JPH0785971A - Electroluminescent element - Google Patents

Electroluminescent element

Info

Publication number
JPH0785971A
JPH0785971A JP5231589A JP23158993A JPH0785971A JP H0785971 A JPH0785971 A JP H0785971A JP 5231589 A JP5231589 A JP 5231589A JP 23158993 A JP23158993 A JP 23158993A JP H0785971 A JPH0785971 A JP H0785971A
Authority
JP
Japan
Prior art keywords
emitting layer
light emitting
plane
degrees
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5231589A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Matsuyama
博圭 松山
Kazuo Yoshida
一男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5231589A priority Critical patent/JPH0785971A/en
Publication of JPH0785971A publication Critical patent/JPH0785971A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To provide an EL lement emitting light with high brightness and presenting steep brightness vs. voltage characteristics. CONSTITUTION:A light emitting layer is made from a compound consisting of II group element and VIb group element and prepared by adding an activating agent to a parent material of rock-salt structure. The half value width of the 220 plane in X-ray diffraction of the light emitting layer is made between 0.15 and 0.4 deg. or that of the 200 plane made between 0.11 and 0.3 deg., and the grating constant of the light emitting layer ranges from 99% to 100.5% of the grating constant of the crystal powder of parent material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電界の印加に応じて発
光を示すエレクトロルミネッセンス素子(以下、EL素
子と略す。)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroluminescence element (hereinafter abbreviated as EL element) which emits light when an electric field is applied.

【0002】[0002]

【従来の技術】ZnSやZnSe等の母材にMn等の付
活剤をドープしたものに高電圧を印加することで発光す
るエレクトロルミネッセンス(以下、ELと略する。)
の現象は古くから知られている。特に、二重絶縁層型E
L素子の開発により輝度および寿命が飛躍的に向上し、
EL素子は、薄型ディスプレイとして現在市販されるま
でに至った。
2. Description of the Related Art Electroluminescence (hereinafter abbreviated as EL) which emits light when a high voltage is applied to a base material such as ZnS or ZnSe doped with an activator such as Mn.
The phenomenon has been known for a long time. In particular, double insulation layer type E
The development of the L element has dramatically improved the brightness and life,
The EL element has come to the market as a thin display now.

【0003】EL素子の発光色は、発光層を構成する母
材と付活剤の組合せで決まる。例えば、ZnS母材に付
活剤としてMnをドープすると黄橙色、Tbをドープす
ると緑色のEL発光が得られる。また、SrS母材にC
eをドープすると青緑色、CaS母材にEuをドープす
ると赤色のEL発光が得られる。しかしながら、現在薄
膜EL素子の分野において、実用レベルの輝度に達して
いるものはZnS母材にMnをドープした黄橙色の系の
みである。フルカラーの薄膜型ディスプレイには、青、
緑、赤の3原色を発光するEL素子が必要であり、現
在、各色の実用レベルの輝度および急峻な輝度−電圧特
性を有するEL素子の開発が精力的に進められている。
The emission color of the EL element is determined by the combination of the base material forming the light emitting layer and the activator. For example, when ZnS base material is doped with Mn as an activator, yellow-orange emission is obtained, and when Tb is doped, green emission is obtained. In addition, the SrS base material is C
EL light emission is obtained when e is doped with blue, and red light is obtained when Eu is added to the CaS base material. However, in the field of thin film EL devices, only the yellow-orange system in which ZnS base material is doped with Mn has reached the brightness of a practical level. The full-color thin-film display is blue,
An EL element that emits the three primary colors of green and red is required, and currently, EL elements having a practical level of luminance for each color and a steep luminance-voltage characteristic are being vigorously developed.

【0004】高輝度発光を示し、急峻な輝度−電圧特性
を示すEL素子を製造するためには、発光層の高結晶化
を図ることが一つの有望な条件であると考えられてき
た。そこで、発光層の成膜時の基板温度を高くしたり、
発光層作成後に真空中或いは不活性ガス雰囲気下で高温
熱処理するなどの方法がとられてきた。発光層の結晶性
を向上させるための手段として、特公昭63ー4611
7号公報、特開平1ー272093号公報および特開平
3−225792号公報に、発光層を成膜後H2 S中で
熱処理することが記載されている。特に特開平3−22
5792号公報には、650℃以上、1時間以上のH2
S熱処理により、SrS:Ce系においてSrS発光層
のX線回折の(220)面の半値幅が0.4度、また同
じく(200)面の半値幅が0.3度を有し、最高輝度
12000cd/m2 という高輝度に発光するEL素子
が得られている。
In order to manufacture an EL element that exhibits high-luminance light emission and exhibits a sharp luminance-voltage characteristic, it has been considered that one promising condition is to achieve high crystallization of the light-emitting layer. Therefore, increase the substrate temperature during the formation of the light emitting layer,
A method such as high-temperature heat treatment in a vacuum or in an inert gas atmosphere after forming the light emitting layer has been used. As a means for improving the crystallinity of the light emitting layer, JP-B-63-4611
JP-A-7-272093 and JP-A-3-225792 describe heat treatment in H 2 S after forming a light emitting layer. In particular, JP-A-3-22
No. 5792 discloses that H 2 at 650 ° C. or higher for 1 hour or longer.
Due to the S heat treatment, in the SrS: Ce system, the full width at half maximum of the (220) plane of the SrS light emitting layer was 0.4 degree, and the full width at half maximum of the (200) plane was 0.3 degree, and the maximum brightness was obtained. An EL element that emits light with a high brightness of 12000 cd / m 2 has been obtained.

