JPH05101887A - Manufacture of electroluminescent thin film - Google Patents

Manufacture of electroluminescent thin film

Info

Publication number
JPH05101887A
JPH05101887A JP3260309A JP26030991A JPH05101887A JP H05101887 A JPH05101887 A JP H05101887A JP 3260309 A JP3260309 A JP 3260309A JP 26030991 A JP26030991 A JP 26030991A JP H05101887 A JPH05101887 A JP H05101887A
Authority
JP
Japan
Prior art keywords
zns
rare earth
thin film
hydrogen
hydrogen chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3260309A
Other languages
Japanese (ja)
Inventor
Kosuke Terada
幸祐 寺田
Akiyoshi Mikami
明義 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3260309A priority Critical patent/JPH05101887A/en
Publication of JPH05101887A publication Critical patent/JPH05101887A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To manufacture rare earth element-doped ZnS thin film with good crystal property by depositing ZnS or Zn with S as a matrix material and a rare earth element as a luminescent center material on a substrate under heating by leading a hydrogen halide gas. CONSTITUTION:A ZnS powder as a matrix material and a rare earth metal element (e.g. Tb) as a light-emitting center material are stored in quartz tubes 2. 3, respectively, in a quartz tube 1. The ZnS powder and the rare earth metal element are heated at 900-1000 deg.C and 700-900 deg.C, respectively by resistance heating furnaces 6, 7. Hydrogen gas and a hydrogen halide gas (e.g. hydrogen chloride) are led through a leading tube 9 and a leading tube 10, respectively to transport the ZnS and halide compound of the rare earth metal to a substrate and deposit them on the substrate heated to 500-600 deg.C by a resistance heating furnace 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、平面薄型ディスプレイ
として応用されるエレクトロルミネッセンス素子の発光
層に用いられるエレクトロルミネッセンス薄膜の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electroluminescent thin film used for a light emitting layer of an electroluminescent device applied as a flat thin display.

【0002】[0002]

【従来の技術】二重絶縁構造薄膜エレクトロルミネッセ
ンス素子(以下EL素子という)は、自発光の表示素子
として高性能の平面薄型ディスプレイへの応用が期待さ
れている。薄膜EL素子の発光色は発光層の種類によっ
て決まっており、例えば黄色EL素子の発光層としてZn
S:Mn、赤色EL素子の発光層としてZnS:Sm,CaS:Eu、緑
色EL素子の発光層としてZnS:Tb、青色EL素子の発光
層としてZnS:Tm,SrS:Ce等が知られている。これらの中
でも特にZnSを母体としてSm,Tb,Tm等の希土類元素を添
加した発光層は、これらのみでフルカラー表示が可能な
ため盛んに製造技術の開発が進められている。
2. Description of the Related Art A double insulating thin film electroluminescent element (hereinafter referred to as an EL element) is expected to be applied to a high performance flat thin display as a self-luminous display element. The emission color of the thin film EL element is determined by the type of the light emitting layer.
S: Mn, ZnS: Sm, CaS: Eu as the light emitting layer of the red EL element, ZnS: Tb as the light emitting layer of the green EL element, ZnS: Tm, SrS: Ce as the light emitting layer of the blue EL element are known. .. Among these, particularly for the light emitting layer containing ZnS as a base material and a rare earth element such as Sm, Tb, or Tm added, full-color display is possible only with these materials, and therefore manufacturing technology is being actively developed.

