JPH05102407A - Complementary semiconductor device - Google Patents

Complementary semiconductor device

Info

Publication number
JPH05102407A
JPH05102407A JP3256859A JP25685991A JPH05102407A JP H05102407 A JPH05102407 A JP H05102407A JP 3256859 A JP3256859 A JP 3256859A JP 25685991 A JP25685991 A JP 25685991A JP H05102407 A JPH05102407 A JP H05102407A
Authority
JP
Japan
Prior art keywords
field effect
gate
power supply
efet
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3256859A
Other languages
Japanese (ja)
Inventor
Naotaka Uchitomi
直隆 内富
Michiro Futai
理郎 二井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3256859A priority Critical patent/JPH05102407A/en
Publication of JPH05102407A publication Critical patent/JPH05102407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent excessive gate capacitance and realize a high productive yield; by locating the sources and drains for one field effect transistor and for the other field effect transistor in the reverse direction to eliminate a crossed interconnection at a gate part in a differential circuit. CONSTITUTION:A differential complementary semiconductor device is made up of enhancement field effect transistors(EFET's) 2 and 4 and depletion field effect transistors(DFET's) 1 and 3. In the differential complementary semiconductor device, an inverter is made up of a set of circuits, in which one DEFT at the side near to a VDD power supply 11 is connected in series with one EFET at the side of grounding 12, and their mutual gate electrodes are connected in a crossed interconnection. In this case, the DEFET 3 and the EFET 4 are turned at an angel of 180 degrees in their location so that no crossing parts at the gate are needed and the stray capacitance caused by a crossed interconnection can be diminished to zero. moreover, since only one conductor is enough to connect the gates of the adjacent DFET and EFET, the yield can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はエンハンスメント形電
界効果トランジスタ(EFETと略称)とデプレッショ
ン形電界効果トランジスタ(DFETと略称)より形成
された差動形の相補形半導体集積回路の構成法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of constructing a differential complementary semiconductor integrated circuit formed by an enhancement type field effect transistor (abbreviated as EFET) and a depletion type field effect transistor (abbreviated as DFET).

【0002】[0002]

【従来の技術】従来NチャネルFETとPチャネルFE
Tを用いた相補形 GaAs集積回路において、Nチ
ャネルの電子移動度に比べて、Pチャネルの正孔移動度
が小さいめ、十分な高速性が得られないことが知られて
いる。近年この欠点を解決するために、共にNチャネル
のEFETとDFETより構成される差動形の相補形回
路が提案され(1)シュミレーションによりその高速性
が示されている。
2. Description of the Related Art Conventional N-channel FET and P-channel FE
It is known that, in a complementary GaAs integrated circuit using T, the hole mobility of the P channel is smaller than the electron mobility of the N channel, so that sufficient high speed cannot be obtained. In recent years, in order to solve this drawback, a differential complementary circuit composed of an N-channel EFET and DFET has been proposed (1), and its high speed has been shown by simulation.

【0003】しかし、この回路を用いてインバータを形
成するとき、差動形回路の一方のDFETのゲートを他
方のEFETのゲートへ、また一方のEFETのゲート
を他方のDFETのゲートに接続する“たすきがけ”の
交差配線が必要であるが、FETのゲート部は、もっと
も微細な加工技術を要するばかりでなく、セルフアライ
ン技術に関連して特殊な構造となるため、ゲート部に生
ずる交差配線を歩留り良く形成することがいちじるしく
困難であり、交差部における配線幅の増大から浮遊容量
が増加し、高速性が失われる欠点があった。
However, when forming an inverter using this circuit, the gate of one DFET of the differential circuit is connected to the gate of the other EFET, and the gate of one EFET is connected to the gate of the other DFET. The cross wiring of the "crossing" is necessary, but the gate part of the FET not only requires the finest processing technology, but also has a special structure related to the self-alignment technology. It is extremely difficult to form with a high yield, and there is a drawback that stray capacitance is increased due to an increase in wiring width at the crossing portion and high speed is lost.

