JPH0499236A - Manufacture of extra low oxygen copper - Google Patents

Manufacture of extra low oxygen copper

Info

Publication number
JPH0499236A
JPH0499236A JP20976290A JP20976290A JPH0499236A JP H0499236 A JPH0499236 A JP H0499236A JP 20976290 A JP20976290 A JP 20976290A JP 20976290 A JP20976290 A JP 20976290A JP H0499236 A JPH0499236 A JP H0499236A
Authority
JP
Japan
Prior art keywords
content
hydrogen
ppm
oxygen
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20976290A
Other languages
Japanese (ja)
Inventor
Takuro Iwamura
岩村 卓郎
Tsugio Furuya
古屋 次夫
Tokukazu Ishida
徳和 石田
Haruhiko Asao
浅尾 晴彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP20976290A priority Critical patent/JPH0499236A/en
Publication of JPH0499236A publication Critical patent/JPH0499236A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To manufacture extra low oxygen copper capable of further thinning and forming into a thin wire by forming the molten metal of pure copper stock contg. specified amounts of oxygen and hydrogen into deoxidized hydrogen-enriched one under specified conditions, and thereafter successively executing primary dehydrogenating and secondary dehydrogenating heat treatment under specified conditions. CONSTITUTION:A reducing gas obtd. by mixing one or more kinds among N2, Ar and CO with H2 in the total ratio of 0.5 to 50vol.% is blown into the molten metal of pure copper stock with >=99.99% purity contg. 3 to 10ppm [O] and <=1ppm [H] to regulate the [O] content to <=1ppm and the [H] content to 0.8 to 3ppm. Next, this molten metal of deoxidized hydrogen-enriched pure copper is subjected to primary dehydrogenating treatment of bringing it into reaction with a reaction gas constituted of one or more kinds among N2, Ar and CO to regulate the [O] content to <=1ppm and the [H] content to 0.5 to 1.5ppm, and this primary dehydrogenated pure copper molten metal is cast into an ingot and is subjected to secondary dehydrogenating heat treatment under the conditions of holding in a nonoxidizing atmosphere to a prescribed temp. in the range of 700 to 900 deg.C for prescribed time, by which the extra low oxygen copper in which the [O] content is regulated to <=1ppm and the [H] content to <=0.3ppm is manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、酸素(以下、〔0〕で示す)含a量が1 
