課題を解決する目的の高次オーバトーン圧電振動子とし
て、次の2つの手段が既に知られている。
2. Description of the Related Art When a small-sized piezoelectric oscillator circuit that oscillates at a desired overtone resonance frequency is formed by using a chip-type semiconductor element, a chip-type inductor is provided in an oscillation circuit formed by the small-sized piezoelectric vibrator and the chip-type semiconductor element. In general, the difficulty of high-order overtone oscillation of a piezoelectric vibrator is solved by inserting a tuning tank circuit of a capacitor and a capacitor so as to have a frequency selection characteristic. However, in a small oscillation circuit, the volume occupied by the tuning tank circuit becomes relatively large,
The tuning tank circuit has been one of the components to be removed because not only the frequency adjustment is required but also the stability of the oscillation frequency may be significantly impaired by the temperature fluctuation. As a high-order overtone piezoelectric vibrator for the purpose of solving this problem, the following two means are already known.

【0003】第1の手段は、特開昭61−236208
号、同62−168409号、同62−169508
号、同62−169509号、同62−169510号
等に開示されたもので、圧電振動板の振動変位分布が励
振電極に閉じこ込められるときに、その振動次数が高次
になるほど、閉じ込め範囲は励振電極により集中すると
いうエネルギー閉じ込め現象の特有な効果を利用したも
のである。このとき、励振電極の近傍に適当な距離をお
いて副電極を隔設しておくと、低次な共振振動ほど振動
エネルギーが機械−電気変換されて副電極上に電気エネ
ルギーとして抽出されるから、この副電極を短絡させる
などして振動エネルギーを消費すれば、低次オーバトー
ン振動とりわけ基本波振動を選択的に減衰させ抑圧で
き、高次オーバトーン圧電振動子を提供できるとするも
のである。
The first means is disclosed in JP-A-61-236208.
No. 62-168409 and 62-169508.
No. 62-169509, No. 62-169510, and the like. When the vibration displacement distribution of the piezoelectric vibrating plate is confined in the excitation electrode, the higher the vibration order becomes, the more the confinement range becomes. Uses the peculiar effect of the energy confinement phenomenon of being concentrated by the excitation electrode. At this time, if the sub-electrodes are spaced apart from each other in the vicinity of the excitation electrodes, the vibration energy is mechanically-electrically converted and extracted as electric energy on the sub-electrodes, as the resonance vibration has a lower order. If the vibration energy is consumed by short-circuiting the sub-electrodes, it is possible to selectively attenuate and suppress low-order overtone vibrations, especially fundamental vibrations, thereby providing a high-order overtone piezoelectric vibrator. ..

【0004】第2の手段は、特願昭62−230108
号に開示されたもので、第1の手段で特徴的な副電極を
配設することなく、主電極を圧電振動板面上に非対称配
置するだけで、圧電振動板を機械的に保持した保持具に
低次振動の振動エネルギーを機械音響的に伝達させ吸収
し、消散させようとするものである。第1の手段とほぼ
同じ原理に基づいたもので、例えば基本波共振振動を抑
圧した第3次オーバトーン圧電振動子を提供しようとす
るものである。
The second means is Japanese Patent Application No. 62-230108.
The piezoelectric diaphragm is mechanically held by merely disposing the main electrode asymmetrically on the surface of the piezoelectric diaphragm without disposing the characteristic sub-electrode by the first means. The vibration energy of low-order vibration is mechanically and acoustically transmitted to the tool to be absorbed and dissipated. It is based on almost the same principle as the first means, and is intended to provide, for example, a third-order overtone piezoelectric vibrator in which fundamental wave resonance vibration is suppressed.

【0005】第1の手段は、副電極と主電極を圧電板面
上に同時に配設することができるので、配置、厚み、形
状などの制御を必要とするパラメータを比較的容易に設
定でき製造上有利な手段と考えられていた。電気−機械
変換効率を示す電気機械結合係数はPZTの場合でも約
50%ほどであるから、この結合係数の自乗に比例する
エネルギー変換効率は約25%となる。しかしながら、
両電極間の機械音響的整合を全く考慮していないから不
整合損失が大きく、また負荷に対しても電気的整合を配
慮していないから、抽出エネルギーは効率よく消費され
ているとはとても言い難く、主電極の振動エネルギーを
抑制しているのは実質数%に過ぎない。電気機械結合係
数の特に小さい圧電板、例えば電気機械結合係数10%
の水晶板等において、この共振振動抑制手段では殆ど効
果を期待することはできない。実際に、この第1の手段
による抑圧効果は不充分で動作も不安定であり、未だ広
く実用化されるまでに至っていない。第2の手段は、振
動エネルギーを電気変換することなく機械音響的に保持
器に直接伝達させ消散させようとするものであるから、
前記第1の手段と比較すれば利用し易く実用上有効な効
果を発揮するものと考えられている。しかしながら、各
種振動子について実現させるためには、圧電振動板の最
適な外形寸法と電極配置を求めて実験し確認しなければ
ならなず、これは多分に実証的な手続きであることから
設計の指導原理としては必ずしも適当でなく、合理的な
オーバトーン振動子設計法の確立が強く求められてい
た。その上、第2の手段では、共振周波数が高周波周波
数になるほど実現困難になるなど、解決しなければなら
ない課題も数多くあり、やはり未だ広範に利用されるま
でには至っていない。
In the first means, since the sub-electrode and the main electrode can be arranged on the surface of the piezoelectric plate at the same time, it is possible to set parameters which require control such as arrangement, thickness and shape relatively easily. It was considered an advantageous measure. Since the electromechanical coupling coefficient indicating the electromechanical conversion efficiency is about 50% even in the case of PZT, the energy conversion efficiency proportional to the square of this coupling coefficient is about 25%. However,
Since the mechanical-acoustic matching between both electrodes is not considered at all, the mismatch loss is large, and the electrical matching is not considered for the load, so it can be said that the extracted energy is efficiently consumed. It is difficult to control the vibration energy of the main electrode by only a few percent. Piezoelectric plate with a particularly low electromechanical coupling coefficient, eg electromechanical coupling coefficient 10%
In the crystal plate and the like, it is almost impossible to expect any effect by this resonance vibration suppressing means. Actually, the suppression effect by the first means is insufficient and the operation is unstable, and it has not yet been widely used. The second means is to directly transmit the vibration energy mechanically and acoustically to the cage without converting it electrically, so that the energy is dissipated.
It is considered that it is easy to use and exhibits practically effective effects as compared with the first means. However, in order to realize various vibrators, it is necessary to conduct an experiment by confirming the optimum external dimensions and electrode arrangement of the piezoelectric diaphragm, which is probably an empirical procedure. It was not necessarily appropriate as a teaching principle, and there was a strong demand for establishment of a rational overtone oscillator design method. In addition, the second means has many problems to be solved, such as the higher the resonance frequency becomes, the more difficult it is to realize, and the second means has not yet been widely used.