【0005】また、特開昭63−236294号公報
に、発光層原料に硫黄を供給することにより、SrS発
光層母体の格子定数が6.07以下、(111)面の半
値幅が0.21度以下になり、最大輝度1000cd/
2 の発光が得られるという記述がある。しかしなが
ら、前記のような従来技術では最高輝度は高いが、輝度
−電圧特性が急峻でないという問題点があった。
Further, in JP-A-63-236294, by supplying sulfur to the light emitting layer raw material, the lattice constant of the SrS light emitting layer matrix is 6.07 or less, and the (111) plane half width is 0.21. The maximum brightness is 1000 cd /
There is a description that light emission of m 2 can be obtained. However, the above-mentioned conventional technique has a problem that the maximum luminance is high but the luminance-voltage characteristic is not steep.

【0006】[0006]

【発明が解決しようとする課題】本発明は、高輝度で、
かつ輝度−電圧特性の急峻なEL素子を提供することを
目的とする。
DISCLOSURE OF THE INVENTION The present invention provides high brightness,
Moreover, it is an object of the present invention to provide an EL element having a sharp brightness-voltage characteristic.

【0007】[0007]

【課題を解決するための手段】かかる状況下において、
本発明者らは、鋭意検討した結果、高輝度に発光し、か
つ急峻な輝度−電圧特性を示す薄膜EL素子を見いだし
本発明を成すに至った。従来の技術で述べたように、特
開昭63−236294号公報に、発光層原料に硫黄を
供給することにより、SrS発光層母体の格子定数が
6.07以下となってSrS粉末の格子定数に近づき、
かつ(111)面の半値幅が0.21度以下になり、最
大輝度1000cd/m2 の発光が得られるという記載
がある。該公報の実施例においては、粉末の格子定数に
近づいた最も小さい格子定数として6.05Åが得られ
ている。
[Means for Solving the Problems] Under such circumstances,
As a result of intensive studies, the present inventors have found a thin film EL element that emits light with high brightness and exhibits a sharp brightness-voltage characteristic, and has completed the present invention. As described in the prior art, in JP-A-63-236294, by supplying sulfur to the light emitting layer raw material, the lattice constant of the SrS light emitting layer matrix becomes 6.07 or less, and the lattice constant of the SrS powder. Approaching,
In addition, there is a description that the full width at half maximum of the (111) plane becomes 0.21 degree or less, and light emission with a maximum brightness of 1000 cd / m 2 can be obtained. In the example of the publication, 6.05Å is obtained as the smallest lattice constant approaching that of powder.

【0008】しかしながら、本発明の、SrS、Ca
S、BaS等のII族元素とVI族元素(但し、酸素を除
く。)からなる岩塩型構造を有する母材からなる発光層
のX線回折において、(220)面の半値幅が0.15
度より大きく0.4度以下または同じく(200)面の
半値幅が0.11度より大きく0.3度以下の結晶性を
有する発光層は、一般に発光層の格子定数が母材の粉末
結晶の格子定数よりも小さくなる。このような半値幅を
有する領域において、発光層の格子定数が母材結晶粉末
の格子定数の99%以上、100.5%未満の時高輝度
で、かつ急峻な輝度−電圧特性を有するEL素子が得ら
れることを見いだした。
However, according to the present invention, SrS, Ca
In the X-ray diffraction of the light emitting layer made of the base material having the rock salt type structure composed of the group II element such as S and BaS and the group VI element (excluding oxygen), the half-width of the (220) plane is 0.15.
The crystallinity of a light emitting layer having a crystallinity of more than 0.4 degree and less than 0.4 degree, or the half width of the (200) plane of more than 0.11 degree and less than 0.3 degree, is generally a powder crystal of the base material having a lattice constant of the light emitting layer. Is smaller than the lattice constant of. In a region having such a full width at half maximum, when the lattice constant of the light emitting layer is 99% or more and less than 100.5% of the lattice constant of the base material crystal powder, high luminance and an EL element having steep luminance-voltage characteristics I found that