【0004】(1)M.Passlack et al.,Theoretical Ev
aluation of a Novel Design forDigital GaAs IC"S",I
EEE J.Solid-State Circuits, Vol.23,no.5,P,1249,198
8.また、超高速の相補形GaAs集積回路において、ス
イッチング動作時に給電線に電流スパイクが発生し、フ
ロストークの原因となるが、動作速度の向上に伴ない、
給電線に外付き容量を負荷する従来の方法では、十分な
クロストーク除去効果が得られないことが明らかになっ
た。
(1) M. Passlack et al., Theoretical Ev
aluation of a Novel Design forDigital GaAs IC "S", I
EEE J. Solid-State Circuits, Vol.23, no.5, P, 1249,198
8. Also, in the ultra-high speed complementary GaAs integrated circuit, current spikes occur in the power supply line during switching operation, which causes frothtalk, but with the improvement in operating speed,
It has been clarified that the conventional method of loading an external capacitance on the power supply line cannot obtain a sufficient crosstalk removing effect.

【0005】[0005]

【発明が解決しようとする課題】(1)本発明のひとつ
の目的は、EFETとDFETより構成した差動形の相
補形集積回路において、遅延時間の増大と歩留り低下の
原因となるゲート部の交差配線を除去し、高密度の超高
速相補形集積回路を容易に得る手段を提供しようとする
ものである。
(1) One of the objects of the present invention is to provide a differential complementary integrated circuit composed of an EFET and a DFET, which has a gate part which causes an increase in delay time and a decrease in yield. It is an object of the present invention to provide a means for easily removing a cross wiring and obtaining a high-density ultra-high speed complementary integrated circuit.

【0006】(2)本発明の他の目的は、超高速相補形
集積回路において、スイッチング動作時に給電線に発生
し、クロストークの原因となるスパイクノイズを除去
し、かつ集積回路チップ内で、給電線の占める実効面積
を縮小する手段を提供しようとするものである。
(2) Another object of the present invention is to eliminate spike noise that occurs in the power supply line during switching operation and causes crosstalk in an ultra-high speed complementary integrated circuit, and to eliminate the spike noise in the integrated circuit chip. It is intended to provide a means for reducing the effective area occupied by the power supply line.

【0007】[0007]

【課題を解決するための手段】(1)EFET,DFE
Tより構成される差動形の相補形集積回路において、ゲ
ート部の交差配線を除去する手段は、次の概要のとおり
である。
[Means for Solving the Problems] (1) EFET, DFE
The means for removing the cross wiring of the gate portion in the differential complementary integrated circuit constituted by T is as follows.

【0008】差動形の相補形インバータはVDD電源側の
1ヶDFETと接地側の1ヶのEFETを直列接続した
一対の回路において、互いのEFETとDFETのゲー
ト電極を“たすきがけ”に接続することにより形成され
る。このとき一方の回路を他方に対して180°回転す
れば、EFETとDFETのゲートをつなぐ“たすきが
け”配線は、隣接するEFETとDFETを一本の共通
ゲートでそれぞれ直線で結ぶ形に変換され“たすきが
け”配線に由来する浮遊容量をゼロにすることができ
る。
The differential complementary inverter is a pair of circuits in which one DFET on the V DD power supply side and one EFET on the ground side are connected in series, and the gate electrodes of the respective EFETs and DFETs are "thinned". It is formed by connecting. At this time, if one circuit is rotated 180 ° with respect to the other, the "pull-out" wiring that connects the gates of the EFET and DFET is converted into a shape that connects the adjacent EFET and DFET with a single common gate. The stray capacitance due to the "pull-out" wiring can be reduced to zero.

【0009】また、このとき一対の差動回路のVDD電源
側と接地側が逆転するため、電源配線と接地配線との間
に新たな交差を生ずるが、この部分は信号の通路と無関
係であるため、ここに大きな容量を生じても、回路動作
に何等障害を及ぼすことはない。 (2)超高速相補形集積回路のスイッチング動作時に、
給電線に発生するスパイクノイズを除去する手段は次の
概要のとおりである。
Further, at this time, since the V DD power supply side and the ground side of the pair of differential circuits are reversed, a new intersection is generated between the power supply wiring and the ground wiring, but this portion is unrelated to the signal path. Therefore, even if a large capacitance is generated here, it does not hinder the circuit operation. (2) During the switching operation of the ultra high speed complementary integrated circuit,
The means for removing spike noise generated in the power supply line is as outlined below.