【0006】[0006]

【発明が解決しようとする課題】所望の高次共振周波数
を確実に安定して発振する圧電振動子を実現する有効で
合理的な設計方法を確立するためには、次の基本課題を
解決する必要があった。従来は、低次共振振動の振動エ
ネルギーを主電極と副電極の間あるいは主電極と保持器
の間に自然に存在する機械音響的結合を利用して抽出し
ているが、音響的整合に関しては全く配慮されていな
い。すなわち、物理的に隔設された2電極の間あるいは
電極と保持器の間にある不整合状態の音響的結合を単に
利用しただけであるから、抑圧すべき振動エネルギーの
一部を抽出しているに過ぎず、しかもこの不整合状態で
抽出した振動エネルギーは電極短絡あるいは機械的保持
により、同様に電気的あるいは機械音響的に不整合状態
のままにその一部が消費されあるいは消散されるだけで
ある。終局、抑圧すべき振動エネルギーの極く一部が抑
制され得るに過ぎない。つまり、安定性と信頼性を備え
る高次共振周波数のオーバトーン圧電振動子を実現する
ためには、抑圧すべき共振周波数において、主電極と副
電極間を機械音響的に整合させ最も効率よく確実に振動
エネルギーを抽出し、そしてこの抽出したエネルギーを
可能な限り最大限に消費させるようにしなければならな
いと共にに、発振目的の所望の共振周波数において、主
電極の振動エネルギーを可能な限り副電極に抽出しない
よう、両電極間は音響的不整合状態に維持されていなけ
ればならない。
In order to establish an effective and rational design method for realizing a piezoelectric vibrator that reliably and stably oscillates a desired higher resonance frequency, the following basic problems are solved. There was a need. Conventionally, the vibration energy of low-order resonance vibration is extracted by utilizing the mechanical-acoustic coupling that naturally exists between the main electrode and the sub-electrode or between the main electrode and the cage, but regarding acoustic matching, No consideration at all. That is, since a mismatched acoustic coupling between two electrodes physically separated or between the electrode and the holder is simply used, a part of the vibration energy to be suppressed is extracted. However, the vibration energy extracted in this mismatched state is consumed or dissipated in the same electrical or mechanoacoustic mismatched state due to electrode short circuit or mechanical holding. Is. Eventually, only a small part of the vibrational energy to be suppressed can be suppressed. In other words, in order to realize a stable and reliable high-order resonance frequency overtone piezoelectric vibrator, the main and sub electrodes are mechanically acoustically matched at the resonance frequency to be suppressed, and the most efficient and reliable It is necessary to extract the vibration energy of the main electrode so that the extracted energy is consumed to the maximum extent possible, and at the desired resonance frequency for oscillation purpose, the vibration energy of the main electrode is converted to the auxiliary electrode as much as possible. An acoustic mismatch between the electrodes must be maintained to prevent extraction.

【0007】本発明はこの課題に鑑みてなされたもの
で、抑圧すべき共振周波数において、主電極と副電極は
通過帯域型音響結合フィルタを形成して主電極の振動エ
ネルギーを周波数選択的に効率よく副電極に抽出し同時
に副電極に接続または配設してあるダンピングインピー
ダンスにおいて消費させるよう、さらに所望の発振周波
数において、主電極と副電極を不整合状態にして発振周
波数を抑圧しないよう、両電極の構成パラメータを設定
したことを特徴とする高次オーバトーン用圧電振動子を
提供することを目的とする。本発明は、この課題を解決
するため次の2つの現象を利用するものである。
The present invention has been made in view of this problem, and at the resonance frequency to be suppressed, the main electrode and the sub-electrode form a pass band type acoustic coupling filter to efficiently select the vibration energy of the main electrode in a frequency selective manner. In order not to suppress the oscillation frequency by extracting it to the auxiliary electrode and consuming it at the same time as the damping impedance that is connected to or disposed in the auxiliary electrode, and by making the main electrode and the auxiliary electrode in a mismatched state at the desired oscillation frequency. It is an object of the present invention to provide a piezoelectric vibrator for high-order overtone, which is characterized by setting a constituent parameter of an electrode. The present invention utilizes the following two phenomena to solve this problem.