【0003】発光層の製造方法としては現在真空蒸着
法、スパッタ法、化学的気相成長(CVD)法、原子層
エピタキシー(ALE)法などがあり、現在真空蒸着
法、ALE法により作製されたZnS:Mn発光層を用いた黄
色ELディスプレイが実用化されている。また希土類元
素添加ZnS膜の作製に関しては希土類元素のフッ化物
(ReF3)をドーパントとして真空蒸着法、スパッタ法によ
り作製する方法、Tbの有機金属化合物を用いてドーピ
ングするALE法が知られている。
As a method for manufacturing the light emitting layer, there are currently a vacuum vapor deposition method, a sputtering method, a chemical vapor deposition (CVD) method, an atomic layer epitaxy (ALE) method, etc., and currently, the vacuum vapor deposition method and the ALE method are used. A yellow EL display using a ZnS: Mn light emitting layer has been put to practical use. Regarding the preparation of ZnS film with rare earth element added, fluoride of rare earth element is used.
Known methods include a vacuum deposition method and a sputtering method using (ReF 3 ) as a dopant, and an ALE method in which an organic metal compound of Tb is used for doping.

【0004】[0004]

【発明が解決しようとする課題】希土類元素をZnS母
体にドーピングする場合、発光中心となる希土類イオン
は3価となることが多く、置換する亜鉛元素の2価イオ
ンとは価数およびイオン半径の大きさが異なる。このた
め希土類元素を母体へ高濃度にドーピングすることは難
しく、さらにドーピングにより母体の結晶性が損なわれ
る為、これらの薄膜を発光層としてEL素子に用いる場
合、発光輝度や耐圧等の信頼性の点で高性能なEL素子
を作製することが難しい。このような発光中心イオンの
価数の違いにより生じる問題を解決するため、希土類元
素のフッ化物をドーパントとして用いて発光層を作製す
る方法も行われているが、未だ十分な膜は得られていな
い。本発明は以上に鑑み、結晶性の良い希土類元素含有
ZnS薄膜からなるエレクトロルミネッセンス薄膜の製
造方法を提供することを目的とする。
When the ZnS host is doped with a rare earth element, the rare earth ion serving as the emission center is often trivalent, and the divalent ion of the zinc element to be substituted is different in valence and ionic radius. The size is different. For this reason, it is difficult to dope the base material with a high concentration of a rare earth element, and further, since the crystallinity of the base material is impaired by the doping, when these thin films are used for an EL element as a light emitting layer, the reliability of light emission brightness, breakdown voltage, etc. In this respect, it is difficult to manufacture a high-performance EL element. In order to solve the problem caused by the difference in the valence of the emission center ion, a method of forming a light emitting layer using a fluoride of a rare earth element as a dopant has been performed, but a sufficient film has not been obtained yet. Absent. In view of the above, it is an object of the present invention to provide a method for manufacturing an electroluminescent thin film made of a rare earth element-containing ZnS thin film having good crystallinity.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明のエレクトロルミネッセンス薄膜の製造方法
は、母体材料としてZnSまたはZnおよびSを用い、
発光中心材料として希土類元素を用い、上記母体材料を
加熱しつつ該母体材料上に水素または不活性ガスを流通
し、上記発光中心材料を加熱しつつ該発光中心材料上に
ハロゲン化水素ガスを流通し、これにより成長領域に配
置されて加熱された基板上に母体材料と発光中心材料と
を供給し、さらに上記成長領域に直接ハロゲン化水素ガ
スを供給することを特徴とする化学的気相成長法を用い
ることを特徴とする。
A method for producing an electroluminescent thin film of the present invention for achieving the above object uses ZnS or Zn and S as a base material,
Using a rare earth element as an emission center material, hydrogen or an inert gas is circulated on the host material while heating the base material, and a hydrogen halide gas is passed on the emission center material while heating the emission center material. The chemical vapor deposition is characterized in that the matrix material and the emission center material are supplied onto the heated substrate arranged in the growth region, and the hydrogen halide gas is directly supplied to the growth region. It is characterized by using the method.

【0006】上記母体材料としては、例えばZnS粉
末、Zn粉末、S粉末またはこれらの成型体が用いら
れ、Zn及びSを用いる場合にはそれぞれを分けて配置
する。好ましくは固体状のZnSを用いて熱昇華させて
輸送するのが良い。また、上記ハロゲン化水素ガスとし
ては好ましくは塩化水素ガスが良い。
As the base material, for example, ZnS powder, Zn powder, S powder or a molded body of these is used. When Zn and S are used, they are arranged separately. Preferably, solid ZnS is used for thermal sublimation and transportation. The hydrogen halide gas is preferably hydrogen chloride gas.