【0009】すなわち、本発明は、以下のとおりであ
る。 1.II族元素とVIb族元素(但し、酸素を除く。)から
なる化合物であって、かつ岩塩型構造をとる母材に付活
剤を添加した発光層を有する薄膜エレクトロルミネッセ
ンス素子において、上記発光層のX線回折における(2
20)面の半値幅が0.15度より大きく0.4度以下
または(200)面の半値幅が0.11度より大きく
0.3度以下であり、かつ上記発光層の格子定数が母材
物質の結晶粉末の格子定数の99%以上100.5%未
満であること特徴とする薄膜エレクトロルミネッセンス
素子。 2.SrS母材に付活剤を添加した発光層を有する薄膜
エレクトロルミネッセンス素子において、上記発光層の
X線回折における(220)面の半値幅が0.15度よ
り大きく0.4度以下または(200)面の半値幅が
0.11度より大きく0.3度以下であり、かつ上記発
光層の格子定数が6.005Å以上、6.05未満であ
ることを特徴とする薄膜エレクトロルミネッセンス素
子。
That is, the present invention is as follows. 1. What is claimed is: 1. A thin film electroluminescent device comprising a compound comprising a group II element and a VIb group element (excluding oxygen) and having a light emitting layer in which an activator is added to a base material having a rock salt structure. In X-ray diffraction of (2
20) plane half-width of more than 0.15 degrees and 0.4 degrees or less, or (200) plane half-width of more than 0.11 degrees and 0.3 degrees or less, and the lattice constant of the light emitting layer is A thin film electroluminescent element, which is 99% or more and less than 100.5% of the lattice constant of the crystal powder of the material. 2. In a thin film electroluminescence device having a light emitting layer in which an activator is added to a SrS base material, the half width of (220) plane in X-ray diffraction of the light emitting layer is more than 0.15 degrees and 0.4 degrees or less, or (200 ) The full width at half maximum of the plane is more than 0.11 degree and 0.3 degree or less, and the lattice constant of the light emitting layer is 6.005 Å or more and less than 6.05, a thin film electroluminescent element.

【0010】本発明は、EL素子に関するものである。
本発明におけるEL素子の構造は特に限定されない。E
L素子の構造としては二重絶縁層型、片側絶縁層型等を
挙げることができ、好ましい例としては二重絶縁層型を
挙げることができる。本発明においては、発光層のX線
回折のおける(220)面の半値幅が0.15度より大
きく0.4度以下または(200)面の半値幅が0.1
1度より大きく0.3度以下である。発光層のX線回折
における(220)面の半値幅が0.4度より大きく、
かつ(200)面の半値幅が0.3度より大きい場合
は、結晶性が不十分で高い輝度が得られない。また、発
光層のX線回折における(220)面の半値幅が0.1
5度以下または(200)面の半値幅が0.11度以下
の非常に結晶性の高い発光層では、その高結晶性が故に
格子定数の大きさに関係なく高輝度で、かつ急峻な輝度
−電圧特性を示すEL素子が得られる。
The present invention relates to an EL device.
The structure of the EL element in the present invention is not particularly limited. E
Examples of the structure of the L element include a double insulating layer type and one side insulating layer type, and a preferable example thereof includes a double insulating layer type. In the present invention, the half-value width of the (220) plane in the X-ray diffraction of the light-emitting layer is more than 0.15 degrees and 0.4 degrees or less, or the half-width of the (200) plane is 0.1.
It is more than 1 degree and less than or equal to 0.3 degree. The half width of the (220) plane in the X-ray diffraction of the light emitting layer is larger than 0.4 degree,
When the half width of the (200) plane is larger than 0.3 degrees, the crystallinity is insufficient and high brightness cannot be obtained. Further, the full width at half maximum of the (220) plane in X-ray diffraction of the light emitting layer is 0.1.
In a light emitting layer having a very high crystallinity of 5 degrees or less or a full width at half maximum of the (200) plane of 0.11 degrees or less, the high crystallinity causes high luminance and sharp luminance regardless of the size of the lattice constant. An EL element having a voltage characteristic is obtained.