【0008】[0008]

【課題を解決するための手段】第1は、圧電板の表裏板
面上に電極を配設するとその共振周波数が圧電板の共振
周波数(遮断周波数)より低下する現象を利用する。こ
の周波数低下量は電極の厚みだけでなく形状寸法によっ
ても変るから、たとえ同じ電極材の同じ厚みの電極を配
設したとしても、電極形状がより小さいと、実際の(見
かけ上の)周波数低下量は少ないことが知られている。
図5にこの関係を示たものである。すなわち、圧電板の
表裏板面の全面に電極を配設しときの電極材の厚みのみ
に依存する真の周波数バック量Rtに対して、電極の形
状寸法も考慮に入れた見かけ上の周波数バック量Rqの
間には、非直線的な周波数バック量関係が成立するとし
て周知されているものである。そしてこの両周波数バッ
ク量と電極形状の関係は、オーバトーン次数と共に変化
し、次数が高騰するにつれてその差異が少なくなること
が知られている。本発明はこの関係を利用してなされた
ものである。すなわち、本発明の実施例である図1と図
2の例に沿って説明すると、2つの電極の電極幅と電極
厚みをそれぞれ主電極1(W1,H1)と副電極2(W
2,H2)においてW1>W2であるとすると,主電極
1の基本波共振周波数f1mに副電極の基本波共振周波
数を周波数調整して一致させたとすると、H1<H2の
関係が成立する。一般に基本波振動と比較してオーバト
ーン振動は電極周辺により閉じ込められているから、見
かけ上の周波数バック量Rqはオーバトーン振動次数の
高騰につれて電極形状にあまり依存しない関係になる。
つまり、真の周波数バック量と見かけ上の周波数バック
量との周波数差は小さくなるから、副電極2のオーバト
ーン共振周波数f3sは主電極1のオーバトーン共振周
波数f3mよりも低くなるから、f3m>f3sの周波
数関係が得られ、その結果両周波数は一致しないことに
なる(図3)。
First, the phenomenon that the resonance frequency of an electrode is lower than the resonance frequency (cutoff frequency) of the piezoelectric plate when the electrodes are arranged on the front and back plate surfaces of the piezoelectric plate is utilized. The amount of frequency decrease depends not only on the thickness of the electrode but also on the shape and size. Therefore, even if electrodes with the same thickness and the same electrode material are arranged, the actual (apparent) frequency decrease will occur if the electrode shape is smaller. It is known that the amount is small.
FIG. 5 shows this relationship. That is, with respect to the true frequency back amount Rt which depends only on the thickness of the electrode material when the electrodes are arranged on the entire front and back plate surfaces of the piezoelectric plate, the apparent frequency back amount in consideration of the shape and size of the electrode. It is well known that a nonlinear frequency back amount relationship is established between the quantities Rq. It is known that the relationship between the two frequency back amounts and the electrode shape changes with the overtone order, and the difference decreases as the order rises. The present invention has been made by utilizing this relationship. That is, to explain with reference to the example of FIGS. 1 and 2 which is an embodiment of the present invention, the electrode width and the electrode thickness of the two electrodes are the main electrode 1 (W1, H1) and the sub electrode 2 (W, respectively).
2, H2), W1> W2, and the fundamental wave resonance frequency f1m of the main electrode 1 is adjusted to match the fundamental wave resonance frequency of the auxiliary electrode, and the relationship of H1 <H2 is established. Since the overtone vibration is generally confined by the electrode periphery as compared with the fundamental wave vibration, the apparent frequency back amount Rq becomes less dependent on the electrode shape as the overtone vibration order rises.
That is, since the frequency difference between the true frequency back amount and the apparent frequency back amount becomes small, the overtone resonance frequency f3s of the auxiliary electrode 2 becomes lower than the overtone resonance frequency f3m of the main electrode 1, so that f3m> The frequency relationship of f3s is obtained, and as a result, both frequencies do not match (FIG. 3).