【0007】ZnS薄膜の結晶構造は、六方晶系ウルツ
鉱型とするのがよく、六方晶系ウルツ鉱型とするには上
記2系統のハロゲン化水素ガスの総導入量を増やせば良
く、成長領域に供給される単位時間当たりのZnSのモ
ル数と同量かそれ以上のモル数となるようにハロゲン化
水素ガスの総導入量を制御すれば良い。
The crystal structure of the ZnS thin film is preferably a hexagonal wurtzite type, and the hexagonal wurtzite type can be grown by increasing the total introduction amount of the hydrogen halide gas of the above two systems. The total amount of hydrogen halide gas introduced may be controlled so that the number of moles of ZnS per unit time supplied to the region is equal to or more.

【0008】[0008]

【作用】直接導入されるハロゲン化水素ガスは、その流
量を変えることでZnS膜の結晶構造が閃亜鉛鉱型とな
るかウルツ鉱型となるかを制御する。
The hydrogen halide gas introduced directly controls whether the crystal structure of the ZnS film is zinc blende type or wurtzite type by changing the flow rate.

【0009】[0009]

【実施例】以下、本発明の実施例について図面を参照し
ながら説明する。図1は、本実施例で用いた薄膜成長装
置の概略構成図である。石英管1の内部に設けられた石
英内管2,3に原料として用いるZnS粉末および金属
Tbをそれぞれ設置し、抵抗加熱炉6,7によりZnS
粉末を900〜1000℃、金属Tbを700〜900℃に加熱す
る。そして石英内管2,3に接続されている導入管9よ
り水素ガス、導入管10より塩化水素ガスを導入するこ
とにより、抵抗加熱炉8により500〜600℃に基板が加熱
されるようにされた基板設置領域12にZnSとTbを
輸送する。これにより、ZnSはZn,S,H2Sとなって
水素ガスにより輸送され、TbはTbCl3となって輸
送される。このようにしてTbを輸送することによりT
bの均一なドーピングが可能となる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of the thin film growth apparatus used in this example. ZnS powder and metal Tb to be used as raw materials are placed in the quartz inner tubes 2 and 3 provided inside the quartz tube 1, respectively, and the ZnS powder is heated by the resistance heating furnaces 6 and 7 respectively.
The powder is heated to 900 to 1000 ° C and the metal Tb is heated to 700 to 900 ° C. Then, by introducing hydrogen gas from the introduction pipe 9 connected to the quartz inner pipes 2 and 3 and hydrogen chloride gas from the introduction pipe 10, the substrate is heated to 500 to 600 ° C. by the resistance heating furnace 8. ZnS and Tb are transported to the substrate mounting region 12. As a result, ZnS becomes Zn, S, H 2 S and is transported by hydrogen gas, and Tb becomes TbCl 3 and is transported. By transporting Tb in this way, T
Uniform doping of b is possible.

【0010】さらに、Tb輸送用の塩化水素ガスでは膜
中のTb濃度の制御をするようにして、成長領域におけ
る塩化水素ガス分圧を膜中のTb濃度に影響を与えずに
増加させるために、金属Tbが設置された内管を通さず
に塩化水素ガスを基板設置領域に供給する。これは図2
に示すデータに基づいて考えられたものである。このた
めに、石英管1に直接導入管11を接続し、この導入管
11より塩化水素ガス(これをバイパス塩化水素と言
う。)を導入する。尚、本薄膜成長装置は減圧状態で使
用する。このバイパス塩化水素の導入により、基板設置
領域内のZnCl2量が制御される。
Furthermore, in order to increase the hydrogen chloride gas partial pressure in the growth region without affecting the Tb concentration in the film by controlling the Tb concentration in the film for hydrogen chloride gas for Tb transport. , Hydrogen chloride gas is supplied to the substrate installation region without passing through the inner tube in which the metal Tb is installed. This is Figure 2
It was considered based on the data shown in. For this purpose, the introduction pipe 11 is directly connected to the quartz pipe 1, and hydrogen chloride gas (this is called bypass hydrogen chloride) is introduced through the introduction pipe 11. The thin film growth apparatus is used under reduced pressure. By introducing this bypass hydrogen chloride, the amount of ZnCl 2 in the substrate installation area is controlled.