【0011】さらに、本発明においては、発光層の格子
定数が、母材物質の結晶粉末の格子定数の99%以上1
00.5%未満であることが必要であり、好ましくは9
9.5%以上、100.3%以下である。発光層の格子
定数が母材結晶粉末の格子定数に近い一定の範囲にある
場合に、高輝度で、かつ輝度−電圧特性の急峻なEL素
子が得られる。II族元素とVIb族元素(但し、酸素を除
く。)からなる化合物では、VIb族元素の欠陥が生じ易
く、発光層の格子定数が母材の結晶粉末の格子定数の9
9%未満では、輝度−電圧特性の急峻なEL素子は得ら
れない。また、発光層の格子定数が母材結晶粉末の格子
定数の100.5%より大きい場合も、不純物の混入や
過剰のVIb族元素等が原因ではないかと推測されるが、
結晶の完全性が不十分であるために急峻な輝度−電圧特
性は得られない。
Further, in the present invention, the lattice constant of the light emitting layer is 99% or more of the lattice constant of the crystal powder of the base material 1
It is necessary to be less than 00.5%, preferably 9
It is 9.5% or more and 100.3% or less. When the lattice constant of the light emitting layer is within a certain range close to the lattice constant of the base material crystal powder, an EL element having high luminance and sharp luminance-voltage characteristics can be obtained. In the case of a compound composed of a group II element and a VIb group element (excluding oxygen), defects of the VIb group element are likely to occur, and the lattice constant of the light emitting layer is 9 times the lattice constant of the crystal powder of the base material.
If it is less than 9%, an EL element having a sharp luminance-voltage characteristic cannot be obtained. Further, when the lattice constant of the light emitting layer is larger than 100.5% of the lattice constant of the base material crystal powder, it is presumed that the contamination of impurities or the excessive VIb group element may be the cause.
A steep luminance-voltage characteristic cannot be obtained because the crystal integrity is insufficient.

【0012】発光層母材がSrSの場合、発光層の格子
定数が6.005Å以上、6.05Å未満のとき、特に
高輝度で、かつ輝度−電圧特性の急峻なEL素子が得ら
れる。本発明における付活剤は特に限定されないが、C
e、Eu、Pr、Tb、Tm、Sm、Nd、Dy、H
o、Er、Mn、Cu等から選ばれる少なくとも一つ以
上の元素を含む化合物を挙げることができる。該化合物
の種類も特に限定されないが、例えばハロゲン化物、硫
化物、酸化物などを挙げることができる。本発明におけ
る付活剤の濃度は特に限定されないが、あまり少ないと
発光輝度が上がらず、また、あまり多すぎると発光層の
結晶性が悪くなったり、濃度消光が起こって輝度が上が
らない。好ましくは、母材のII族元素に対して0.01
〜5mol%の範囲であり、より好ましくは0.05〜
2mol%の範囲である。
When the light emitting layer base material is SrS and the lattice constant of the light emitting layer is 6.005 Å or more and less than 6.05 Å, an EL element having particularly high brightness and sharp brightness-voltage characteristics can be obtained. The activator in the present invention is not particularly limited, but C
e, Eu, Pr, Tb, Tm, Sm, Nd, Dy, H
Examples thereof include compounds containing at least one element selected from o, Er, Mn, Cu and the like. The kind of the compound is not particularly limited, and examples thereof include halides, sulfides, oxides and the like. The concentration of the activator in the present invention is not particularly limited, but if it is too small, the emission brightness does not increase, and if it is too large, the crystallinity of the light emitting layer deteriorates or the concentration quenching occurs and the brightness does not increase. Preferably, it is 0.01 with respect to the group II element of the base material.
To 5 mol%, more preferably 0.05 to
It is in the range of 2 mol%.

【0013】本発明における発光層中には、電荷補償剤
としてアルカリ金属のハロゲン化物を含有させても良
い。アルカリ金属のハロゲン化物としては、LiF、L
iCl、LiBr、LiI、NaCl、NaBr、Na
I、KCl、KBr、KI等が挙げられるが、中でもK
Clが好ましい。本発明におけるX線回折測定は、理学
製X線回折装置(RAD−B))を用いて行った。入射
X線としてはCuKβ線(管球電圧 50kV 管球電
流 160mA)を用いた。また、光学系で用いたD
S、SS、RS、RSMの各スリットの大きさはそれぞ
れ1/2、1/2、0.15、0.6である。本発明に
おけるX線回折ピークの半値幅は、ピークの高さ(ピー
ク極大値のカウント数からバックグラウンドのカウント
数を差し引いた値)の半分の値での該ピークの幅を求め
たものである。また、本発明における格子定数は、例え
ば岩塩型構造を有する発光層母材がSrSの場合、Sr
S(220)面および(200)面の回折角から求めた
ものである。
The light emitting layer in the present invention may contain an alkali metal halide as a charge compensating agent. Examples of alkali metal halides include LiF and L
iCl, LiBr, LiI, NaCl, NaBr, Na
I, KCl, KBr, KI and the like are mentioned, but among them, K
Cl is preferred. The X-ray diffraction measurement in the present invention was performed using an X-ray diffractometer (RAD-B) manufactured by Rigaku. As the incident X-ray, CuKβ ray (tube voltage 50 kV, tube current 160 mA) was used. In addition, D used in the optical system
The sizes of the slits of S, SS, RS, and RSM are 1/2, 1/2, 0.15, and 0.6, respectively. The full width at half maximum of the X-ray diffraction peak in the present invention is obtained by finding the width of the peak at half the height of the peak (the value obtained by subtracting the background count number from the peak maximum count number). . The lattice constant in the present invention is, for example, Sr when the light emitting layer base material having a rock salt type structure is SrS.
It is obtained from the diffraction angles of the S (220) plane and the (200) plane.

