JPS6228642Y2 - - Google Patents

Info

Publication number
JPS6228642Y2
JPS6228642Y2 JP1982004578U JP457882U JPS6228642Y2 JP S6228642 Y2 JPS6228642 Y2 JP S6228642Y2 JP 1982004578 U JP1982004578 U JP 1982004578U JP 457882 U JP457882 U JP 457882U JP S6228642 Y2 JPS6228642 Y2 JP S6228642Y2
Authority
JP
Japan
Prior art keywords
circuit
temperature
exhaust chamber
exhaust
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982004578U
Other languages
Japanese (ja)
Other versions
JPS58108204U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP457882U priority Critical patent/JPS58108204U/en
Publication of JPS58108204U publication Critical patent/JPS58108204U/en
Application granted granted Critical
Publication of JPS6228642Y2 publication Critical patent/JPS6228642Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)
  • Spray Control Apparatus (AREA)

Description

【考案の詳細な説明】 考案の技術分野 本考案は蒸気タービンの排気室温度制御装置に
関する。
[Detailed Description of the Invention] Technical Field of the Invention The present invention relates to an exhaust chamber temperature control device for a steam turbine.

考案の技術的背景 第1図に従来および本考案の一実施例に共通し
た概略の排気室温度制御装置の系統図を示す。一
般に蒸気タービンは、高中圧部、低圧部に分けら
れる。高中圧部(図示せず)で仕事をした蒸気
は、連絡管1を通り、タービン低圧部2へ導かれ
る。タービン低圧部2で、タービン高中圧部の回
転軸3と共に発電機の回転軸を回転するという仕
事をした蒸気は、排気流5となつて、復水器6へ
導かれ、凝縮して復水となり、ポンプ7により排
出されて、大部分は復水ライン15を介して給水
加熱器(図示せず)に入り、再び蒸気となる循環
をする。復水ライン15から分岐したスプレー水
供給ライン8は、圧力調整弁9、スプレー弁(オ
ン−オフ弁)10を通り、スプレー水供給ライン
13を経て、低圧排気室内に設置されたスプレー
ノズル14につながつている。またスプレー弁1
0は、スプレー制御装置11からの操作信号12
が開閉される。
Technical Background of the Invention FIG. 1 shows a schematic system diagram of an exhaust chamber temperature control device common to the conventional system and an embodiment of the present invention. Steam turbines are generally divided into a high-intermediate pressure section and a low-pressure section. The steam that has done work in the high and intermediate pressure section (not shown) passes through the connecting pipe 1 and is guided to the turbine low pressure section 2. In the turbine low pressure section 2, the steam that has done the work of rotating the rotating shaft of the generator together with the rotating shaft 3 of the turbine high and intermediate pressure section becomes an exhaust flow 5 and is led to the condenser 6, where it condenses and becomes condensed water. The water is discharged by the pump 7, and most of it enters the feed water heater (not shown) via the condensate line 15, where it is circulated again to become steam. A spray water supply line 8 branched from the condensate line 15 passes through a pressure regulating valve 9, a spray valve (on-off valve) 10, a spray water supply line 13, and a spray nozzle 14 installed in a low-pressure exhaust chamber. Connected. Also spray valve 1
0 is the operation signal 12 from the spray control device 11
is opened and closed.