【0011】上記方法により図3に示す成膜条件でZn
S:Tb薄膜を作製した。図4はこのうちの二つの例の
成長条件を示したものであり、ZnS輸送量、Tb輸送
量の実際の値は制御目標より若干ずれている。試料No.1
はバイパス塩化水素を流さなかったもの、試料No.2はバ
イパス塩化水素を流したものである。膜中のTb濃度は
Tb輸送用塩化水素流量により制御されて、両試料とも
Tb含有濃度は2〜3at%となった。これはEL素子
発光膜とする場合のほぼ最適値である。
According to the above method, Zn was formed under the film forming conditions shown in FIG.
An S: Tb thin film was prepared. FIG. 4 shows the growth conditions of two of them, and the actual values of the ZnS transport amount and the Tb transport amount are slightly deviated from the control target. Sample No.1
Indicates that no bypass hydrogen chloride was flown, and sample No. 2 was that where bypass hydrogen chloride was flown. The Tb concentration in the film was controlled by the flow rate of hydrogen chloride for Tb transport, and the Tb content concentration was 2-3 at% in both samples. This is almost the optimum value for the EL device light emitting film.

【0012】図5に上記試料膜のX線回折パターンを示
す。試料No.1では主回折ピークのほかに(311)面の回
折ピークが強く現れるのに対して、試料No.2では主回折
ピークのみ現れ回折強度も強く良質の膜であることを示
している。またRHEED回折パターンの測定結果と合わせ
ることにより、両者の結晶構造は試料No.1が[111]
に配向した閃亜鉛鉱型、試料No.2がC軸方向に配向した
ウルツ鉱型であることがわかった。このように、バイパ
ス塩化水素の導入により結晶性が良くなると共に、ウル
ツ鉱型の結晶が得られることが分かる。尚、希土類元素
を含有するZnS膜を作製する場合には先の出願(特願
平2ー214707号)に記載のように、ウルツ鉱型と
するのがよい。
FIG. 5 shows the X-ray diffraction pattern of the sample film. Sample No. 1 shows a strong diffraction peak on the (311) plane in addition to the main diffraction peak, whereas Sample No. 2 shows only a main diffraction peak and shows a strong diffraction intensity, indicating that the film is a good quality film. .. Also, by combining with the measurement results of the RHEED diffraction pattern, the crystal structure of both is [111] for sample No. 1.
It was found that the zinc-blende type with orientated in the direction of No. 2 and the sample No. 2 were wurtzite type with the orientation in the C-axis direction. Thus, it is understood that the introduction of bypass hydrogen chloride improves the crystallinity and obtains wurtzite type crystals. When a ZnS film containing a rare earth element is produced, it is preferable to use a wurtzite type as described in the previous application (Japanese Patent Application No. 2-214707).