【0009】第2は、圧電振動板の基本波を含むオーバ
トーン共振周波数の間で簡単な整数倍(奇数倍)関係が
成立しない現象を利用する。この関係は、圧電振動基本
式より導出される周波数関係式に表現されるもので、経
験的にも熟知されている。この関係を板面垂直方向に分
極が施された圧電セラミックの厚み縦振動を例にとって
説明する。勿論のことではあるが、板面平行方向に分極
された圧電板の厚みすべり振動あるいはその他の圧電材
質の厚み振動系においても同様な関係式が成立してい
る。厚み2hの無限セラミックス圧電板において、厚み
縦振動の共振周波数関数式は、式1に示す通り、電気機
械結合係数項(K26)を含む正接関数超越方程式とし
て表わされるから、この関係式の根は図5の曲線と直線
の交点として求められる。これより、電気機械結合係数
(K26)が0でない限り、共振角周波数係数(ηn)
h(n=1,3,5...,ηn=ωn/c,ωn:n
次のオーバトーン角周波数,c:媒体内の音速)の間に
は、単純な整数(奇数)倍関係が成立しないことが容易
に理解される。
Secondly, a phenomenon that a simple integral multiple (odd multiple) relationship is not established between overtone resonance frequencies including the fundamental wave of the piezoelectric diaphragm is used. This relationship is expressed by a frequency relational expression derived from the piezoelectric vibration basic equation, and is well known empirically. This relationship will be described by taking the thickness longitudinal vibration of a piezoelectric ceramic polarized in the direction perpendicular to the plate surface as an example. As a matter of course, the same relational expression holds in the thickness shear vibration of the piezoelectric plate polarized in the direction parallel to the plate surface or in the thickness vibration system of other piezoelectric materials. In an infinite ceramics piezoelectric plate with a thickness of 2h, the resonance frequency function formula of the thickness longitudinal vibration is expressed as a tangent function transcendental equation including the electromechanical coupling coefficient term (K26) as shown in Formula 1, and therefore the root of this relational expression is It is obtained as the intersection of the curve and the straight line in FIG. Therefore, unless the electromechanical coupling coefficient (K26) is 0, the resonance angular frequency coefficient (ηn)
h (n = 1, 3, 5 ...., ηn = ωn / c, ωn: n
It is easily understood that a simple integer (odd number) multiple relationship does not hold between the following overtone angular frequency, c: speed of sound in the medium.

【0010】本発明は、これら2つの現象を利用し構成
したもので、圧電板の表裏板面上にモノリシックフィル
タ類似の主電極と副電極の2電極対を隔設し、主電極の
抑圧すべき共振周波数において両電極は帯域通過型の音
響結合フィルタを形成するよう、かつ所望の共振周波数
において両電極の共振周波数を一致させず音響的不整合
状態となるよう、該各電極を適当な距離と異なる形状寸
法に設定し、主電極の抑圧すべき共振周波数に副電極の
周波数を周波数調整して、副電極にダンピングインピー
ダンスを接続または配設することにより、主電極の所定
の共振振動を周波数選択的に抑圧し、かつ所望の共振振
動を周波数選択的に発振可能にする圧電振動子を実現し
ようとするものである。
The present invention is constructed by utilizing these two phenomena. The main electrode and the sub-electrode pair similar to a monolithic filter are spaced on the front and back plate surfaces of the piezoelectric plate to suppress the main electrode. The electrodes should be separated by an appropriate distance so that both electrodes form a band-pass acoustic coupling filter at the desired resonance frequency, and the resonance frequencies of the two electrodes do not match at the desired resonance frequency, resulting in an acoustic mismatch. Set a different shape and size, adjust the frequency of the sub-electrode to the resonance frequency to be suppressed by the main electrode, and connect or arrange the damping impedance to the sub-electrode to set the specified resonance vibration of the main electrode to the frequency. It is intended to realize a piezoelectric vibrator that selectively suppresses and can oscillate a desired resonance vibration in a frequency-selective manner.

【0011】[0011]