タービン低圧部2の排気流5の温度は、タービ
ン負荷により変化するが、これを表わしたのが、
第2図、第3図である。タービン排気流5温度
は、主として排気圧力と再熱蒸気温度に左右され
る。第2図は再熱蒸気温度が一定の場合のもので
あるが、タービン負荷が低くなると、排気流の蒸
気が排気圧力の飽和温度の曲線aを越えて過熱城
に入るので、温度は急激に大きくなる。排気圧力
が高い時は曲線b,cのように排気温度は更に高
くなる。一方、第3図は、排気圧力一定で、再熱
蒸気温度が変化した場合で、タービン負荷が低い
状態で再熱蒸気温度を高くするにつれて、排気温
度の曲線はa′→b′→c′のように高くなる。
The temperature of the exhaust flow 5 of the turbine low pressure section 2 changes depending on the turbine load, and this is expressed as follows.
FIGS. 2 and 3. Turbine exhaust stream 5 temperature depends primarily on exhaust pressure and reheat steam temperature. Figure 2 shows the case where the reheat steam temperature is constant, but when the turbine load becomes low, the steam in the exhaust flow exceeds the saturation temperature curve a of the exhaust pressure and enters the superheating castle, so the temperature suddenly increases. growing. When the exhaust pressure is high, the exhaust temperature becomes even higher as shown in curves b and c. On the other hand, Figure 3 shows the case where the exhaust pressure is constant and the reheat steam temperature changes.As the reheat steam temperature is increased with the turbine load being low, the exhaust temperature curve changes from a'→b'→c' become higher as in

背景技術の問題点 さて、近年の化石燃料を使用する蒸気タービン
は、最低負荷で運用される例が多くなつてきてい
る。加えて、最低負荷そのものも徐々に引き下げ
られてきており、過去において、25%負荷が最低
運用であつたものでも、10〜15%負荷での連続運
用が要求されるようになつてきている。このよう
な蒸気タービンの運用においては、低負荷におい
て、低圧排気室が過熱される率が大きくなり、低
圧排気室の温度が異常に高くなると、タービン翼
の材料強度の劣化や、ケーシング変形および軸受
アライメント変化に原因する軸振動を発生するな
ど、タービン運用上好ましくない現象が発生す
る。そこで高温になつたときは低圧排気室に復水
をスプレーして温度を下げるのであるが、スプレ
ーが作動すると排気室は一気に復水温度、すなわ
ち排気圧力に相当する飽和温度まで冷却される。
このスプレーの開閉制御を繰返すと、例えば60℃
→30℃→60℃→30℃というように短かい周期で大
きな温度変化を繰り返すことになり、やはり、ケ
ーシング変形や軸受アライメント変化による軸受
振動大を生じ安定な最低負荷運用が不可能にな
る。
Problems with the Background Art Now, in recent years, steam turbines that use fossil fuels are increasingly being operated at the minimum load. In addition, the minimum load itself is gradually being lowered, and even if in the past the minimum operation was 25% load, continuous operation at 10 to 15% load is now required. When operating such a steam turbine, the rate at which the low-pressure exhaust chamber is overheated increases at low loads. Unfavorable phenomena occur in turbine operation, such as shaft vibration caused by changes in alignment. When the temperature rises, condensate is sprayed into the low-pressure exhaust chamber to lower the temperature, but when the spray is activated, the exhaust chamber is cooled all at once to the condensate temperature, that is, the saturation temperature corresponding to the exhaust pressure.
If you repeat this spray opening/closing control, for example, 60℃
This results in repeated large temperature changes in short cycles such as →30℃→60℃→30℃, which also causes large bearing vibrations due to casing deformation and changes in bearing alignment, making stable minimum load operation impossible.

本考案の目的 本考案は、スプレーによつて排気室温度を下げ
た状態を暫らく維持し、その間に排気室温度最適
値を得る操作、例えば排気圧力変化、再熱蒸気温
度変化、負荷変化等に応ずるに必要な時間を運転
員に与え、安定な最低負荷運用を可能にする排気
室温度制御装置を提供することを目的とする。
Purpose of the present invention The present invention aims to maintain the reduced exhaust chamber temperature for a while by spraying, and perform operations to obtain the optimum exhaust chamber temperature during that time, such as changes in exhaust pressure, changes in reheat steam temperature, changes in load, etc. The purpose of the present invention is to provide an exhaust chamber temperature control device that allows stable minimum load operation by giving operators the time necessary to respond to the conditions.