【0013】図6,7は、Tb輸送用およびバイパスの
塩化水素流量を様々に変えた場合の、膜の結晶構造の変
化を示す図である。これより、六方晶系ウルツ鉱型とす
るには上記2系統の塩化水素ガスの総導入量を増やせば
良く、成長領域に供給される単位時間当たりのZnSの
モル数と同量かそれ以上のモル数となるように塩化水素
ガスの総導入量を制御すれば良い。尚、結晶性は、いず
れもウルツ鉱型結晶の方が良かった。さらに、表面平坦
性も良くなっていた。尚、図7では、塩化水素ガスの総
導入量が4cc/min以上になった場合にウルツ鉱型となっ
ており、極端にTb濃度が低い場合を除きTb濃度等に
関係なく成長中に供給される塩化水素量により膜の結晶
構造が変化している。この結晶構造変化に必要な総塩化
水素流量は成長条件により変化するが、ZnS原料輸送
量が最も関係し、図7よりZnS輸送量と同モル以上と
すれば良いことが分かる。(尚、4cc/minは約1.8mol/mi
nであり、実施例におけるZnS輸送量の1.8〜2.0mol/m
inとほぼ等しい)。
FIGS. 6 and 7 are diagrams showing changes in the crystal structure of the film when the hydrogen chloride flow rates for Tb transport and bypass are variously changed. From this, in order to obtain the hexagonal wurtzite type, it is sufficient to increase the total introduction amount of hydrogen chloride gas of the above two systems, and the amount equal to or more than the number of moles of ZnS per unit time supplied to the growth region. The total amount of hydrogen chloride gas introduced may be controlled so that the number of moles is adjusted. The crystallinity of the wurtzite type crystals was better in all cases. Furthermore, the surface flatness was also improved. In FIG. 7, when the total amount of hydrogen chloride gas introduced is 4 cc / min or more, it is of wurtzite type, and is supplied during growth regardless of Tb concentration, etc., unless the Tb concentration is extremely low. The crystal structure of the film changes depending on the amount of hydrogen chloride formed. The total hydrogen chloride flow rate required for this crystal structure change varies depending on the growth conditions, but the ZnS raw material transport amount is most relevant, and it can be seen from FIG. (Note that 4cc / min is about 1.8mol / mi
n, which is 1.8 to 2.0 mol / m of ZnS transport amount in the example.
almost equal to in).

【0014】次に、上記製造方法により作製された膜を
発光層に用いたEL素子について述べる。図8は作製さ
れたEL素子の構造である。ガラス基板1、透明電極
2、第一絶縁膜3、発光層4、第二絶縁膜5、金属電極
6により構成されており、透明電極としてITO(スズ
添加酸化インジウム)、第一絶縁膜としてSiO2とS
34の積層膜、第二絶縁膜としてSi34とAi23
の積層膜、金属電極として金属アルミニウムを用いてい
る。試料No.1の閃亜鉛鉱型のZnS:Tb薄膜を発光層として
用いた場合EL発光は弱く耐圧も低いが、試料No.2
のウルツ鉱型のZnS:Tb薄膜を発光層として用いた場合、
図9に示す発光輝度ー電圧特性が得られる高輝度なEL
素子を作製することが出来た。またこの素子は300V
以上の耐圧を示し信頼性の面でも高性能なEL素子とな
っている。
Next, an EL device using the film manufactured by the above manufacturing method as a light emitting layer will be described. FIG. 8 shows the structure of the manufactured EL element. It is composed of a glass substrate 1, a transparent electrode 2, a first insulating film 3, a light emitting layer 4, a second insulating film 5 and a metal electrode 6, and ITO (tin added indium oxide) as a transparent electrode and SiO as a first insulating film. 2 and S
i 3 N 4 laminated film, Si 3 N 4 and Ai 2 O 3 as second insulating film
Aluminum is used as the laminated film and the metal electrode. When the zinc blende type ZnS: Tb thin film of sample No. 1 is used as the light emitting layer, the EL emission is weak and the breakdown voltage is low, but sample No. 2
When the wurtzite type ZnS: Tb thin film of
High-luminance EL that can obtain the emission luminance-voltage characteristics shown in FIG.
The device could be manufactured. Also, this device is 300V
The EL element has the above breakdown voltage and high performance in terms of reliability.