【実施例】図1及び図2に本発明の一実施例を示す。主
電極1の基本波共振周波数f1mを抑圧して第3次オー
バトーン共振周波数f3mを選択的に発振する目的の圧
電振動子の圧電板構造を示したものである。圧電板4の
表面上には、主電極1と副電極2が隔設され、裏面には
共通電極3が表面上の主電極1と副電極2に対向して配
設されている。電極幅W1,W2が異なると、両電極
1,2を基本波共振周波数f1mに調整すると副電極2
の厚みH2を主電極1の厚みH1よりも厚くすることが
できる。そして、主電極1の基本波周波数f1mおい
て、両電極1,2は通過帯域型の音響結合フィルタを形
成できるが、両電極の形状寸法が異なるため、斜対称振
動の共振周波数f1aにおいて必ずしも良好な通過帯域
を形成できず、図3に示すような歪んだ伝送特性を示
す。この圧電振動子を接続して例えば図3に示す発振回
路を形成すると、発振増幅部6にある基本波周波数f1
mの周波数成分は、主電極1から副電極2に接続のダン
ピングインピーダンス5(整合インピーダンスZ)に効
率よく伝達され消費されてしまうから、基本波周波数f
1mの発振は効果的に抑制されてしまう。副電極2に整
合インピーダンスZを接続することは、一般に帯域通過
型フィルタの出力端のインピーダンス整合に相当し、抑
圧すべき基本波周波数f1mの成分は損失少なく高い効
率で副電極2のダンピングインピーダンス5に伝達され
消費される。そして副電極2の電極厚みH2が主電極1
の厚みH1と異なっているから、所望の主電極第3次オ
ーバトーン周波数f3mと副電極2の第3次オーバトー
ン周波数f3sとは一致せず整合しないから、第3次オ
ーバトーン周波数f3mは副電極2に伝達し消費されて
減衰することなく良好に発振できる。この実施例では、
電極形状のうち長さ方向の寸法L0を等しく設計してあ
るので、幅方向の寸法をW1≠W2に設定する。ここで
幅方向の寸法を等しくして長さ方向の寸法を異なるよう
にしても、あるいは両寸法とも共に異なるようにしても
よく、両寸法が異なる場合は、2電極構成において通常
発生する斜対称振動をより効果的に抑制することができ
る。両電極間の距離G0は、抑圧する基本波共振周波数
f1mの減衰量と、所望の第3次オーバトーン共振周波
数f3mに対する影響とを勘案して設計するが、距離G
0を大きくとると、通過帯域は狭帯域化してフィルタの
挿入損失量の増大に相当するようになるので抑圧効果が
減衰するから、基本波周波数f1mの抑圧効果と所望す
る共振周波数f3mに対する影響の両者を勘案して決定
されなければならない。しかしいずれにせよ、モノリシ
ックフィルタの設計手法をそのまま適用できるので大変
都合がよい。なお、図3において、伝送特性は斜対称振
動の共振周波数f1aで損失大きく歪んだ伝送特性を示
しているが、これはむしろ好ましい特性である。なぜな
らば、所望のオーバトーン共振周波数において斜対称振
動のオーバトーン共振周波数が同様に出現すると、所望
の発振周波数と一致しこれを抑圧してしまう恐れがある
からで、できる限りこれら斜対称共振振動等の不要振動
モードは抑圧されなければならない。なお、ダンピング
インピーダンス5は、表面実装型の小型抵抗器に限定さ
れることはなく、カーボン皮膜あるいは金属成膜等によ
る抵抗膜を両電極間に形成させたものでもよく、必要に
応じて、この抵抗成分にさらにコンデンサ等のリアクタ
ンス成分のインピーダンスを並列接続あるいは配設させ
たものでもよい。ダンピングインピーダンス5と副電極
2の接続は、圧電振動子より外部に電気導出して配線に
より接続することも可能である。共通電極3は、それぞ
れの主電極及び副電極に対向して独立に、両電極と同一
パターンを配設してもよい。副電極に抵抗材質膜を用い
ると、ダンピングインピーダンスを付加するのを省略で
きるが、配設後に抵抗値等の調整は必要となる。本実施
例において、抑制すべき共振振動を特定の高調波共振振
動としたが、全く同様にして不要振動モードによるスプ
リアス振動も抑制することができる。この場合、一般に
主振動と比較すると不要振動モードの温度による変化が
非常に大きいから、温度変化の途中で音響結合が疎にな
り易く、あまり広い動作温度範囲を目的に設定すること
は適当でない。本発明を水晶振動子に適用すると電気機
械結合係数がことさら小さいことから、従来例と比較し
てきわめて有効に機能させることができる。
1 and 2 show an embodiment of the present invention. 1 shows a piezoelectric plate structure of a piezoelectric vibrator for the purpose of suppressing a fundamental wave resonance frequency f1m of a main electrode 1 and selectively oscillating a third overtone resonance frequency f3m. A main electrode 1 and a sub-electrode 2 are separated from each other on the front surface of the piezoelectric plate 4, and a common electrode 3 is disposed on the back surface so as to face the main electrode 1 and the sub-electrode 2 on the front surface. If the electrode widths W1 and W2 are different, if the two electrodes 1 and 2 are adjusted to the fundamental wave resonance frequency f1m, the sub electrode 2
Can be made thicker than the thickness H1 of the main electrode 1. Then, at the fundamental wave frequency f1m of the main electrode 1, both electrodes 1 and 2 can form a passband type acoustic coupling filter, but since the shape dimensions of both electrodes are different, it is not always good at the resonance frequency f1a of obliquely symmetric vibration. A pass band cannot be formed and a distorted transmission characteristic as shown in FIG. 3 is exhibited. When the piezoelectric vibrator is connected to form the oscillation circuit shown in FIG. 3, for example, the fundamental wave frequency f1 in the oscillation amplification unit 6 is increased.
Since the frequency component of m is efficiently transmitted to the damping impedance 5 (matching impedance Z) connected from the main electrode 1 to the sub electrode 2 and consumed, the fundamental frequency f
Oscillation of 1 m is effectively suppressed. Connecting the matching impedance Z to the sub-electrode 2 generally corresponds to impedance matching at the output end of the bandpass filter, and the component of the fundamental frequency f1m to be suppressed has a small loss and high damping impedance 5 of the sub-electrode 2. It is transmitted to and consumed. The electrode thickness H2 of the sub-electrode 2 is the main electrode 1
The desired third-overtone frequency f3m of the main electrode and the third-overtone frequency f3s of the auxiliary electrode 2 do not match and do not match because the thickness is different from the thickness H1 of the third electrode. Good oscillation can be performed without being transmitted to the electrode 2 and being consumed and being attenuated. In this example,
Since the dimension L0 in the length direction of the electrode shape is designed to be equal, the dimension in the width direction is set to W1 ≠ W2. Here, the dimension in the width direction may be made equal and the dimension in the length direction may be different, or both dimensions may be different. When the two dimensions are different, the oblique symmetry that normally occurs in a two-electrode configuration is used. Vibration can be suppressed more effectively. The distance G0 between both electrodes is designed in consideration of the amount of attenuation of the fundamental resonance frequency f1m to be suppressed and the influence on the desired third-order overtone resonance frequency f3m.
When 0 is set to a large value, the pass band is narrowed to correspond to an increase in the insertion loss amount of the filter, and the suppression effect is attenuated. Therefore, the suppression effect of the fundamental wave frequency f1m and the effect on the desired resonance frequency f3m are reduced. It must be decided in consideration of both. However, in any case, the monolithic filter design method can be applied as it is, which is very convenient. In FIG. 3, the transmission characteristic shows a transmission characteristic in which loss is greatly distorted at the resonance frequency f1a of obliquely symmetric vibration, but this is a rather preferable characteristic. This is because if the overtone resonance frequency of the obliquely symmetric vibration similarly appears at the desired overtone resonance frequency, it may coincide with the desired oscillation frequency and suppress it. Undesired vibration modes such as must be suppressed. The damping impedance 5 is not limited to a small surface mount type resistor, and a resistance film formed by a carbon film or a metal film may be formed between both electrodes. The impedance of the reactance component such as a capacitor may be connected or arranged in parallel to the resistance component. The damping impedance 5 and the sub-electrode 2 can be connected to each other by wiring, which is electrically led out from the piezoelectric vibrator. The common electrode 3 may face the respective main electrodes and sub-electrodes, and may be independently provided with the same pattern as both electrodes. If a resistance material film is used for the sub-electrodes, it is possible to omit adding damping impedance, but it is necessary to adjust the resistance value or the like after the arrangement. In the present embodiment, the resonance vibration to be suppressed is a specific harmonic resonance vibration, but spurious vibrations due to unnecessary vibration modes can be suppressed in exactly the same manner. In this case, in general, the change in the unwanted vibration mode due to the temperature is very large as compared with the main vibration, so that the acoustic coupling is likely to become sparse during the temperature change, and it is not appropriate to set a wide operating temperature range for the purpose. When the present invention is applied to a crystal resonator, the electromechanical coupling coefficient is extremely small, so that the crystal resonator can function extremely effectively as compared with the conventional example.

