JPH049961B2 - - Google Patents

Info

Publication number
JPH049961B2
JPH049961B2 JP59059486A JP5948684A JPH049961B2 JP H049961 B2 JPH049961 B2 JP H049961B2 JP 59059486 A JP59059486 A JP 59059486A JP 5948684 A JP5948684 A JP 5948684A JP H049961 B2 JPH049961 B2 JP H049961B2
Authority
JP
Japan
Prior art keywords
pressure
steam
temperature
turbine
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59059486A
Other languages
Japanese (ja)
Other versions
JPS60205112A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5948684A priority Critical patent/JPS60205112A/en
Publication of JPS60205112A publication Critical patent/JPS60205112A/en
Publication of JPH049961B2 publication Critical patent/JPH049961B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Centrifugal Separators (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Sheets, Magazines, And Separation Thereof (AREA)
  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 本発明は、原子力プラントにおける湿分分離加
熱器の温度制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the temperature of a moisture separation heater in a nuclear power plant.

従来の湿分分離加熱器の制御は、特願昭56−
205835号において第1図に示す構成のものが提案
されている。
The control of the conventional moisture separating heater is based on a patent application filed in 1982.
No. 205835 proposes the configuration shown in FIG.

第1図において、参照符号1は暖機起動モード
選択表示、2は冷機起動モード選択表示、3は圧
力設定値演算器、4は圧力設定値変化率制限器、
5は圧力変化率発生器、6は偏差発生器、7は
PIコントローラ、8は電気/空気変換器、9は
圧力検出器、10は第2段加熱蒸気制御弁を、ま
たMSHは湿分分離加熱器、HPTは高圧タービン
を、LPTは低圧タービンを、GENは発電機を、
LPは低圧タービン入口蒸気温度を、LMは第1
段加熱器通過後のサイクル蒸気温度を、LHは高
圧タービン排気温度をそれぞれ示している。
In FIG. 1, reference numeral 1 indicates warm start mode selection display, 2 indicates cold start mode selection display, 3 indicates pressure set value calculator, 4 indicates pressure set value change rate limiter,
5 is a pressure change rate generator, 6 is a deviation generator, 7 is a
PI controller, 8 is electric/air converter, 9 is pressure detector, 10 is second stage heating steam control valve, MSH is moisture separation heater, HPT is high pressure turbine, LPT is low pressure turbine, GEN is a generator,
LP is the low pressure turbine inlet steam temperature, LM is the first
LH indicates the cycle steam temperature after passing through the stage heater, and LH indicates the high pressure turbine exhaust temperature.

この第1図の制御装置において、各運転モード
即ち冷機起動モード、暖機起動モード、あるいは
低負荷運転モードに対し、第2段加熱蒸気制御弁
後圧力を圧力検出器9により検出し、圧力設定値
演算器3より出力された設定圧力となるように圧
力変化率発生器5より圧力設定値変化率制限器4
を通して設定圧力が出力され、その偏差を偏差発
生器6でとり、PIコントローラ7、電気/空気
変換器8により圧力設定値演算器3より出力され
た設定圧力となるように第2段加熱蒸気制御弁1
0を制御し、このことにより制御対象である低圧
タービン入口蒸気温度LPが制御される。
In the control device shown in FIG. 1, the pressure after the second stage heating steam control valve is detected by the pressure detector 9 and the pressure is set for each operation mode, that is, cold start mode, warm start mode, or low load operation mode. The pressure change rate generator 5 outputs the pressure set value change rate limiter 4 so that the set pressure output from the value calculator 3 is obtained.
The set pressure is output through , the deviation is taken by the deviation generator 6, and the second stage heating steam control is performed by the PI controller 7 and the electric/air converter 8 so that the set pressure is the set pressure output from the pressure set value calculator 3. Valve 1
0, thereby controlling the low-pressure turbine inlet steam temperature LP, which is the control target.

しかし、第1図の制御においては、第2段加熱
蒸気制御弁10のみで、低圧タービン入口蒸気温
度LPを制御していたため、次のような点で不充
分であつた。
However, in the control shown in FIG. 1, the low-pressure turbine inlet steam temperature LP was controlled only by the second-stage heating steam control valve 10, which was insufficient in the following points.

(1) 第1段加熱蒸気制御弁は、通常運転中無制御
で全開のままであるため第1段加熱器によるサ
イクル蒸気の温度上昇があるが、それを考慮し
ていなかつた。
(1) During normal operation, the first stage heating steam control valve remains fully open without any control, so there is a rise in the temperature of the cycle steam due to the first stage heater, but this was not taken into consideration.