【0015】以上実施例では薄膜としてZnS:Tb、供給ハ
ロゲン化水素ガスとして塩化水素を用いたが、Tbと化学
的性質の似た希土類元素元素(Tm,Sm,Eu,Ce)を適用した
場合、また塩化水素と化学的性質の似たハロゲン化水素
(HF,HBr,HI)を適用した場合にも同様の作用・効果が得
られると考えられる。
Although ZnS: Tb is used as the thin film and hydrogen chloride is used as the hydrogen halide gas to be supplied in the above examples, when a rare earth element (Tm, Sm, Eu, Ce) having similar chemical properties to Tb is applied. It is considered that the same action and effect can be obtained when hydrogen halide (HF, HBr, HI) having similar chemical properties to hydrogen chloride is applied.

【0016】尚、この成長法で無添加のZnSを成長し
た場合、基板領域に塩化水素を導入しても結晶構造の変
化が得られず塩化水素の供給量を増やすに従って膜の結
晶性が低下し、最後には成長出来なくなることが研究に
よりわかっている。またマンガンを添加する場合は、少
量のマンガン添加により結晶構造がウルツ鉱型へと変化
するため塩化水素流量を制御する必要がない。このこと
から本発明の効果は希土類元素添加ZnS膜を製造する
場合に有効である。
When ZnS without any additive is grown by this growth method, the crystal structure does not change even if hydrogen chloride is introduced into the substrate region, and the crystallinity of the film decreases as the supply amount of hydrogen chloride increases. However, research shows that at the end it cannot grow. When manganese is added, it is not necessary to control the hydrogen chloride flow rate because the crystal structure changes to wurtzite type by adding a small amount of manganese. From this, the effect of the present invention is effective when a rare earth element-added ZnS film is manufactured.

【0017】[0017]

【発明の効果】本発明によれば、結晶性の良い希土類元
素含有ZnS薄膜からなるエレクトロルミネッセンス薄
膜がえられる。この薄膜を発光層として用いれば、高耐
圧で輝度の高いEL素子を作製することが出来る。
According to the present invention, an electroluminescent thin film composed of a ZnS thin film containing a rare earth element having good crystallinity can be obtained. By using this thin film as a light emitting layer, an EL element having high withstand voltage and high brightness can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で用いた薄膜成長装置の概略構成図であ
る。
FIG. 1 is a schematic configuration diagram of a thin film growth apparatus used in an example.

【図2】Tb輸送HCl輸送量とZnS薄膜の成長速度
とTb含有量との関係を示す図である。
FIG. 2 is a diagram showing the relationship between Tb transport HCl transport amount, ZnS thin film growth rate, and Tb content.

【図3】実施例で用いた成長条件を示す図である。FIG. 3 is a diagram showing growth conditions used in Examples.

【図4】試料No.1と試料No.2の成長条件を示す図
である。
FIG. 4 is a diagram showing growth conditions of Sample No. 1 and Sample No. 2.

【図5】試料のX線回折パターンを示す図である。FIG. 5 is a diagram showing an X-ray diffraction pattern of a sample.

【図6】供給塩化水素量の変化によるZnS薄膜の結晶
構造変化を示す図である。
FIG. 6 is a diagram showing changes in the crystal structure of a ZnS thin film due to changes in the amount of hydrogen chloride supplied.

【図7】供給塩化水素量の変化によるZnS薄膜の結晶
構造変化を示す図である。
FIG. 7 is a diagram showing changes in the crystal structure of a ZnS thin film due to changes in the amount of hydrogen chloride supplied.

【図8】EL素子の構造図である。FIG. 8 is a structural diagram of an EL element.

【図9】実施例のEL素子の発光輝度と印加電圧の関係
を示す図である。
FIG. 9 is a diagram showing the relationship between the light emission luminance of the EL element of the example and the applied voltage.