【0012】図7に本発明の他の実施例を示す。前記図
1の実施例において、主電極1と副電極2がモノリシッ
クフィルタと類似の構成をとっているため、なお斜対称
振動の共振周波数f1aが発現することがあった。主電
極と副電極の形状を非対称にすればある程度の抑制効果
を期待できるが、さらに抑制効果を高めるため、主電極
9の両側端に2つの副電極7,8を隔設すると、共振振
動による副電極上の誘起電荷が両側で減衰されるから効
果的に抑圧される。副電極を共通接続すればさらに効果
的で、所望のオーバトーン共振周波数の近傍において、
斜対称振動のオーバトーン共振周波数が発生する恐れも
なく大変都合がよい。なお、副電極7と8の抑圧すべき
共振周波数を異なるよう設定する場合、電極の形状寸法
が異なるから各々独立して周波数調整でき、それからダ
ンピングインピーダンス9,10を接続すればよい。例
えば、基本波と第3次オーバトーンを抑制し第5次オー
バトーンのみ選択的に発振させることができるなど、所
望の次数のオーバトーン共振周波数を発振させることが
可能となる。この場合、副電極7と8は互いに異なる形
状寸法に設定されているから、異なる形状寸法と誘起電
荷の相殺の効果により、斜対称振動の抑制の効果はその
まま維持されている。従って図1の実施例と比較する
と、抑制効果は一般に顕著で、所望の発振周波数に対す
る影響も大きく、電極間距離を幾分大きくとる必要があ
る。その他の動作と特徴は、図1の実施例の場合とほぼ
同様である。
FIG. 7 shows another embodiment of the present invention. In the embodiment shown in FIG. 1, since the main electrode 1 and the sub electrode 2 have a similar structure to the monolithic filter, the resonance frequency f1a of obliquely symmetric vibration may still be exhibited. If the shapes of the main electrode and the sub-electrode are made asymmetric, a certain suppression effect can be expected. However, in order to further increase the suppression effect, if two sub-electrodes 7 and 8 are provided at both ends of the main electrode 9, resonance vibration will occur. The induced charge on the sub-electrode is attenuated on both sides, so that it is effectively suppressed. It is more effective if the sub-electrodes are connected in common, and in the vicinity of the desired overtone resonance frequency,
It is very convenient because there is no fear that an overtone resonance frequency of obliquely symmetric vibration will occur. When the resonance frequencies to be suppressed of the sub-electrodes 7 and 8 are set to be different, the shapes of the electrodes are different, so that the frequencies can be adjusted independently, and then the damping impedances 9 and 10 may be connected. For example, it is possible to oscillate the overtone resonance frequency of a desired order, such as suppressing the fundamental wave and the third overtone and selectively oscillating only the fifth overtone. In this case, since the sub-electrodes 7 and 8 are set to have different shapes and sizes from each other, the effect of suppressing the oblique symmetric vibration is maintained as it is due to the different shapes and the effect of canceling the induced charges. Therefore, compared with the embodiment of FIG. 1, the suppressing effect is generally remarkable, the influence on the desired oscillation frequency is large, and it is necessary to increase the distance between the electrodes somewhat. Other operations and characteristics are almost the same as those in the embodiment of FIG.