ppm以下の極低酸素銅の製造法に関するものである。 〔従来の技術〕 従来、一般に、99.99%以」二の純度をもつ純銅と
しでは、無酸素銅、脱酸銅、および真空溶解銅などが知
られており、この中で無酸素銅は、[0)含有量か最も
低く、その含有量が3〜10ppm程度であり、良好な
延性と加工性を有することから、例えば半導体装置のボ
ンディングワイヤ用極細線や同プリント基板用箔村など
の製造に用いられている。 C発明が解決しようとする課題〕 一方、近年の半導体装置の高集積化はめざましく、これ
に伴ない、ボンディングワイヤやプリント基板にもより
一層の細線化や薄肉化が要求されているが、上記の無酸
素銅は、上記の通り酸素含有量が3〜loppmと低い
にもかかわらず、この含有酸素が原因で、より一段の細
線化や薄肉化を可能にする十分な延性および加工性を具
備するものとはならないために、より一層の細線化や薄
肉化では断線や破断が生じ易く、実用的経済的な面がら
上記の要求には満足な対応をはかることができない。 また、従来精製方法として知られている真空溶解法やC
O含有ガス雰囲気溶解法などで上記無酸素銅を精製処理
する試みもなされたが、〔0〕含有量を2ppω以下に
低減することかできないのが現状である。 〔課題を解決するための手段〕 そこで、本発明者等は、上述のような観点から、上記の
従来無酸素銅に比して、よりCO)含有量の低い極低酸
素銅を製造すべく研究を行な°った結果、 []  : 3〜10ppm 。 水素(以下、CHIで示す):1ppm以下、を含有し
、純度が99.9996以上の従来無酸素銅に相当する
純銅素材溶湯に、 N 2 、 A r 、およびCOのうちの1種または
2種以上に、全体割合で0.5〜50容量%のH2を混
合してなる還元性ガス、 を吹込むと、上記純銅素材溶湯中の〔0〕含有量か1 
ppm以下に低減し、−力士記純銅素材溶湯中の[H)
含有量は0.8〜3 ppmに増加するが、この脱酸素
水素富化純銅溶湯に、 N 2 、 A r 、およびCOのうちの1種または
2種以上からなる反応ガス、 と反応させる脱水素(1次脱水素)処理を施すと、〔0
〕含有量にほとんど変化なく、(H)含有量を05〜1
.5ppm以下に低減することができ、さらにこれをイ
ンゴットに鋳造した状態で、真空、あるいはN 2 、
A rなどの非酸化性雰囲気中、700〜900℃の範
囲内の所定温度に所定時間保持、 の条件で2次脱水素処理を施すと、同じく 〔0〕含有
量にほとんど変化なく、(H)含有量を0,3pp+n
以下に低減することができ、しかもこの結果の極低酸素
銅は、これを極細線にした場合、従来無酸素銅では、実
用的経済的に伸線が容易な極細線の直径が60即である
のに対して、直径=50庫までの伸線が容易であり、ま
た箔材についても、同様に上記極低酸素銅の圧延銅箔は
、上記無酸素銅の圧延銅箔に比して著しくすぐれた屈曲
性を示すなどの研究結果を得たのである。 したがって、この発明は、上記研究結果にもとづいてな
されたものであって、 [01):3〜lOppm 。 (H)+ 1ppm以下・ を含有し、純度が99.999o以上の純銅素材溶湯に
、N 2 、 A r 、およびCOのうちの1種また
は2種以上に、全体割合で0.5〜50容ffi %の
H2を混合してなる還元性ガス、 を吹込んで、〔O〕および(H)含有量を、[Q]:1
ppm以下\ [H):0.8〜3 ppm、 とし、ついでこの脱酸素水素富化純銅溶湯に、N 2 
、 A r 、およびCOのうちの1種または2種以上
からなる反応ガス、 と反応させる1次脱水素処理を施して、〔0〕および(
H)含有量を、 [0): 1ppm以下、 (H)  + 0.5〜1.5ppm。 とし、つぎにこの1次脱水素純銅溶渇をインゴットに鋳
造し、このインゴットに、 非酸化性雰囲気中、700〜900℃の範囲内の所定温
度に所定時間保持、 の条件で2次脱水素熱処理を施して、〔0〕および(H
)含有量を、 [0): 1ppm以下、 [H)  : 0.3ppm以下・ とした極低酸素銅の製造法に特徴を有するものである。 なお、この発明の方法における脱酸素水素富化純銅溶湯
中の〔○〕および(H)含有量は必然的に定まるもので
あり、さらに云いかえれば純銅素材溶湯の3〜10pp
mの〔0〕含有量を、上記のH2:0.5〜50容量%
含有の還元性ガスを用いて1 ppI11以下に低減し
た場合、必然的に[H)含有量が0.8〜3pp111
に富化された状態となり、この程度の〔H〕含有全てあ
れば次の1次および2次脱水素処理で、(0)含有量を
増加させることなく、(H)含有量を0 、3 ppm
以下に低減できるという実験結果にもとづいて定めたも
のである。 また、この発明の方法において、還元性ガス中の82割
合をO15〜50容量%と定めたのは、その割合か0.