【0014】本発明における発光層母材の結晶粉末の格
子定数とは、文献値で、例えばSrSの場合には6.0
2Å、CaSの場合には5。69Åであるが、上記測定
条件によって結晶粉末の格子定数を測定した場合にも同
じ値が得られる。本発明における発光層の作製方法は特
に限定されない。例えば、塗布、電子線加熱蒸着、スパ
ッタ蒸着、抵抗加熱蒸着、MBE、MOCVD、ALE
法などの多くの方法が選択できる。
The lattice constant of the crystal powder of the light emitting layer base material in the present invention is a reference value, for example, 6.0 in the case of SrS.
In the case of 2Å and CaS, it is 5.69Å, but the same value can be obtained when the lattice constant of the crystal powder is measured under the above measurement conditions. The method for producing the light emitting layer in the present invention is not particularly limited. For example, coating, electron beam heating vapor deposition, sputter vapor deposition, resistance heating vapor deposition, MBE, MOCVD, ALE.
Many methods such as method can be selected.

【0015】本発明における発光層の膜厚は特に限定さ
れないが、薄すぎると発光輝度が低く、厚すぎると発光
開始電圧が高くなるため、好ましくは50〜3000n
mの範囲であり、より好ましくは100〜1500nm
の範囲である。本発明における発光層の作製法の好まし
い例として、例えば岩塩型構造を有する発光層母材がS
rSの場合、発光層を、SrS、Sr化合物、およ
び付活剤からなる混合物層を硫化性ガス雰囲気下で加
熱処理することによって作製する方法を挙げることがで
きる。のSr化合物としては、酸化物、硫酸塩、炭酸
塩、硝酸塩、ハロゲン化物およびこれらの混合物等が好
ましく、中でも硫酸塩、ハロゲン化物およびこれらの混
合物が好ましい。また、混合物層におけるSrSに対
するSr化合物の好ましい組成比は、少なすぎるとそ
の効果が出現せず、多すぎると熱処理後の発光層の特性
がかえって悪くなるため、好ましくはに対して0.0
1mol%〜50mol%、より好ましくは0.05m
ol%〜40mol%である。
The thickness of the light emitting layer in the present invention is not particularly limited, but if it is too thin, the emission brightness is low, and if it is too thick, the light emission starting voltage becomes high, so that it is preferably 50 to 3000 n.
m range, more preferably 100-1500 nm
Is the range. As a preferred example of the method for producing the light emitting layer in the present invention, for example, the light emitting layer base material having a rock salt type structure is S
In the case of rS, a method of producing the light emitting layer by subjecting a mixture layer of SrS, an Sr compound, and an activator to heat treatment in a sulfurizing gas atmosphere can be mentioned. The Sr compound is preferably an oxide, a sulfate, a carbonate, a nitrate, a halide or a mixture thereof, and more preferably a sulfate, a halide or a mixture thereof. When the composition ratio of the Sr compound to SrS in the mixture layer is too small, the effect does not appear, and when it is too large, the characteristics of the light emitting layer after heat treatment are rather deteriorated.
1 mol% to 50 mol%, more preferably 0.05 m
It is ol% to 40 mol%.