(2) サイクル蒸気の低圧タービン入口蒸気温度の
温度変化率制限56℃/Hr(低圧タービン入口蒸
気温度の変化率を制限するのは、蒸気温度変化
に伴うタービン内に発生する熱応力を、タービ
ンが必要な疲労寿命を持つ様制限しようとする
ものであり、56℃/Hrの変化率は実際に採用
されている値の代表的なものの一つである。)
に対し、2段制御弁により制限以内となるよう
に制御しているが、負荷変化率に対して無防備
であるため、(1)の理由により制限値56℃/Hr
を超える可能性がある。
(2) Temperature change rate limit for cycle steam low-pressure turbine inlet steam temperature 56°C/Hr (limiting the change rate of low-pressure turbine inlet steam temperature is to reduce thermal stress generated in the turbine due to steam temperature change) (The change rate of 56°C/Hr is one of the typical values actually used.)
However, the limit value is 56℃/Hr due to the reason (1) because it is not vulnerable to the load change rate.
may exceed.

本発明は上記事情にかんがみてなされたもの
で、湿分分離加熱器MSHの第2段加熱蒸気制御
弁の制御において、湿分分離加熱器MSHの第1
段加熱器による温度上昇効果を考慮して低圧ター
ビン入口蒸気温度を制限値内に制御し、低圧ター
ビンの熱応力、熱歪の軽減を図り、信頼性の高い
温度制御方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and in controlling the second stage heating steam control valve of the moisture separating heater MSH, the first stage heating steam control valve of the moisture separating heater MSH
The purpose of this project is to provide a highly reliable temperature control method that takes into account the temperature increase effect of the stage heater and controls the low-pressure turbine inlet steam temperature within a limit value, reducing thermal stress and thermal strain in the low-pressure turbine. shall be.

以下、第2図に例示した本発明の好適な実施例
について詳述する。
Hereinafter, a preferred embodiment of the present invention illustrated in FIG. 2 will be described in detail.

原子力プラントにおいては、飽和蒸気が蒸気タ
ービンに入つて来るので、蒸気はタービン内で膨
脹して行く過程で湿り蒸気となり、水滴を分離す
る。この水滴は高速で翼や車室壁に衝突する際、
それ等を浸蝕し、又、翼に対して仕事をしないの
で、タービンの効率が低下する。この様な幣害を
除く為、湿分分離加熱器を設け、タービンの膨脹
の途中、即ち高圧タービンを出た蒸気を、主蒸気
と高圧タービン抽気で再加熱し、過熱蒸気として
低圧タービンに送る事が行なわれている。湿分分
離加熱器では、プラント熱効率を高める為、高圧
タービンを出た蒸気を最初高圧タービンの抽気で
加熱し、次いでタービン入口蒸気を一部分流され
てそれで更に加熱する2段加熱が行なわれてい
る。この場合、最初の高圧タービン抽気に依る加
熱は、抽気温度迄、高圧タービン排気を加熱する
熱量に抽気の熱量がバランスする様に抽気量が平
衝するので、通常運転中は抽気量の制御は行なわ
ず、2段目の加熱の主蒸気流量を調整して湿分分
離加熱器出口温度を制御するようにしている。
In a nuclear power plant, saturated steam enters a steam turbine, and as the steam expands inside the turbine, it becomes wet steam and separates water droplets. When these water droplets collide with the wings and cabin walls at high speed,
It also erodes the blades and does no work on the blades, reducing the efficiency of the turbine. In order to eliminate such damage, a moisture separation heater is installed to reheat the steam that exits the high-pressure turbine during the expansion of the turbine, using main steam and high-pressure turbine extraction air, and sends it as superheated steam to the low-pressure turbine. things are being done. In moisture separation heaters, in order to increase plant thermal efficiency, two-stage heating is performed in which the steam exiting the high-pressure turbine is first heated by the high-pressure turbine's extraction air, and then a portion of the turbine inlet steam is passed through and further heated. . In this case, the initial heating by the high-pressure turbine bleed air reaches the bleed air temperature until the bleed air amount is balanced so that the heat amount of the bleed air is balanced with the amount of heat that heats the high-pressure turbine exhaust, so the bleed air amount cannot be controlled during normal operation. Instead, the main steam flow rate for second-stage heating is adjusted to control the temperature at the outlet of the moisture separation heater.

本発明は、この湿分分離加熱器の出口温度制御
に関するもので、第1段目の加熱の蒸気(即ち抽
気)温度が蒸気タービンの負荷に依存しているこ
とに注目して温度制御しようとするものである。
The present invention relates to outlet temperature control of this moisture separation heater, and attempts to control the temperature by paying attention to the fact that the steam (i.e., bleed air) temperature of the first stage heating depends on the load of the steam turbine. It is something to do.