5容量96未満では所望の〔O〕低減作用が発揮されず
、一方その割合が50容量%を越えると、脱酸素水素富
化純銅溶湯中の[H]含有量が3 ppmを越えて高く
なってしまい、これを次工程の脱水素処理で0.3pp
m以下に低減するにはかなりの処理時間を必要とするよ
うになり、経済的でないという理由によるものである。 さらに、2次脱水素熱処理温度を700〜900℃と限
定したのは、その温度が700℃未満では所定の脱水素
を行なうのに長時間を必要とし、一方その温度が900
℃を越えると結晶粒の粗大化が起り、強度および延性が
低下するようになり、箔材や極細線の製造に際して破断
や断線が起り易くなるという理由にもとづくものである
。 〔実 施 例〕 つぎに、この発明の方法を実施例により具体的に説明す
る。 通常の溶解炉にて、原料として無酸素銅を用いて、第1
表に示される純度を有し、かつ〔0〕および[H)含有
量の各種の純銅素材溶湯をl0kgづつ溶製し、この純
銅素材溶湯に、温度:l150℃で第1表に示される組
成の還元性ガスを1g/ 1nの割合で10分間吹込ん
で、同じく第1表に示される[0)および[H)含有量
の脱酸素水素富化純銅溶湯とし、ついでこれに第1表に
示される組成の反応ガスを同じ<147/winの割合
で10分間吹込む1次脱水素処理を施して第1表に示さ
れる〔0〕および(H)含有量の1次脱水素純銅とし、
引続いてこの1次脱水素純銅溶湯を直径+70mmのイ
ンゴットに鋳造し、このインゴットに同しく第1表に示
される条件(保持時間:60分)で2次脱水素熱処理を
施すことにより、本発明法1〜9および比較法1〜9を
実施し、第2表に示される純度を有し、かつ〔O〕およ
び〔H〕含有量の本発明極低酸素銅1〜9および比較低
酸素銅1〜9をそれぞれ製造した。 なお、上記実施例では工程毎の変化を明確にとらえるた
めにバッチ方式を採用したが、実操業では、純銅素材を
溶解する溶解炉と、還元性ガスを純銅素材溶湯に吹込ん
で溶湯中の酸素と反応させて、これを除去する脱酸素装
置と、この結果の脱酸素水素富化純銅m&に反応ガスを
吹込み、あるいはこれを反応ガスにさらして1次脱水素
処理を行なう脱水素装置と、溶湯を鋳造する連続鋳造装
置とを、溶湯流路(樋)で気密に連結した連続精製装置
を用い、この連続精製装置からのインゴットに2次脱水
素熱処理を加える連続方式により極低酸素銅を製造する
のが望ましい。 なお、比較法1〜9は、いずれも製造条件のうちのいず
れかの条件(第1表に※印を付す)がこの発明の範囲か
ら外れたものである。 ついで、この結果得られた各種の極低酸素銅のインゴッ
トに800℃の熱間圧延開始温度にて熱間圧延を施して
幅ニア0mmX厚さ+10關の熱延板とし、引続いてこ
の熱延板に冷間圧延を施して幅・70+l1mX厚さ+
0.5mmの冷延板とし、この冷延板に、真空中、40
0℃に1時間保持の焼鈍を施した後、冷間圧延にて厚さ
+35虜の箔材を製造した。 また、同じく直径ニア0+++mのインゴットに800
℃の熱間鍛造開始温度にて熱間鍛造を施して直径:20
市の丸棒とし、この丸棒を冷間引抜き加工により直径二
0.9關の線材とし、これに真空中、400℃に1時間
保持の条件で焼鈍を施した後、冷間伸線加工にて直径=
50unの極細線を製造した。 つぎに、この結果得られた箔材については、J I S
 −P8115にもとづいて耐折れ強さ試験を行ない、
幅 15m1IX長さ・llo+omの寸法をもった試
験片か切れるまでの往復面げの回数を測定した。 また、極細線については、直径=60LfH1から最終
寸法である直径:50tI#へ伸線加工するに際しての
伸線m : l00kg当りの断線回数をmj定した。 これらの測定結果を第2表に示した。 〔発明の効果〕 第1表および第2表に示される結果から、本発明法1〜
9によれば、〔O〕含有量+1ppIIl以下、(H3
含有fit : 0.3+)pIII以下の極低酸素銅
を製造することができ、しかもこの結果得られた極低酸
素銅は、このように〔0〕含有量か低いので、例えば厚
さ、35扉の箔材や直径:50t!#の極細線の製造に
際しても、破断や断線の発生かきわめて少なく、これら
の箔材や極細線の経済的製造が可能であるのに対して、
比較法1〜9に見られるように、製造条件のうちのいず
れかの条件でもこの発明の範囲から外れると、製造され
る極低酸素銅における[03および[H]含有量のうち
の少なくともいずれかの含有量か高いものとなるため、
箔材や極細線の製造では破断や断線の発生が著しく、厚
さ: 351EIlの箔材や直径 50血の極細線の製
造は実質的に不可能であることが明らかである。 上述のように、この発明の方法によれば、従来製造か不
可能であった〔0〕含有量か1 ppm以下の極低酸素
銅を製造することができ、このように〔0〕含有量の低
い極低酸素銅は、すぐれた延性および加工性を有するの
で、これから例えば箔材や極細線を製造するに際して、
従来無酸素銅を用いる場合に比して、−段と薄肉化およ
び細線化をはかることか可能であり、したがって例えば
半導体装置の高集積化にも寄与することかできるなどT
梁上有用な効果かもたらされるのである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is applicable to oxygen (hereinafter referred to as [0]) content of 1
The present invention relates to a method for producing ultra-low oxygen copper of ppm or less. [Prior Art] Conventionally, oxygen-free copper, deoxidized copper, and vacuum melted copper have been known as pure copper with a purity of 99.99% or higher. , [0) has the lowest content, about 3 to 10 ppm, and has good ductility and workability, so it is used, for example, in ultrafine wires for bonding wires of semiconductor devices and foil strips for printed circuit boards. Used in manufacturing. Problems to be solved by the invention C] On the other hand, in recent years, the degree of integration of semiconductor devices has been remarkable, and with this, bonding wires and printed circuit boards are also required to be thinner and thinner. As mentioned above, oxygen-free copper has a low oxygen content of 3 to lop per million, but due to the oxygen content, it has sufficient ductility and workability to enable further thinning and thinning of the wire. Therefore, further thinning or thinning of the wire tends to cause disconnection or breakage, and it is not possible to satisfactorily meet the above requirements from a practical and economical point of view. In addition, conventional purification methods such as vacuum melting method and C