【0016】この例における混合物層の作製方法は特に
限定されない。例えば、塗布、電子線加熱蒸着、スパッ
タ蒸着、抵抗加熱蒸着、MBE、MOCVD、ALE法
などの多くの方法が選択できるが、中でもスパッタ法で
作製した混合物層の場合に本発明の効果が特に顕著に出
現して好ましい。また、混合物層を作製するための原料
も特に限定されない。例えば、真空蒸着法によって混合
物層を作製する場合、、、の混合物を原料として
用いる方法、、、をそれぞれ独立に原料として用
いる方法、Sr元素の原料としてSr金属または化合物
を用い、S成分をガス状態で成膜雰囲気に導入する方法
等が挙げられる。熱処理に用いられる硫化性ガスは、例
えば硫化水素、二硫化炭素、硫黄蒸気、エチルメチルカ
プタン、メチルメルカプタン、ジメチル硫黄、ジエチル
硫黄等が挙げられるが、硫化水素が本発明の効果が顕著
に出現して好ましい。硫化性ガスの濃度としては、好ま
しくは0.01〜100mol%、より好ましくは0.
1〜30mol%である。希釈ガスとしてはAr、He
等の不活性ガスが用いられる。また、加熱処理の好まし
い温度、時間は母材や反応性ガスの種類に依存するが、
温度は、好ましくは200℃から1200℃の範囲であ
り、より好ましくは300℃から1000℃の範囲であ
る。時間は、好ましくは、0.01時間から10時間の
範囲であり、より好ましくは0.1時間から6時間の範
囲である。
The method for producing the mixture layer in this example is not particularly limited. For example, many methods such as coating, electron beam heating vapor deposition, sputter vapor deposition, resistance heating vapor deposition, MBE, MOCVD, and ALE method can be selected. Among them, the effect of the present invention is particularly remarkable in the case of a mixture layer produced by the sputtering method. It is preferable to appear in. Moreover, the raw materials for producing the mixture layer are not particularly limited. For example, when a mixture layer is formed by a vacuum deposition method, a method of using a mixture of as a raw material, a method of independently using as a raw material, a method of using a Sr metal or compound as a raw material of an Sr element, and a S component as a gas. A method of introducing the film into a film forming atmosphere in this state may be mentioned. Examples of the sulfide gas used in the heat treatment include hydrogen sulfide, carbon disulfide, sulfur vapor, ethylmethylcaptan, methylmercaptan, dimethylsulfur, diethylsulfur, and the like, but hydrogen sulfide has a remarkable effect of the present invention. Is preferable. The concentration of the sulfurizing gas is preferably 0.01 to 100 mol%, more preferably 0.1.
It is 1 to 30 mol%. Ar, He as diluent gas
Inert gas such as is used. Also, the preferred temperature and time for heat treatment depend on the type of base material and reactive gas,
The temperature is preferably in the range of 200 ° C to 1200 ° C, more preferably 300 ° C to 1000 ° C. The time is preferably in the range of 0.01 hours to 10 hours, more preferably in the range of 0.1 hours to 6 hours.

【0017】[0017]

【実施例】以下に本発明を実施例で具体的に説明する。EXAMPLES The present invention will be specifically described below with reference to examples.

【0018】[0018]

【実施例1】ガラス基板上にITO電極、Ta2 5
SiO2 、ZnS薄膜を順次形成した。次に、SrS、
SrSに対して0.3mol%のCeF3 および同3m
ol%のSrSO4 を混合した粉末をターゲットに用い
てスパッタ蒸着を行い混合物層を形成した。成膜時の基
板温度は約250℃とし、混合物層の厚みは約800n
mとした。上記混合物層を2mol%の硫化水素を含む
アルゴンガス雰囲気中、724℃で4時間加熱処理を行
い、発光層を作製した。作製した発光層のSrS(22
0)面および(200)面の半値幅は、それぞれ0.3
3度、0.24度であり、格子定数は6.010Åであ
った。発光層の上に、ZnS、SiO2、Ta2 5
Al電極の順に形成し、素子を作製した。
Example 1 An ITO electrode, Ta 2 O 5 , and
SiO 2 and ZnS thin films were sequentially formed. Next, SrS,
0.3 mol% CeF 3 and 3 m with respect to SrS
Sputter deposition was performed using a powder mixed with ol% of SrSO 4 as a target to form a mixture layer. The substrate temperature during film formation was about 250 ° C., and the thickness of the mixture layer was about 800 n.
m. The above mixture layer was heat-treated at 724 ° C. for 4 hours in an argon gas atmosphere containing 2 mol% hydrogen sulfide to form a light emitting layer. The SrS (22
The full width at half maximum of the (0) plane and the (200) plane is 0.3, respectively.
It was 3 degrees and 0.24 degrees, and the lattice constant was 6.010Å. ZnS, SiO 2 , Ta 2 O 5 , on the light emitting layer,
An Al electrode was formed in this order to manufacture a device.

【0019】素子は、高輝度でかつ輝度−電圧特性の急
峻性が良好であり、1kHz、sin波駆動で測定した
場合の発光開始電圧+60V印加した時の輝度は100
0cd/m2 であった。
The device has high brightness and good steepness of the brightness-voltage characteristic, and the brightness is 100 when a light emission start voltage of +60 V is applied when measured by a sin wave drive at 1 kHz.
It was 0 cd / m 2 .

【0020】[0020]

【実施例2】SrS、SrSに対して0.3mol%の
CeF3 を混合したターゲット1、SrBr2 およびS
rCl2 をモル比で3:2の割合で混合したターゲット
2の二つのターゲットを用いて二元のスパッタ蒸着を行
い混合物層を形成したこと以外は実施例1と同様にして
EL素子を作製した。作製した発光層のSrS(22
0)面、(200)面の半値幅は、それぞれ0.35
度、0.26度であり、格子定数は6.009Åであっ
た。
Example 2 Target 1, SrBr 2 and S containing SrS, 0.3 mol% CeF 3 mixed with SrS
An EL device was produced in the same manner as in Example 1 except that binary sputtering was used to form a mixture layer using two targets, target 2 in which rCl 2 was mixed in a molar ratio of 3: 2. . The SrS (22
The full width at half maximum of planes (0) and (200) is 0.35 respectively.
The degree was 0.26 degree, and the lattice constant was 6.009Å.