【0013】図8に本発明の他の実施例を示す。各副電
極11,12,13,14は、主電極16とそれぞれ独
立に抑制すべきオーバトーン共振周波数において帯域通
過型の音響結合フィルタを形成しかつ所望のオーバトー
ン共振周波数において整合しないように、各副電極の形
状寸法及び厚みが設定される。主電極1と各副電極1
1,12,13,14の距離は、抑制すべきオーバトー
ン共振周波数の抑制度合と所望のオーバトーン共振周波
数への影響度合を考慮して設定されることは、前記各実
施例の場合と同様である。図8の実施例の構成によれ
ば、例えば第7次オーバトーン圧電振動子を得ようとす
る場合、基本波と第3次と第5次と第9次のオーバトー
ン共振周波数を抑圧するよう、主電極1と各副電極のパ
ラメータを設計すればよい。この設計は、幅方向の伝播
と長さ方向の伝播について、モノリシックフイルタとほ
ぼ等しい計算手続きを各々2回必要とし、多少複雑では
ある。
FIG. 8 shows another embodiment of the present invention. Each sub-electrode 11, 12, 13, 14 forms a band-pass type acoustic coupling filter at the overtone resonance frequency to be suppressed independently of the main electrode 16 and does not match at the desired overtone resonance frequency. The shape size and thickness of each sub-electrode are set. Main electrode 1 and each sub-electrode 1
The distances 1, 12, 13, 14 are set in consideration of the degree of suppression of the overtone resonance frequency to be suppressed and the degree of influence on the desired overtone resonance frequency, as in the case of each of the above embodiments. Is. According to the configuration of the embodiment shown in FIG. 8, for example, when a seventh-order overtone piezoelectric vibrator is to be obtained, the fundamental wave, the third-order, the fifth-order, and the ninth-order overtone resonance frequencies are suppressed. The parameters of the main electrode 1 and each sub electrode may be designed. This design is a little complicated, requiring twice the computational procedure for the propagation in the width direction and twice for the propagation in the length direction, which are almost equal to those of the monolithic filter.

【0014】[0014]

【発明の効果】本発明の構成を採ることにより、機械−
電気変換効率の劣る、例えば水晶などの圧電板において
も、所定の振動エネルギーの機械音響的整合による抽出
手段により初めて効率よく抑圧すべき周波数の共振振動
を周波数選択的に抽出し抑圧可能になったもので、抑圧
すべき共振周波数を合理的かつ的確に設計できるように
なった。特に、モノリシックフィルタと同様の効果的な
インピーダンス整合手段を採用すべく副電極にダンピン
グインピーダンスを配設しあるいは接続して負荷するこ
とにより、従来と比較し確実で安定な抑制効果を保証で
きるようになった。本発明の他の効果は、斜対称振動の
発生を主電極と副電極の非対称構成によりかなり抑制で
きるが、さらに副電極を主電極の両側端に隔設し電荷相
殺することにより効果的に抑制できるようになった。さ
らにまた、最大4つまでのオーバトーン共振周波数を独
立に抑制することができるようになり、第3次以上の高
次オーバトーン共振周波数の発振を目的とした信頼性の
高い安定したオーバトーン圧電振動子の実現が初めて可
能になった。とりわけ従来より困難であった第5次以上
の高次共振周波数を特に発振することができる圧電振動
子を提供できるようになった意義は大きい。本発明は、
高次オーバトーン振動子の実現だけでなく、特定の不要
振動モードによるスプリアスを除去する手段としても有
効である。この場合、主電極の抑圧すべき不要振動モー
ドの周波数に一致させるよう副電極の共振周波数を周波
数調整する以外は、前記と同様な構成、機能及び効果と
なる。
By adopting the constitution of the present invention, the machine-
Even in the case of a piezoelectric plate such as a crystal plate having a poor electrical conversion efficiency, it is possible to selectively extract and suppress the resonance vibration of the frequency that should be efficiently suppressed for the first time by the extraction means by the mechanical-acoustic matching of the predetermined vibration energy. It is now possible to reasonably and accurately design the resonance frequency to be suppressed. In particular, by providing or connecting a damping impedance to the sub-electrode in order to adopt an effective impedance matching means similar to that of a monolithic filter, it is possible to ensure a more reliable and stable suppression effect than in the past. became. Another effect of the present invention is that the occurrence of obliquely symmetric vibration can be considerably suppressed by the asymmetrical configuration of the main electrode and the sub electrode, but it is also effectively suppressed by separating the sub electrodes at both ends of the main electrode to cancel the charge. I can do it. Furthermore, up to four overtone resonance frequencies can be independently suppressed, and a reliable and stable overtone piezoelectric oscillator for oscillation of the third or higher higher tone resonance frequencies is provided. For the first time, the realization of oscillators became possible. In particular, it is of great significance to be able to provide a piezoelectric vibrator capable of particularly oscillating a higher-order resonance frequency of the fifth order or higher, which has been difficult in the past. The present invention is
It is effective not only for realizing a high-order overtone oscillator, but also as a means for removing spurious due to a specific unwanted vibration mode. In this case, the configuration, function, and effect are similar to those described above, except that the resonance frequency of the sub-electrode is adjusted to match the frequency of the unwanted vibration mode of the main electrode to be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の実施例を示す圧電振動子の圧
電板の斜視図である。
FIG. 1 is a perspective view of a piezoelectric plate of a piezoelectric vibrator showing an embodiment of the present invention.

【図2】図2は、図1の本発明の実施例の圧電板の断面
図である。
2 is a cross-sectional view of the piezoelectric plate of the embodiment of the present invention shown in FIG.

【図3】図3は、本発明の圧電振動子を接続した発振回
路図である。
FIG. 3 is an oscillation circuit diagram in which the piezoelectric vibrator of the present invention is connected.

【図4】図4は、図1の本発明の実施例の圧電振動子が
図3の発振回路において示す伝送特性図である。
FIG. 4 is a transmission characteristic diagram showing the piezoelectric vibrator of the embodiment of the present invention in FIG. 1 in the oscillation circuit in FIG.

【図5】図5は、圧電板の電極幅寸法W0をパラメータ
にしたときの真の周波数バック量Rtと見かけ上の周波
数バック量Rqとの関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the true frequency back amount Rt and the apparent frequency back amount Rq when the electrode width dimension W0 of the piezoelectric plate is used as a parameter.