【符号の説明】[Explanation of symbols]

1.石英管 2,3.石英内管 6,7,8.抵
抗加熱炉 9,10,11.導入管 12.基板領域
1. Quartz tube 2,3. Quartz inner tube 6,7,8. Resistance heating furnace 9, 10, 11. Introduction tube 12. Board area

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年4月27日[Submission date] April 27, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図7】 [Figure 7]

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図8[Correction target item name] Figure 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図8】 [Figure 8]

【手続補正6】[Procedure correction 6]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図9[Correction target item name] Figure 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図9】 [Figure 9]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】母体材料としてZnSまたはZnおよびS
を用い、発光中心材料として希土類元素を用い、上記母
体材料を加熱しつつ該母体材料上に水素または不活性ガ
スを流通し、上記発光中心材料を加熱しつつ該発光中心
材料上にハロゲン化水素ガスを流通し、これにより成長
領域に配置されて加熱された基板上に母体材料と発光中
心材料とを供給し、さらに上記成長領域に直接ハロゲン
化水素ガスを供給することを特徴とする化学的気相成長
法を用いたエレクトロルミネッセンス薄膜の製造方法。
1. ZnS or Zn and S as a base material
And using a rare earth element as the luminescent center material, hydrogen or an inert gas is circulated over the host material while heating the host material, and the hydrogen halide on the luminescent center material while heating the luminescent center material. A chemical method characterized in that a base material and an emission center material are supplied onto a substrate which is placed in a growth region and heated by flowing a gas, and further a hydrogen halide gas is directly supplied to the growth region. Manufacturing method of electroluminescent thin film using vapor phase growth method.
JP3260309A 1991-10-08 1991-10-08 Manufacture of electroluminescent thin film Pending JPH05101887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3260309A JPH05101887A (en) 1991-10-08 1991-10-08 Manufacture of electroluminescent thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3260309A JPH05101887A (en) 1991-10-08 1991-10-08 Manufacture of electroluminescent thin film

Publications (1)

Publication Number Publication Date
JPH05101887A true JPH05101887A (en) 1993-04-23

Family

ID=17346240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3260309A Pending JPH05101887A (en) 1991-10-08 1991-10-08 Manufacture of electroluminescent thin film

Country Status (1)

Country Link
JP (1) JPH05101887A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108254A1 (en) * 2007-03-07 2008-09-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108254A1 (en) * 2007-03-07 2008-09-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device

Similar Documents

Publication Publication Date Title
CA2171020C (en) Ternary compound film and manufacturing method therefor
JP2795194B2 (en) Electroluminescence device and method of manufacturing the same
EP0342063B1 (en) Process for preparing an electroluminescent film
JP2000104061A (en) Luminescent material
JPH05101887A (en) Manufacture of electroluminescent thin film
US5372839A (en) Process for preparing an electroluminescent film
Collins et al. Preparation and Photoluminescence of Thulium‐Activated Zinc Sulfide Films
JP2001118677A (en) Manufacturing method of target for inorganic electroluminescent phosphor thin film, phosphor thin film, inorganic electroluminescent element and sulfide phosphor thin film
JP3133829B2 (en) EL display element manufacturing method
JP2680725B2 (en) Method for producing electroluminescent thin film
JP3543414B2 (en) Electroluminescence device and method of manufacturing the same
US5853552A (en) Process for the production of electroluminescence element, electroluminescence element
JPH02148595A (en) Thin film el device and manufacture thereof
JP2985096B2 (en) Zn lower 2 SiO lower 4: Method of manufacturing AC driven thin film electroluminescent device using Mn thin film as light emitting layer
JP2857624B2 (en) Method for manufacturing electroluminescent element
JP3564737B2 (en) Manufacturing method and manufacturing apparatus for electroluminescent element
JP2900814B2 (en) Method and apparatus for manufacturing electroluminescent element
JPH10199676A (en) Manufacture and device of thin film electroluminescence element
JPH056792A (en) Manufacture of phosphor thin film
JPH0752671B2 (en) EL light emitting film
JP2726353B2 (en) Method for growing electroluminescent thin film
JPS61253797A (en) Manufacture of electroluminescence element
JP3349221B2 (en) Electroluminescent device and method for manufacturing the same
JP2001192813A (en) Method and device for producing sulfide light emitting layer
JPH0785971A (en) Electroluminescent element