【0021】素子は、高輝度でかつ輝度−電圧特性の急
峻性が良好であり、1kHz、sin波駆動で測定した
場合の発光開始電圧+60V印加した時の輝度は900
cd/m2 であった。
The device has a high brightness and a good brightness-voltage characteristic steepness, and the brightness is 900 when a light emission start voltage +60 V is applied when measured by a 1 kHz, sin wave drive.
It was cd / m 2 .

【0022】[0022]

【実施例3】CaS、CaSに対して0.3mol%の
EuF3 および同3mol%のSrSO4 を混合した粉
末をターゲットに用いて混合物層を形成したこと以外は
実施例1と同様にしてEL素子を作製した。作製した発
光層のCaS(220)面、(200)面の半値幅は、
それぞれ0.35度、0.26度であり、格子定数は
5.638Åであった。
[Example 3] EL was performed in the same manner as in Example 1 except that CaS, a powder in which 0.3 mol% of EuF 3 and 3 mol% of SrSO 4 were mixed with CaS was used as a target to form a mixture layer. A device was produced. The full width at half maximum of the CaS (220) plane and (200) plane of the produced light emitting layer is
The values were 0.35 degrees and 0.26 degrees, respectively, and the lattice constant was 5.638Å.

【0023】素子は、高輝度でかつ輝度−電圧特性の急
峻性が良好であり、1kHz、sin波駆動で測定した
場合の発光開始電圧+60V印加した時の輝度は200
cd/m2 であった。
The device has a high brightness and a good sharpness of the brightness-voltage characteristic, and the brightness is 200 when a light emission start voltage +60 V is applied when measured by a sin wave drive at 1 kHz.
It was cd / m 2 .

【0024】[0024]

【比較例1】SrSおよびSrSに対して0.3mol
%のCeF3 を混合した粉末をターゲットに用いて混合
物層を作製した以外は、実施例1と同様にしてEL素子
を作製した。作製した発光層のSrS(220)面、
(200)面の半値幅は、それぞれ0.40度、0.3
0度であり、格子定数は5.94Åであった。
Comparative Example 1 0.3 mol based on SrS and SrS
% ELF was prepared in the same manner as in Example 1 except that a powder mixture of CeF 3 was used as a target. SrS (220) surface of the produced light emitting layer,
The full width at half maximum of the (200) plane is 0.40 degrees and 0.3, respectively.
It was 0 degree, and the lattice constant was 5.94Å.

【0025】素子は、輝度−電圧特性の急峻性が悪く、
1kHz、sin波駆動で測定した場合の発光開始電圧
+60V印加した時の輝度は500cd/m2 であっ
た。
The element is poor in the steepness of the luminance-voltage characteristic,
The luminance was 500 cd / m 2 when an emission start voltage of +60 V was applied when measured at 1 kHz and sin wave drive.

【0026】[0026]

【比較例2】CaSおよびCaSに対して0.3mol
%のEuF3 を混合した粉末をターゲットに用いて混合
物層を形成したこと以外は実施例1と同様にしてEL素
子を作製した。作製した発光層のCaS(220)面、
(200)面の半値幅は、それぞれ0.40度、0.3
0度であり、格子定数は5.595Åであった。
Comparative Example 2 0.3 mol based on CaS and CaS
An EL device was produced in the same manner as in Example 1 except that the mixture layer was formed by using a powder containing a mixture of EuF 3 of 10% as a target. The CaS (220) surface of the produced light emitting layer,
The full width at half maximum of the (200) plane is 0.40 degrees and 0.3, respectively.
It was 0 degree and the lattice constant was 5.595Å.

【0027】素子は、高輝度でかつ輝度−電圧特性の急
峻性が悪く、1kHz、sin波駆動で測定した場合の
発光開始電圧+60V印加した時の輝度は100cd/
2であった。
The element has a high luminance and the steepness of the luminance-voltage characteristic is poor, and the luminance when an emission start voltage of +60 V is applied at a measurement of 1 kHz and a sin wave drive is 100 cd /
It was m 2 .