【図6】図6は、圧電セラミックス板の各共振周波数の
関係を説明するグラフである。
FIG. 6 is a graph illustrating the relationship between resonance frequencies of the piezoelectric ceramic plate.

【図7】図7は、本発明の他の実施例を示す圧電板の斜
視図である。
FIG. 7 is a perspective view of a piezoelectric plate showing another embodiment of the present invention.

【図8】図8は、本発明の他の実施例を示す圧電板の平
面図である。
FIG. 8 is a plan view of a piezoelectric plate showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 主電極 2,7,8,11,12,13,14 副電極 3 共通電極 4 圧電板 6 発振増幅部 5,14,15,16,17 ダンピングインピ
ーダンス 1’, 3’ 引出し電極
1 Main Electrode 2,7,8,11,12,13,14 Sub-electrode 3 Common Electrode 4 Piezoelectric Plate 6 Oscillation Amplifier 5,14,15,16,17 Damping Impedance 1 ', 3'Extraction Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 主電極を圧電板の表裏板面上に対向して
配設し外部に電気導出してなる圧電振動子において、 該主電極から隔離して該圧電板の表裏面上に対向する少
なくとも一つの副電極を配設し、 該主電極の抑圧すべき共振周波数において該主電極と該
副電極は帯域通過型の音響結合フィルタを形成して抑圧
すべき共振周波数をダンピングさせるべく、 かつ該主電極の所望する共振周波数において該副電極の
共振周波数と異なることにより該主電極と該副電極間の
音響結合を不整合にさせるべく、 該主電極と該副電極を適当な距離と異なる形状寸法に設
定し、 かつ該主電極の抑圧すべき共振周波数に該副電極の共振
周波数を周波数調整して、 該副電極に該音響結合フィルタの負荷インピーダンスに
ほぼ等しいダンピングインピーダンスを接続したことを
特徴とする圧電振動子。
1. A piezoelectric vibrator in which main electrodes are arranged facing each other on the front and back plate surfaces of a piezoelectric plate and electrically led to the outside, and the main electrodes are separated from the main electrodes and face the front and back surfaces of the piezoelectric plate. At least one sub-electrode is provided, and at the resonance frequency of the main electrode to be suppressed, the main electrode and the sub-electrode form a band-pass type acoustic coupling filter for damping the resonance frequency to be suppressed. And, in order to make the acoustic coupling between the main electrode and the sub-electrode mismatch by making the resonance frequency of the main electrode different from the resonance frequency of the sub-electrode, an appropriate distance between the main electrode and the sub-electrode is provided. Damping impedances that are set to different shapes and dimensions, and the resonance frequency of the sub-electrode is adjusted to the resonance frequency of the main electrode to be suppressed, so that the sub-electrode has a damping impedance substantially equal to the load impedance of the acoustic coupling filter. A piezoelectric vibrator characterized by being connected.
JP28917091A 1991-10-08 1991-10-08 Piezoelectric vibrator Pending JPH05102786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28917091A JPH05102786A (en) 1991-10-08 1991-10-08 Piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28917091A JPH05102786A (en) 1991-10-08 1991-10-08 Piezoelectric vibrator

Publications (1)

Publication Number Publication Date
JPH05102786A true JPH05102786A (en) 1993-04-23

Family

ID=17739672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28917091A Pending JPH05102786A (en) 1991-10-08 1991-10-08 Piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JPH05102786A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855795A1 (en) * 1996-07-31 1998-07-29 Daishinku Corporation Piezoelectric vibration device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855795A1 (en) * 1996-07-31 1998-07-29 Daishinku Corporation Piezoelectric vibration device
EP0855795A4 (en) * 1996-07-31 2004-10-20 Daishinku Corp Piezoelectric vibration device

Similar Documents

Publication Publication Date Title
US6362561B1 (en) Piezoelectric vibration device and piezoelectric resonance component
US4716332A (en) Piezoelectric vibrator
US6967432B2 (en) Piezoelectric shear resonator, composite piezoelectric shear resonator, and piezoelectric resonator component
JPH05102786A (en) Piezoelectric vibrator
JPS5821444B2 (en) Energy Tojikomegata Atsuden Tairohaki
JPH0590879A (en) Quartz oscillator
JP2002299998A (en) Piezoelectric vibrator and piezoelectric filter
KR100496405B1 (en) Piezoelectric vibrator and filter using the same
JPS6357967B2 (en)
JP2640936B2 (en) Piezoelectric resonator for overtone oscillation using higher-order mode vibration
JP2003273703A (en) Quartz vibrator and its manufacturing method
JPS63206018A (en) Piezoelectric resonator
JPH04216208A (en) Piezoelectric resonator
JPH0563494A (en) Overtone crystal oscillator
JP4593728B2 (en) Piezoelectric resonator
SU1780144A1 (en) Piezoelectric element
JPH03139009A (en) Miniature piezoelectric resonator
JP2000091878A (en) Piezoelectric vibrator and piezoelectric oscillator
JPH0344451B2 (en)
JPH09162681A (en) Piezoelectric vibrator
JPH03172011A (en) Tertiary overtone piezoelectric vibrator
JP4356151B2 (en) Piezoelectric vibration element, manufacturing method thereof, and piezoelectric filter
JP2003249836A (en) Composite piezoelectric shear resonator and piezoelectric resonator component
JPS6189706A (en) Structure of resonator
JPS6026870Y2 (en) ultrasonic transducer