【0010】上記のように一対の差動回路の一方を他方
に対して180°回転することにより、それぞれのVDD
端子と接地端子が至近距離に配置される、相補形回路に
おいては、給電線から供給する直流電流が100μA以
下と極めて低いため、給電線のオーミック抵抗による電
圧低下は無視できる程小さいので、VDD電源線と接地線
をそれぞれ金属薄膜で幅広く形成し、絶縁膜を界してこ
れを重疊することにより、容量をもった給電線とし、こ
れより至近距離に位置する一対のVDD端子と接地端子に
接続すれば、スパイクノイズの抑制能力に優れた給電線
を得ることができる。
By rotating one of the pair of differential circuits by 180 ° with respect to the other as described above, the respective V DD
Terminal and the ground terminal are arranged in close proximity, the complementary circuit, since DC current is very low 100μA or less is supplied from the feed line, so the voltage drop due to the ohmic resistance of the feed line negligibly small, V DD a power supply line to the ground line widely formed in each metal thin film, by weight疊this by field insulating film, a feed line having a capacitance, a pair of V DD terminals and ground terminals located than this close range If it is connected to, it is possible to obtain a power supply line having an excellent ability to suppress spike noise.

【0011】[0011]

【作用】(1)一対の差動回路の一方を、他方に対して
180°回転する本発明の方法によれば、互いに隣接す
る差動回路の一方のEFETと他方のDFETのに対し
て共通ゲートを、一本の直線として形成すればよいの
で、自己整合形の複雑なゲート構造をもつFETに対し
ても、ほぼ1ヶのFETを形成するのと同等な歩留りで
ゲート周辺の浮遊容量の小さいゲート接続を行なうこと
ができる。 (2)薄膜状の給電線に容量をもたせる本
発明の方法によれば、超高速相補形回路のスイッチング
動作時に、給電線に発生する電流スパイクを吸収し、ク
ロストークノイズを抑制することができると同時に、と
くにGaAs相補形集積回路においては、給電線が薄膜
状となっているため、GaAsの高い誘電率により、本
来信号配線には適さない半絶縁性GaAs基板上にこれ
をじかずけし、高誘電率の効果を軽減するためのデカッ
プリング用の厚いSiO2 膜でチップ全面を被覆したの
ち信号配線を形成することにより、従来給電線の厚さの
ため最上層に設けていた電源用の配線エリアを不要と
し、チップサイズの縮小をはかることができる。
(1) According to the method of the present invention in which one of a pair of differential circuits is rotated by 180 ° with respect to the other, a common circuit is used for one EFET and the other DFET of the differential circuits adjacent to each other. Since the gate may be formed as a single straight line, even for a FET having a self-aligned complex gate structure, the stray capacitance around the gate can be obtained at a yield equivalent to that of forming one FET. Small gate connections can be made. (2) According to the method of the present invention in which a thin film-shaped power supply line has a capacitance, it is possible to absorb a current spike generated in the power supply line during the switching operation of the ultra-high speed complementary circuit and suppress crosstalk noise. At the same time, especially in the GaAs complementary integrated circuit, since the feed line is in the form of a thin film, due to the high dielectric constant of GaAs, it is repelled on a semi-insulating GaAs substrate that is originally not suitable for signal wiring, By covering the entire surface of the chip with a thick SiO 2 film for decoupling to reduce the effect of high dielectric constant, and then forming the signal wiring, the power supply that was conventionally provided in the uppermost layer due to the thickness of the power supply line The wiring area is unnecessary and the chip size can be reduced.

【0012】[0012]

【実施例】以下本発明の詳細について、GaAsを用い
た差動形の相補形集積回路を例にとり、図面を用いて説
明する。図1(a)はDFET(1)、EFET
(2)、DFET(3)、EFET(4)を用いた差動
形の相補形インバータの回路図である(文献(1)参
照)。図1(b)は公知の技術の組合わせにより製作さ
れた、同インバータのパターン図である。(1)〜
(4)のN形チャネル層は半絶縁性GaAs基板上にN
形不純物を所定のしきい値に対応するドーズ量で注入す
ることにより形成する。FETのゲート電極とゲート間
接続をかねるゲート微細配線(7),(8)は、耐熱性
金属WNをスパッタののちリアクティブイオンエッチン
グにより幅0.5μmに整形する。このようにしてN形
チャネル層とWN界面に障壁高さ0.8eVのショット
キ障壁が形成される。各FETのソース、ドレイン電極
はN+ 注入後AuGe/Auを蒸着シンターする公知の
方法で製作する。図1の(5),(6)はゲート配線
(7),(8)に接続する差動入力用Ti/Pt/Au
配線(9),(10)は差動出力用Ti/PT/Au配
線、(11)はVDD電源線、(12)は接地線である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the drawings by taking a differential complementary integrated circuit using GaAs as an example. Figure 1 (a) shows DFET (1) and EFET
(2) is a circuit diagram of a differential complementary inverter using DFET (3) and EFET (4) (see reference (1)). FIG. 1B is a pattern diagram of the inverter manufactured by a combination of known techniques. (1) ~
The N-type channel layer of (4) is N on the semi-insulating GaAs substrate.
It is formed by implanting shape impurities in a dose amount corresponding to a predetermined threshold value. The fine gate wirings (7) and (8) that also serve as gate connections to the gate electrodes of the FET are formed by sputtering the heat-resistant metal WN and then shaping it into a width of 0.5 μm by reactive ion etching. In this way, a Schottky barrier having a barrier height of 0.8 eV is formed at the interface between the N-type channel layer and the WN. The source and drain electrodes of each FET are N + After the injection, AuGe / Au is manufactured by a known method of vapor deposition sintering. (5) and (6) in FIG. 1 are Ti / Pt / Au for differential input connected to the gate wirings (7) and (8).
Wirings (9) and (10) are differential output Ti / PT / Au wirings, (11) is a VDD power supply line, and (12) is a ground line.