【0028】[0028]

【発明の効果】本発明によれば、高輝度で、かつ急峻な
輝度−電圧特性を有するEL素子を提供することができ
る。
According to the present invention, it is possible to provide an EL element having a high brightness and a sharp brightness-voltage characteristic.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 II族元素とVIb族元素(但し、酸素を除
く。)からなる化合物であって、かつ岩塩型構造をとる
母材に付活剤を添加した発光層を有する薄膜エレクトロ
ルミネッセンス素子において、上記発光層のX線回折に
おける(220)面の半値幅が0.15度より大きく
0.4度以下または(200)面の半値幅が0.11度
より大きく0.3度以下であり、かつ上記発光層の格子
定数が、母材物質の結晶粉末の格子定数の99%以上1
00.5%未満であること特徴とする薄膜エレクトロル
ミネッセンス素子。
1. A thin film electroluminescent device comprising a compound consisting of a group II element and a group VIb element (excluding oxygen) and having a light emitting layer in which an activator is added to a base material having a rock salt structure. In the X-ray diffraction of the light emitting layer, the full width at half maximum of the (220) plane is more than 0.15 degrees and 0.4 degrees or less, or the half width of the (200) plane is more than 0.11 degrees and 0.3 degrees or less. And the lattice constant of the light emitting layer is 99% or more of the lattice constant of the crystal powder of the base material 1
A thin film electroluminescent device characterized by being less than 00.5%.
【請求項2】 SrS母材に付活剤を添加した発光層を
有する薄膜エレクトロルミネッセンス素子において、上
記発光層のX線回折における(220)面の半値幅が
0.15度より大きく0.4度以下または(200)面
の半値幅が0.11度より大きく0.3度以下であり、
かつ上記発光層の格子定数が6.005Å以上、6.0
5Å未満であることを特徴とする薄膜エレクトロルミネ
ッセンス素子。
2. In a thin film electroluminescent device having a light emitting layer in which an activator is added to an SrS base material, the half width of (220) plane in X-ray diffraction of the light emitting layer is larger than 0.15 degrees and 0.4. Or less, or the full width at half maximum of the (200) plane is more than 0.11 degrees and 0.3 degrees or less,
In addition, the lattice constant of the light emitting layer is 6.005 Å or more, 6.0
A thin film electroluminescent device characterized by being less than 5Å.
JP5231589A 1993-09-17 1993-09-17 Electroluminescent element Withdrawn JPH0785971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5231589A JPH0785971A (en) 1993-09-17 1993-09-17 Electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5231589A JPH0785971A (en) 1993-09-17 1993-09-17 Electroluminescent element

Publications (1)

Publication Number Publication Date
JPH0785971A true JPH0785971A (en) 1995-03-31

Family

ID=16925889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5231589A Withdrawn JPH0785971A (en) 1993-09-17 1993-09-17 Electroluminescent element

Country Status (1)

Country Link
JP (1) JPH0785971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049915C (en) * 1995-04-06 2000-03-01 中国科学院上海光学精密机械研究所 Method for preparing optical material for writing ultraviolet visible X-ray into and reading infrared ray
CN102925154A (en) * 2012-11-23 2013-02-13 中国科学院长春光学精密机械与物理研究所 Sulfide-based triple-doped electron trapping material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049915C (en) * 1995-04-06 2000-03-01 中国科学院上海光学精密机械研究所 Method for preparing optical material for writing ultraviolet visible X-ray into and reading infrared ray
CN102925154A (en) * 2012-11-23 2013-02-13 中国科学院长春光学精密机械与物理研究所 Sulfide-based triple-doped electron trapping material and preparation method thereof

Similar Documents

Publication Publication Date Title
US5747929A (en) Electroluminescence element and method for fabricating same
US6982124B2 (en) Yttrium substituted barium thioaluminate phosphor materials
US5554449A (en) High luminance thin-film electroluminescent device
JP2795194B2 (en) Electroluminescence device and method of manufacturing the same
US5677594A (en) TFEL phosphor having metal overlayer
US5939825A (en) Alternating current thin film electroluminescent device having blue light emitting alkaline earth phosphor
US6072198A (en) Electroluminescent alkaline-earth sulfide phosphor thin films with multiple coactivator dopants
US6242858B1 (en) Electroluminescent phosphor thin films
KR100502877B1 (en) Image-display device
JPH0785971A (en) Electroluminescent element
JP3005027B2 (en) Method for manufacturing electroluminescent element
JPH0785970A (en) El element
JP2828019B2 (en) ELECTROLUMINESCENT ELEMENT AND ITS MANUFACTURING METHOD
JPH0794282A (en) White ectrolumnescence element
US6707249B2 (en) Electroluminescent device and oxide phosphor for use therein
JP3726134B2 (en) Electroluminescent light emitting layer thin film, inorganic thin film electroluminescent element, and method for producing light emitting layer thin film
JPH07135078A (en) Electroluminescence element and manufacture thereof
JP2605570B2 (en) Inorganic thin film EL device
KR100430565B1 (en) Phosphor including aluminium sulfide and the preparation thereof
JPS58125781A (en) Fluorescent substance
JP2739803B2 (en) Inorganic thin film EL device
JPH04121995A (en) Thin film electroluminescence(el) element
JPH0645070A (en) Sputter target for making light emitting layer of thin film electroluminescent element
JPH0562778A (en) Thin film electroluminescence element
JPH05114484A (en) Manufacture of thin film electroluminescent element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001128