Attempts have been made to purify the oxygen-free copper using an O-containing gas atmosphere dissolution method, but it is currently impossible to reduce the [0] content to 2 ppω or less. [Means for Solving the Problems] Therefore, from the above-mentioned viewpoint, the present inventors set out to produce ultra-low oxygen copper with a lower CO) content than the conventional oxygen-free copper described above. As a result of research, []: 3 to 10 ppm. Hydrogen (hereinafter referred to as CHI): One or two of N2, Ar, and CO is added to a pure copper material molten metal corresponding to conventional oxygen-free copper containing 1 ppm or less and having a purity of 99.9996 or more. When a reducing gas made by mixing 0.5 to 50% by volume of H2 is injected into the molten pure copper material, the content of [0] or 1 in the pure copper material molten metal is blown.
- [H] in the molten metal of Rikishiki pure copper material is reduced to below ppm.
The content increases to 0.8 to 3 ppm, but this deoxygenated hydrogen-enriched pure copper molten metal is dehydrated by reacting with a reaction gas consisting of one or more of N2, Ar, and CO. When subjected to elementary (primary dehydrogenation) treatment, [0
] There was almost no change in the content, and the (H) content was reduced to 05 to 1.
.. It can be reduced to 5 ppm or less, and furthermore, in the state where it is cast into an ingot, it is heated by vacuum or N 2 ,
When secondary dehydrogenation treatment is carried out under the conditions of holding at a predetermined temperature within the range of 700 to 900°C for a predetermined time in a non-oxidizing atmosphere such as Ar, there is almost no change in the [0] content, and (H ) content 0.3pp+n
Moreover, when this ultra-low oxygen copper is made into an ultra-fine wire, the diameter of the ultra-fine wire is 60 mm, which is easy to draw practically and economically with conventional oxygen-free copper. On the other hand, it is easy to draw wire up to a diameter of 50, and as for the foil material, the rolled copper foil made of ultra-low oxygen copper has a lower temperature than the rolled copper foil made of oxygen-free copper. Research results showed that the material had extremely good flexibility. Therefore, this invention was made based on the above research results, [01):3~lOppm. A pure copper material molten metal containing (H) + 1 ppm or less and a purity of 99.999 o or more is added with one or more of N2, Ar, and CO in a total proportion of 0.5 to 50. A reducing gas prepared by mixing H2 of volume ffi % is blown in to reduce the [O] and (H) content to [Q]:1
ppm or less\ [H): 0.8 to 3 ppm, and then N 2 is added to this deoxygenated hydrogen-enriched pure copper molten metal.
, A r , and a reaction gas consisting of one or more of CO, [0] and (
H) content: [0): 1 ppm or less, (H) + 0.5 to 1.5 ppm. Next, this primary dehydrogenated pure copper melt is cast into an ingot, and this ingot is subjected to secondary dehydrogenation under the following conditions: held at a predetermined temperature within the range of 700 to 900°C for a predetermined time in a non-oxidizing atmosphere. After heat treatment, [0] and (H
) content of [0): 1 ppm or less, [H): 0.3 ppm or less] This method is characterized by a method for producing ultra-low oxygen copper. In addition, in the method of this invention, the [○] and (H) contents in the deoxygenated hydrogen-enriched pure copper molten metal are necessarily determined, and in other words, the content is 3 to 10pp of the pure copper material molten metal.
m [0] content, the above H2: 0.5 to 50% by volume
When reducing the content to 1 ppI11 or less using the containing reducing gas, the [H) content inevitably increases from 0.8 to 3 pp111.