【0013】図1(b)の製造プロセスにおいて、最大
の歩留り要因となるのは(7),(8)の交差部(1
3)である。WNゲートはゲート抵抗をさげるために厚
さ 0.5μmを必要とするが、この条件で絶縁膜を界
して(7),(8)を交差することはいちじるしく困難
であり、交差部において配線幅が広がりため実効的なゲ
ート容量の増大を招き、インバータの所期の伝播遅延時
間20psを得ることは到底不可能であった。このほか
の歩留り要因として、出力用配線(10)の引出しが
(14)において(13)上にさらに交差し、この部分
は実質的に微細配線の3層構造となることがあげられ、
歩留りの確保は一段ときびしいものとなる。図2はこれ
らの歩留り上、特性上の問題を解決するために考案され
た本件特許の実施例のひとつを示すパターン図である。
図1(b)との大きな相違はDFET(3)とEFET
(4)が180°回転している点である。4ヶのFET
を図2のように配置することにより、ゲートの交差部
(13)が不要となるばかりでなく、隣接するDFET
(1)とEFET(4)、EFET(2)とDFET
(3)のゲート接続を完全に直線のWN共通ゲート1本
で形成することができるため、複雑なセルフアライン構
造を採用しても、ほぼ1ヶのFETを製作するのと同様
の歩留りで、差動回路を構成するFETのゲート相互の
接続を行なうことができる。
In the manufacturing process of FIG. 1B, the greatest yield factor is the intersection (1) of (7) and (8).
3). The WN gate requires a thickness of 0.5 μm in order to reduce the gate resistance, but under this condition it is extremely difficult to cross (7) and (8) across the insulating film, and wiring at the crossing Since the width is widened, the effective gate capacitance is increased, and it has been impossible to obtain the desired propagation delay time of 20 ps of the inverter. Another yield factor is that the lead-out of the output wiring (10) further crosses over (13) at (14), and this portion has a substantially three-layer structure of fine wiring.
Securing the yield becomes even more difficult. FIG. 2 is a pattern diagram showing one of the embodiments of the patent of the present invention devised in order to solve these problems in terms of yield and characteristics.
The major difference from Fig. 1 (b) is DFET (3) and EFET.
(4) is the point rotated by 180 °. 4 FETs
By arranging the gates as shown in FIG. 2, not only the gate intersection (13) becomes unnecessary, but also the adjacent DFET
(1) and EFET (4), EFET (2) and DFET
Since the gate connection of (3) can be formed by a single straight WN common gate, even if a complicated self-aligned structure is adopted, the yield is the same as that of manufacturing one FET. The gates of the FETs forming the differential circuit can be connected to each other.