考案の概要 本考案は第4図に示すように、スプレー弁10
に対して排気室の温度が上限設定値を超えたとき
にオア回路29を通して開動作を、一方排気室の
温度が下限設定値を下回つた場合にアンド回路2
7を通して閉動作をそれぞれ生じせしめるように
した排気室温度制御装置において、入力された上
記上限設定値を超えた信号を一定時間経過後に上
記アンド回路27の入力信号として出力する遅延
回路30を設けたことにより蒸気使用状態による
排気室温度最適値を得る操作に応ずるに必要な時
間を運転員に与え、安定な最低負荷運転を可能と
する。
Summary of the invention As shown in Fig. 4, the invention consists of a spray valve 10
When the temperature of the exhaust chamber exceeds the upper limit set value, the opening operation is performed through the OR circuit 29, and on the other hand, when the temperature of the exhaust chamber falls below the lower limit set value, the AND circuit 2 is activated.
In the exhaust chamber temperature control device, the exhaust chamber temperature control device is configured to cause a closing operation through the gates 7 and 7, and is provided with a delay circuit 30 that outputs an input signal exceeding the upper limit set value as an input signal to the AND circuit 27 after a certain period of time has elapsed. This gives the operator the time necessary to obtain the optimal value for the exhaust chamber temperature depending on the steam usage conditions, and enables stable minimum load operation.

考案の実施例 以下、本考案の一実施例について、第1図の排
気室温度制御装置11部を第4図に詳細に示して
説明する。
Embodiment of the Invention Hereinafter, an embodiment of the invention will be described with reference to FIG. 4 showing the exhaust chamber temperature control device 11 shown in FIG. 1 in detail.

第4図にタービン排気が2流となつて、第1排
気室A、第2排気室Bを備えている例を示す。各
排気室A,Bにはそれぞれ図示しない熱電対から
なる温度検出器を設け、上限所定温度T1℃以上
で、それを検知し、上限温度超過信号20,21
を第1のオア回路22を介して第1のアンド回路
23に入力させる。また前記温度検出器により、
下限所定温度T2℃以下でこれを検知し、下限温
度以下信号24,25を第2のアンド回路26を
介して第3のアンド回路27に入力させる。さら
に排気室温度制御装置11に、自動使用状態とし
た時に、排気室温度自動使用信号を出力する装置
(図示せず)を設け、その出力信号28を第1と
第3のアンド回路23と27とに分岐して入力す
る。第1のアンド回路23の出力信号は第2のオ
ア回路29に入力すると共に分岐して遅延回路3
0を介して第3のアンド回路27に入力する。遅
延回路30の設定時間は10〜30分とする。第2の
オア回路29の出力は一部をそのオア回路29自
身にフイードバツクすると共にスプレー弁開制御
信号12をスプレー弁10に送る。第3のアン
ド回路27の出力はスプレー弁閉制御信号12
をスプレー弁10に送る。
FIG. 4 shows an example in which the turbine exhaust flows in two streams, including a first exhaust chamber A and a second exhaust chamber B. Each exhaust chamber A, B is provided with a temperature detector consisting of a thermocouple (not shown), which detects when the upper limit predetermined temperature T 1 ℃ or higher, and sends upper limit temperature excess signals 20, 21.
is input to the first AND circuit 23 via the first OR circuit 22. Furthermore, the temperature sensor allows
This is detected when the temperature is below the lower limit predetermined temperature T 2 °C, and the below-lower-limit temperature signals 24 and 25 are input to the third AND circuit 27 via the second AND circuit 26 . Further, the exhaust chamber temperature control device 11 is provided with a device (not shown) that outputs an automatic exhaust chamber temperature use signal when it is in the automatic use state, and the output signal 28 is sent to the first and third AND circuits 23 and 27. Branch and input. The output signal of the first AND circuit 23 is input to the second OR circuit 29 and branched to the delay circuit 3.
0 to the third AND circuit 27. The setting time of the delay circuit 30 is 10 to 30 minutes. The output of the second OR circuit 29 is partially fed back to the OR circuit 29 itself and sends a spray valve opening control signal 121 to the spray valve 10. The output of the third AND circuit 27 is the spray valve closing control signal 12 2
is sent to the spray valve 10.

次に作用について説明する。 Next, the effect will be explained.