If this level of [H] is present, the next primary and secondary dehydrogenation treatments will reduce the (H) content to 0 and 3 without increasing the (0) content. ppm
This was determined based on experimental results showing that it can be reduced to below. In addition, in the method of the present invention, the reason why the 82% in the reducing gas is determined to be 15 to 50% by volume of O is that 0.
If the volume is less than 5% by volume, the desired [O] reduction effect will not be exhibited, while if the proportion exceeds 50% by volume, the [H] content in the deoxygenated hydrogen-enriched pure copper molten metal will exceed 3 ppm and become high. This was reduced to 0.3pp in the next step of dehydrogenation treatment.
This is because reducing the number to below m requires a considerable amount of processing time, which is not economical. Furthermore, the reason why the secondary dehydrogenation heat treatment temperature was limited to 700 to 900°C is that if the temperature is lower than 700°C, it will take a long time to perform the specified dehydrogenation, whereas if the temperature is lower than 700°C,
This is based on the reason that if the temperature exceeds .degree. C., the crystal grains will become coarser, the strength and ductility will decrease, and breakage or disconnection will easily occur during the production of foil materials and ultrafine wires. [Examples] Next, the method of the present invention will be specifically explained using examples. In a normal melting furnace, using oxygen-free copper as the raw material,
Each 10 kg of pure copper material molten metal having the purity shown in the table and the [0] and [H) content is melted, and the composition shown in Table 1 is added to this pure copper material molten metal at a temperature of 150°C. A reducing gas of 1g/1n was blown into the molten metal for 10 minutes to obtain a deoxygenated hydrogen-enriched pure copper molten metal with the [0) and [H] contents shown in Table 1. A primary dehydrogenation treatment is carried out by blowing a reaction gas having a composition of
Subsequently, this primary dehydrogenation pure copper molten metal was cast into an ingot with a diameter of +70 mm, and this ingot was subjected to secondary dehydrogenation heat treatment under the same conditions shown in Table 1 (holding time: 60 minutes). Inventive methods 1 to 9 and comparative methods 1 to 9 were carried out to produce ultra-low oxygen copper of the present invention 1 to 9 and comparative low oxygen copper having the purity and [O] and [H] content shown in Table 2. Coppers 1 to 9 were produced respectively. In the above example, a batch method was adopted to clearly capture the changes in each process, but in actual operation, a melting furnace is used to melt the pure copper material, and a reducing gas is blown into the molten pure copper material to eliminate oxygen in the molten metal. A deoxidizer that reacts with and removes it, and a dehydrogenator that performs a primary dehydrogenation treatment by blowing a reaction gas into the resulting deoxygenated hydrogen-enriched pure copper m& or exposing it to the reaction gas. , using a continuous refining device that airtightly connects a continuous casting device that casts molten metal through a molten metal flow path (gutter), and performs a secondary dehydrogenation heat treatment on the ingot from this continuous refining device, which produces ultra-low oxygen copper. It is desirable to manufacture In addition, in all of Comparative Methods 1 to 9, one of the manufacturing conditions (marked with * in Table 1) is outside the scope of the present invention. Next, the various ultra-low oxygen copper ingots obtained as a result are hot rolled at a hot rolling start temperature of 800°C to form a hot rolled plate with a width of 0 mm x thickness + 10 mm, and then this hot rolling process is performed. The rolled plate is cold rolled to a width of 70+l1mXthickness+
A cold-rolled sheet of 0.5 mm was applied to the cold-rolled sheet in a vacuum for 40 minutes.