【0014】一方、図2において、ゲート配線の交差が
不要となった代りに、(15),(16)に示すような
給電線(11),(12)の延長と交差が必要となる。
絶縁膜を界した(15),(16)の重疊部は大きな
容量として働くが、給電線は信号の通路でないため、イ
ンバータの伝播遅延時間に何等影響を及ぼすことはな
い。この容量はインバータのスイッチング動作時に給電
線に生ずるスパイク電流の除去に有効であるため、給電
線を幅広い薄膜状に形成し、重疊部に大きな静電容量を
もたせた方がスパイク電流によるクロストークノイズの
抑制に有利であることがわかった。また出力配線
(9),(10)は(17),(18)において給電線
(15),(16)をのりこえなければならないが、
(作用)の(2)項にのべたとおり、給電線は厚さ50
00オングストローム以上のデカップリング用SiO2
膜によりおおわれているため(17),(18)の段差
越えはなだらかとなり歩留り低下の原因となることはな
い。
On the other hand, in FIG. 2, the intersection of the gate wirings is not required, but the extension and the intersection of the feeder lines (11) and (12) as shown in (15) and (16) are required.
The heavy portions of (15) and (16) that bound the insulating film act as a large capacitance, but since the power supply line is not a signal path, it has no effect on the propagation delay time of the inverter. Since this capacitance is effective in removing the spike current generated in the power supply line during the switching operation of the inverter, it is better to form the power supply line in a wide thin film shape and to have a large capacitance in the critical part, because of crosstalk noise due to spike current. It was found to be advantageous in suppressing Further, the output wirings (9) and (10) must be able to overcome the power supply lines (15) and (16) at (17) and (18).
As described in (2) of (Operation), the power supply line has a thickness of 50
SiO 2 for decoupling over 00 Å
Since it is covered with the film, the step (17), (18) over the step is gentle and does not cause a decrease in yield.

【0015】図3は本件特許の他の実施例を示すパター
ン図である。ここではVDD電源線(11)と接地線(1
2)が、全面にわたって絶縁膜を界して重疊され、(1
1)(12)間に形成される大きな分布容量の直近よ
り、インバータを構成する各差動回路に給電されるた
め、上記スパイクノイズの抑制効果は大きい。また図2
に比べて(17),(18)の交差部が消減し、配線の
浮遊容量の減少に寄与している。本構成により相補形イ
ンバータの所期の伝播遅延時間20psを達成すること
ができた。本構造においても給電線(11),(12)
は総てデカップリング用SiO2 膜の下に埋めこまれる
ため、信号線の配線エリアに対し、幅広い給電線は何等
の影響を及ぼさない。
FIG. 3 is a pattern diagram showing another embodiment of the present patent. Here, V DD power line (11) and ground line (1
2) is severed across the insulating film over the entire surface, and (1
1) Since power is supplied to each differential circuit that constitutes the inverter in the immediate vicinity of the large distributed capacitance formed between (12), the effect of suppressing the spike noise is large. See also FIG.
Compared with the above, the intersection of (17) and (18) is reduced, which contributes to the reduction of the stray capacitance of the wiring. With this configuration, the desired propagation delay time of 20 ps for the complementary inverter could be achieved. Also in this structure, the feeder lines (11), (12)
Since all are buried under the decoupling SiO 2 film, the wide feed line does not have any influence on the wiring area of the signal line.

【0016】本件特許の方法は、インバータのみならず
NAND,NOR等、差動形の相補形集積回路の総ての
論理ゲートに適用できる。また、多少の修正を施すこと
により、InGaAs,Si等他の半導体材料を用いた
E/D相補形集積回路にも適用できることが容易に類堆
される。
The method of the present patent can be applied to all logic gates of a differential complementary integrated circuit such as NAND and NOR as well as an inverter. Further, it is easily similar to that it can be applied to an E / D complementary integrated circuit using other semiconductor materials such as InGaAs and Si by making some modifications.

【0017】[0017]

【発明の効果】本発明によれば差動回路の一方の電界効
果トランジスタと、他方電界効果トランジスタのソース
9、ドレインを互いに逆方向に配置し、差動回路のゲー
ト部に生ずる交差配線を除去することができる。
According to the present invention, one of the field effect transistors of the differential circuit and the source 9 and the drain of the other field effect transistor are arranged in directions opposite to each other, and the cross wiring generated in the gate portion of the differential circuit is removed. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】 EFETとDFETを用いた差動形の相補形
インバータの回路図。
FIG. 1 is a circuit diagram of a differential complementary inverter using an EFET and a DFET.

【図2】 本発明の一実施例を示すインバータのパター
ン図。
FIG. 2 is a pattern diagram of an inverter showing an embodiment of the present invention.