第2図は、本発明による温度制御の構成を示し
たものであつて、図中、参照符号11は負荷変化
率演算器、12は圧力変化率演算器、13は偏差
発生器、Lはタービン負荷をそれぞれ示してい
る。その他の各要素は第1図の相当する要素と同
一符号によつて示してある。
FIG. 2 shows the configuration of temperature control according to the present invention, in which reference numeral 11 is a load change rate calculator, 12 is a pressure change rate calculator, 13 is a deviation generator, and L is a turbine. Each shows the load. Other elements are designated by the same reference numerals as corresponding elements in FIG.

第2図において、タービン負荷変化率演算器1
1は、連続的に入力したタービン負荷Lをある設
定された時間毎にサンプリングし、最小二乗法に
よる変化率計算を実施し、平均変化率を計算す
る。次いで、圧力変化率演算器12により、無制
御である第1段加熱器の負荷変化率に見合つた第
1段加熱器による圧力変化率を算出し、偏差発生
器13にて、圧力変化率発生器5の値との偏差を
求め、第2段加熱器による温度変化率が制限値56
℃/Hr内となるように第2段加熱蒸気制御弁1
0を制御する。
In FIG. 2, the turbine load change rate calculator 1
1 samples the continuously inputted turbine load L at certain set time intervals, calculates the rate of change using the least squares method, and calculates the average rate of change. Next, the pressure change rate calculation unit 12 calculates the pressure change rate by the first stage heater that is commensurate with the load change rate of the uncontrolled first stage heater, and the deviation generator 13 generates the pressure change rate. Find the deviation from the value of device 5, and find that the rate of temperature change due to the second stage heater is the limit value 56
2nd stage heating steam control valve 1 so that the temperature is within °C/Hr.
Controls 0.

本発明によれば、湿分分離加熱器の第1段加熱
器による温度変化率を考慮した2段加熱器による
出口温度、即ち低圧タービン入口温度制御を行う
上でタービン負荷を検出して負荷変化率演算器1
1および圧力変化率演算器12により偏差信号を
作り、この偏差信号を圧力変化率発生器5の信号
に加えるようにしたことにより、低圧タービン入
口蒸気温度の温度変化率過大を防止する制御が可
能となり、低圧タービンの熱応力、熱歪の軽減に
役立つ制御方法を提供することができる。
According to the present invention, when controlling the outlet temperature of the two-stage heater in consideration of the rate of temperature change caused by the first-stage heater of the moisture separation heater, that is, the low-pressure turbine inlet temperature, the turbine load is detected and the load changes. Rate calculator 1
1 and the pressure change rate calculator 12, and this deviation signal is added to the signal of the pressure change rate generator 5, it is possible to control the low pressure turbine inlet steam temperature to prevent the temperature change rate from being excessive. Therefore, it is possible to provide a control method useful for reducing thermal stress and thermal strain in a low-pressure turbine.

なお、本制御において、湿分分離加熱器の第2
段加熱器への主蒸気温度の調節を行うに当り、第
2段加熱蒸気制御弁10の弁後圧力制御を行うの
は、原子力タービンの主蒸気条件近くでは(即ち
圧力70ata辺りの飽和蒸気では)、実際上充分な精
度で、等エンタルピ変化で、蒸気圧力と温度は対
応する事に依る。
In addition, in this control, the second
When adjusting the main steam temperature to the stage heater, the after-valve pressure control of the second stage heating steam control valve 10 is performed near the main steam conditions of the nuclear turbine (i.e., for saturated steam at a pressure of around 70ata). ), depends on the fact that steam pressure and temperature correspond with isenthalpic change with sufficient accuracy in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の湿分分離加熱器の温度制御系統
を示す図、第2図は本発明による第1図と同様の
図である。 1……暖機起動モード選択表示、2……冷機起
動モード選択表示、3……圧力設定値演算器、4
……圧力設定値変化率制限器、5……圧力変化率
発生器、6……偏差発生器、7……PIコントロ
ーラ、8……電気/空気変換器、9……圧力検出
器、10……第2段加熱蒸気制御弁、11……負
荷変化率演算器、12……圧力変化率演算器、1
3……偏差発生器、MSH……湿分分離加熱器、
HPT……高圧タービン、LPT……低圧タービ
ン、GEN……発電機、LP……低圧タービン入口
蒸気温度、LM……サイクル蒸気温度、LH……
高圧タービン排気温度、L……タービン負荷。
FIG. 1 is a diagram showing a temperature control system of a conventional moisture separation heater, and FIG. 2 is a diagram similar to FIG. 1 according to the present invention. 1...Warm start mode selection display, 2...Cold start mode selection display, 3...Pressure set value calculator, 4
...Pressure set value change rate limiter, 5...Pressure change rate generator, 6...Difference generator, 7...PI controller, 8...Electrical/air converter, 9...Pressure detector, 10... ...Second stage heating steam control valve, 11...Load change rate calculator, 12...Pressure change rate calculator, 1
3... Deviation generator, MSH... Moisture separation heater,
HPT...High pressure turbine, LPT...Low pressure turbine, GEN...Generator, LP...Low pressure turbine inlet steam temperature, LM...Cycle steam temperature, LH...
High pressure turbine exhaust temperature, L...Turbine load.