排気室温度制御自動使用信号28が出力され、
いずれかのタービン排気室例えばAがT1℃以上
になるとスプレー弁開制御信号12が出され、
低圧排気室スプレーが開始され、遅延回路30が
働くから、小なくとも10〜30分はスプレーが維持
される。この間に、運転員は例えば排気圧力変
化、再熱蒸気温度変化、負荷変化等に応ずる必要
な処置を行ない、低圧排気室温度を最適値まで下
げる操作をすることができる。尚遅延回路30が
働いている間は、たとえ両タービン排気室A,B
の温度が、共にT2以下となつてその信号出力が
第2のアンド回路26を通過して第3のアンド回
路27に入力しても、遅延回路30からの信号が
第3のアンド回路27に入らないうちは、スプレ
ー弁閉制御信号12が出力されないから、スプ
レー弁10は開いたままであつて、従来行われた
ような短時間の急激な開閉を生ずるようなことが
なく、安定な最低負荷運用が可能となる。
The exhaust chamber temperature control automatic use signal 28 is output,
When any of the turbine exhaust chambers, for example A, becomes T 1 °C or higher, a spray valve opening control signal 12 1 is issued,
The low pressure vent chamber spray is initiated and the delay circuit 30 is activated so that the spray is maintained for at least 10 to 30 minutes. During this time, the operator can take necessary measures in response to, for example, changes in exhaust pressure, temperature of reheated steam, changes in load, etc., and can lower the temperature of the low-pressure exhaust chamber to an optimum value. Note that while the delay circuit 30 is working, even if both turbine exhaust chambers A and B
Even if the temperatures of both are below T 2 and the signal output passes through the second AND circuit 26 and is inputted to the third AND circuit 27, the signal from the delay circuit 30 will not pass through the third AND circuit 27. Since the spray valve close control signal 122 is not output until the spray valve is opened, the spray valve 10 remains open, and the spray valve 10 does not open or close suddenly for a short period of time, which is the case in the past, and the spray valve 10 is stable. Minimum load operation is possible.

尚、本考案は上記し、かつ図面に示した実施例
のみに限定されるものではなく、その要旨を変更
しない範囲で、種々変形して実施できるものは勿
論である。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, but can of course be implemented with various modifications without changing the gist thereof.