【図3】 本発明の他の実施例を示すインバータのパタ
ーン図。
FIG. 3 is a pattern diagram of an inverter showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,3…DFET 2,4…EFET 5,6…入力線 7,8…ゲート配線 9,10…出力線 11…VDD電源線 12…接地線 13…ゲート交差部 14…出力線10の交差部 15…VDD電源線11のひきだし線 16…接地線12のひきだし線 17,18…出力線9,10とVDD電源線15との交差
1, 3 ... DFET 2, 4 ... EFET 5, 6 ... Input line 7, 8 ... Gate wiring 9, 10 ... Output line 11 ... V DD power supply line 12 ... Ground line 13 ... Gate intersection 14 ... Crossing of output line 10 Part 15 ... Lead line of V DD power line 11 16 ... Lead line of ground line 17, 18 ... Cross section of output lines 9 and 10 and V DD power line 15

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エンハンスメント形電界効果トランジス
タと、デプレッション形電界効果トランジスタより構成
される、差動形の相補形半導体集積回路において、差動
回路の一方の電界効果トランジスタと、他方の電界効果
トランジスタのソース、ドレインを互いに逆方向に配置
することにより、差動回路のゲート部に生ずる交差配線
を除去し、伝播遅延時間増大の原因となるゲート過剰容
量の低減と、高い製造歩留りを得ることを特徴とする相
補形半導体装置。
1. A differential complementary semiconductor integrated circuit comprising an enhancement type field effect transistor and a depletion type field effect transistor, wherein one of the field effect transistor of the differential circuit and the other field effect transistor of the differential circuit are provided. By arranging the source and drain in opposite directions, the cross wiring that occurs in the gate part of the differential circuit is removed, the gate excess capacitance that causes the increase in propagation delay time is reduced, and a high manufacturing yield is obtained. Complementary semiconductor device.
【請求項2】 相補形半導体装置の給電線において、互
いに逆方向に配置したソース、ドレイン電極の近傍で、
電源線と接地線を絶縁膜を界して重疊することにより容
量を形成し、スイッチング動作時に給電線に発生するス
パイクノイズを抑制すると共に、給電線に必要な配線面
積を縮小することを特徴とする相補形半導体装置。
2. A power supply line of a complementary semiconductor device, in the vicinity of source and drain electrodes arranged in directions opposite to each other,
The power supply line and the ground line are connected to each other through an insulating film to form a capacitance, thereby forming a capacitance, suppressing spike noise generated in the power supply line during switching operation, and reducing the wiring area required for the power supply line. Complementary semiconductor device.
JP3256859A 1991-10-04 1991-10-04 Complementary semiconductor device Pending JPH05102407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3256859A JPH05102407A (en) 1991-10-04 1991-10-04 Complementary semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3256859A JPH05102407A (en) 1991-10-04 1991-10-04 Complementary semiconductor device

Publications (1)

Publication Number Publication Date
JPH05102407A true JPH05102407A (en) 1993-04-23

Family

ID=17298412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3256859A Pending JPH05102407A (en) 1991-10-04 1991-10-04 Complementary semiconductor device

Country Status (1)

Country Link
JP (1) JPH05102407A (en)

Similar Documents

Publication Publication Date Title
US6084255A (en) Gate array semiconductor device
EP0279943B1 (en) Gate circuit of combined field-effect and bipolar transistors
US6020614A (en) Method of reducing substrate noise coupling in mixed signal integrated circuits
EP0243603B1 (en) Binary logic circuit
US5227649A (en) Circuit layout and method for VLSI circuits having local interconnects
US4947228A (en) Integrated circuit power supply contact
JPS5994849A (en) Semiconductor integrated circuit device
KR100302529B1 (en) Thin Film Semiconductor Integrated Circuits
US3573490A (en) Capacitor pull-up reigister bit
JPH06140913A (en) Semiconductor integrated circuit device and information processing system
US4138782A (en) Inverter with improved load line characteristic
US5252843A (en) Semiconductor device having overlapping conductor layers
US6153914A (en) Output circuit for integrated circuits
US5031006A (en) Semiconductor device having a Schottky decoupling diode
JPH05102407A (en) Complementary semiconductor device
US6864558B2 (en) Layout technique for C3MOS inductive broadbanding
US5358900A (en) Semiconductor device having overlapping conductor layers and method of producing the semiconductor device
JP2954242B2 (en) Integrated circuit device
JPS635552A (en) Bipolar/mos device
JPH07193193A (en) Semiconductor device
US5278436A (en) Semiconductor integrated circuit device for forming logic circuit including resistance element connected to bipolar transistor with smaller occupied area
JPH0481335B2 (en)
US20240266343A1 (en) Standard cell layout methodology for low leakage solutions
US5856218A (en) Bipolar transistor formed by a high energy ion implantation method
EP0467361B1 (en) BICMOS gate array device