Claims (1)

【特許請求の範囲】[Claims] 1 高圧タービンを出た蒸気を高圧タービンの抽
気で加熱し、次いでタービン入口蒸気の一部で更
に加熱するといつた2段加熱を行なう湿分分離加
熱器の温度制御方法において、タービン負荷を検
出してその負荷変化率を求め、これより第1段加
熱器の負荷変化率に見合つた圧力変化率を求め、
これを圧力設定変化率に偏差値として加えて、第
2段加熱蒸気制御弁を制御するようにしたことを
特徴とする、湿分分離加熱器の温度制御方法。
1. In a temperature control method for a moisture separation heater that performs two-stage heating, in which steam exiting a high-pressure turbine is heated with the extracted air of the high-pressure turbine, and then further heated with a part of the turbine inlet steam, the turbine load is detected. Find the rate of change in the load, and from this find the rate of pressure change commensurate with the rate of change in the load of the first stage heater.
A temperature control method for a moisture separation heater, characterized in that this is added as a deviation value to the pressure setting change rate to control a second stage heating steam control valve.
JP5948684A 1984-03-29 1984-03-29 Method of controlling temperature of moisture separating heater Granted JPS60205112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5948684A JPS60205112A (en) 1984-03-29 1984-03-29 Method of controlling temperature of moisture separating heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5948684A JPS60205112A (en) 1984-03-29 1984-03-29 Method of controlling temperature of moisture separating heater

Publications (2)

Publication Number Publication Date
JPS60205112A JPS60205112A (en) 1985-10-16
JPH049961B2 true JPH049961B2 (en) 1992-02-21

Family

ID=13114675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5948684A Granted JPS60205112A (en) 1984-03-29 1984-03-29 Method of controlling temperature of moisture separating heater

Country Status (1)

Country Link
JP (1) JPS60205112A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143525A (en) * 1974-10-12 1976-04-14 Kubota Ltd TORAKUTAATOSAGYOSHATONO DORYOKUDENTATSUSOCHI
JPS5143526A (en) * 1974-10-14 1976-04-14 Casio Computer Co Ltd Jidoshano teishiseigyosochi
JPS5252006A (en) * 1975-10-24 1977-04-26 Mitsubishi Heavy Ind Ltd Moisture separation heater outlet steam temperature control system
JPS58106311A (en) * 1981-12-19 1983-06-24 三菱重工業株式会社 Controller for temperature of heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143525A (en) * 1974-10-12 1976-04-14 Kubota Ltd TORAKUTAATOSAGYOSHATONO DORYOKUDENTATSUSOCHI
JPS5143526A (en) * 1974-10-14 1976-04-14 Casio Computer Co Ltd Jidoshano teishiseigyosochi
JPS5252006A (en) * 1975-10-24 1977-04-26 Mitsubishi Heavy Ind Ltd Moisture separation heater outlet steam temperature control system
JPS58106311A (en) * 1981-12-19 1983-06-24 三菱重工業株式会社 Controller for temperature of heater

Also Published As

Publication number Publication date
JPS60205112A (en) 1985-10-16

Similar Documents

Publication Publication Date Title
JPS61105003A (en) Method and device for connecting boiler to pressurized steamsupply line in fluid manner
JPS6239648B2 (en)
JPS6158644B2 (en)
JPH04234505A (en) Method for reducing thermal stress on steam chamber and steam turbine device
JPH049961B2 (en)
JPS6239646B2 (en)
JP2572404B2 (en) Control method and control device for mixed pressure turbine
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JP2690511B2 (en) Steam temperature control method and control device
JPS60224905A (en) Steam turbine device
JP2587445B2 (en) Bleeding control device for bleeding turbine
JPS62294724A (en) Turbine casing cooler for turbocharger
JPS6333043B2 (en)
JPH07166814A (en) Starting method for uniaxial combined cycle power generation plant
JPH08121117A (en) Starting method for multi-shaft type compound power generation plant
JPH0545841B2 (en)
SU676739A1 (en) Turbine heat load regulating device
JPS6056108A (en) Reheater control device for turbine power unit
JP3056880B2 (en) Feedwater heater controller
JPS61171807A (en) Turbine warming controller
JPS58178103A (en) Protective device for feedwater heater
JP3613690B2 (en) Turbine control method and control apparatus
JPS6228642Y2 (en)
JPH02130202A (en) Combined plant
JP2633601B2 (en) Steam turbine plant operation control device