考案の効果 本考案は従来の制御回路に遅延回路を追加する
のみで、蒸気タービンの最低負荷運用を安全に行
なう時間が得られ、タービンの安定な運転、従つ
て電力の安定供給に貢献できる排気室温度制御装
置が得られる。
Effects of the invention By simply adding a delay circuit to the conventional control circuit, this invention provides time for the steam turbine to operate safely at its lowest load, thereby improving the exhaust gas flow, which contributes to stable operation of the turbine and a stable supply of electric power. A room temperature control device is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来および本考案の一実施例に共通し
た概略の排気室温度制御装置を示す系統図、第2
図は再熱蒸気一定の場合の負荷と排気温度の関係
を示す曲線図、第3図は排気圧力一定の場合の負
荷と排気温度の関係を示す曲線図、第4図は第1
図の本考案の一実施例の場合の排気室温度制御装
置の制御系統を示すブロツク図である。 8,13……スプレー水供給ライン、10……
スプレー弁、11……排気室温度制御装置、12
……操作信号、12……開制御信号、12
…閉制御信号、14……スプレーノズル、15…
…復水ライン、30……遅延回路。
FIG. 1 is a system diagram schematically showing an exhaust chamber temperature control device common to the conventional system and an embodiment of the present invention;
The figure is a curve diagram showing the relationship between load and exhaust temperature when reheating steam is constant, Figure 3 is a curve diagram showing the relationship between load and exhaust temperature when exhaust pressure is constant, and Figure 4 is a curve diagram showing the relationship between load and exhaust temperature when the exhaust pressure is constant.
FIG. 2 is a block diagram showing a control system of the exhaust chamber temperature control device in one embodiment of the present invention shown in the figure. 8, 13... Spray water supply line, 10...
Spray valve, 11...Exhaust chamber temperature control device, 12
...Operation signal, 12 1 ...Open control signal, 12 2 ...
...Close control signal, 14...Spray nozzle, 15...
...Condensate line, 30...Delay circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] スプレー弁に対して排気室温度制御自動使用信
号が出力され、複数のタービン排気室の温度の何
れかが上限設定値を超えたときに、その上限設定
値超過信号と、その上限設定値超過信号からスプ
レー弁開制御を行う信号の1部をフイードバツク
した信号とのオア回路を通して開動作を、一方排
気室の温度が下限設定値を下回つた場合にアンド
回路を通して閉動作をそれぞれ生じせしめるよう
にした排気室温度制御装置において、入力された
上記上限設定値を超えた信号を一定時間経過後に
上記アンド回路の入力信号として出力する遅延回
路を設けたことを特徴とする排気室温度制御装
置。
An automatic exhaust chamber temperature control use signal is output to the spray valve, and when any of the temperatures in the multiple turbine exhaust chambers exceeds the upper limit set value, the upper limit set value excess signal and the upper limit set value exceeds signal are output. A part of the signal that controls the opening of the spray valve is fed back from the spray valve to cause an opening operation through an OR circuit, and when the temperature of the exhaust chamber falls below the lower limit set value, a closing operation is generated through an AND circuit. An exhaust chamber temperature control device comprising: a delay circuit that outputs an input signal exceeding the upper limit set value as an input signal of the AND circuit after a certain period of time has elapsed.
JP457882U 1982-01-19 1982-01-19 Exhaust room temperature control device Granted JPS58108204U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP457882U JPS58108204U (en) 1982-01-19 1982-01-19 Exhaust room temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP457882U JPS58108204U (en) 1982-01-19 1982-01-19 Exhaust room temperature control device

Publications (2)

Publication Number Publication Date
JPS58108204U JPS58108204U (en) 1983-07-23
JPS6228642Y2 true JPS6228642Y2 (en) 1987-07-23

Family

ID=30017422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP457882U Granted JPS58108204U (en) 1982-01-19 1982-01-19 Exhaust room temperature control device

Country Status (1)

Country Link
JP (1) JPS58108204U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113707A (en) * 1978-02-24 1979-09-05 Toshiba Corp Spraying device in exhaust chamber of steam turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113707A (en) * 1978-02-24 1979-09-05 Toshiba Corp Spraying device in exhaust chamber of steam turbine

Also Published As

Publication number Publication date
JPS58108204U (en) 1983-07-23

Similar Documents

Publication Publication Date Title
JPS6228642Y2 (en)
JPS59219603A (en) Reheating boiler for factory
JP2587445B2 (en) Bleeding control device for bleeding turbine
JPH0623723Y2 (en) Combustor injection steam drain treatment device
JPH05296402A (en) Steam cycle control device
CA1057065A (en) Control systems for steam turbine plants including turbine bypass systems
JPH0224883Y2 (en)
JPS6115244B2 (en)
JPH0330687B2 (en)
CA1163814A (en) Method of varying turbine output of a supercritical- pressure steam generator-turbine installation
JPS5934406A (en) Controller of steam pressure in steam turbine
JPS5836163B2 (en) Steam turbine low pressure exhaust chamber temperature control method and device
JPH08135405A (en) High pressure turbine bypass steam temperature control method and its device
JPH10197687A (en) Complex reactor power generation equipment
JPH0610619A (en) Supply water heating device
JPH0545841B2 (en)
SU1617158A1 (en) Method of regulating district heating steam-turbine plant
JPS59113216A (en) Steam-turbine plant
JPS60204907A (en) Operating method for reheat steam turbine plant
JPS6334402A (en) Method of starting thermal power plant
JPH0472962B2 (en)
JPH0478881B2 (en)
JPH0128202B2 (en)
JP2002129911A (en) Auxiliary steam attemperator and its operating method
JPS60108509A (en) Steam turbine protecting device in combined cycle plant