After annealing at 0° C. for 1 hour, a foil material having a thickness of +35 mm was produced by cold rolling. Also, 800 for an ingot with a diameter of near 0+++m
Hot forged at a hot forging start temperature of ℃, diameter: 20
This round bar was made into a wire rod with a diameter of 20.9 degrees by cold drawing, and after annealing it in a vacuum at 400°C for 1 hour, it was subjected to cold wire drawing. Diameter =
A 50-un ultrafine wire was manufactured. Next, regarding the foil material obtained as a result, JIS
- Conducted a bending strength test based on P8115,
The number of times a test piece having dimensions of width 15m1IX length llo+om was cut back and forth until it broke was measured. In addition, regarding the ultra-fine wire, the number of wire breaks per 100 kg of wire drawing when drawing the wire from diameter = 60LfH1 to the final size of diameter: 50tI# was determined as mj. The results of these measurements are shown in Table 2. [Effect of the invention] From the results shown in Tables 1 and 2, it is clear that methods 1 to 1 of the present invention
According to 9, [O] content + 1 ppIIl or less, (H3
It is possible to produce ultra-low oxygen copper with content fit: 0.3+) pIII or less, and the ultra-low oxygen copper obtained as a result has such a low [0] content, so for example, the thickness is 35 Door foil material and diameter: 50t! Even when producing ultra-fine wires, there are very few breakages or disconnections, and these foil materials and ultra-fine wires can be manufactured economically.
As seen in Comparative Methods 1 to 9, if any of the production conditions falls outside the scope of the present invention, at least any of the [03 and [H] contents in the ultra-low oxygen copper produced Because the content is high,
In the production of foil materials and ultra-fine wires, breakage and disconnection occur significantly, and it is clear that it is virtually impossible to manufacture foil materials with a thickness of 351 EIl and ultra-fine wires with a diameter of 50 mm. As described above, according to the method of the present invention, it is possible to produce ultra-low oxygen copper with a [0] content of 1 ppm or less, which was previously impossible to produce. Ultra-low oxygen copper has excellent ductility and workability, so when producing foil materials or ultra-fine wires from it, for example,
Compared to the conventional case of using oxygen-free copper, it is possible to achieve significantly thinner walls and thinner wires, and therefore, for example, it can contribute to higher integration of semiconductor devices.
This brings about a useful effect on the beam.

Claims (1)

【特許請求の範囲】[Claims] (1)酸素:3〜10ppm、 水素:1ppm以下、 を含有し、純度が99.99%以上の純銅素材溶湯に、
N_2、Ar、およびCOのうちの1種または2種以上
に、全体割合で0.5〜50容量%のH_2を混合して
なる還元性ガス、 を吹込んで、酸素および水素含有量を、 酸素:1ppm以下、 水素:0.8〜3ppm、 とし、ついでこの脱酸素水素富化純銅溶湯に、N_2、
Ar、およびCOのうちの1種または2種以上からなる
反応ガス、 と反応させる1次脱水素処理を施し、酸素および水素含
有量を、 酸素:1ppm以下、 水素:0.5〜1.5ppm とした後、鋳造し、引続いてこの1次脱水素純銅インゴ
ットに、 非酸化性雰囲気中、700〜900℃の範囲内の所定温
度に所定時間保持、 の条件で2次脱水素熱処理を施して、酸素および水素含
有量を、 酸素:1ppm以下、 水素:0.3ppm以下、 とすることを特徴とする極低酸素銅の製造法。
(1) A pure copper material molten metal with a purity of 99.99% or more, containing oxygen: 3 to 10 ppm, hydrogen: 1 ppm or less,
A reducing gas made by mixing one or more of N_2, Ar, and CO with H_2 in a total proportion of 0.5 to 50% by volume is blown to reduce the oxygen and hydrogen content. : 1 ppm or less, hydrogen: 0.8 to 3 ppm, and then to this deoxygenated hydrogen-enriched pure copper molten metal, N_2,
A primary dehydrogenation treatment is performed to react with a reactive gas consisting of one or more of Ar and CO, and the oxygen and hydrogen contents are reduced to: Oxygen: 1 ppm or less, Hydrogen: 0.5 to 1.5 ppm After that, it is cast, and then this primary dehydrogenated pure copper ingot is subjected to secondary dehydrogenation heat treatment under the following conditions: held at a predetermined temperature within the range of 700 to 900°C for a predetermined time in a non-oxidizing atmosphere. A method for producing ultra-low oxygen copper, characterized in that the oxygen and hydrogen contents are: oxygen: 1 ppm or less; hydrogen: 0.3 ppm or less.
JP20976290A 1990-08-08 1990-08-08 Manufacture of extra low oxygen copper Pending JPH0499236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20976290A JPH0499236A (en) 1990-08-08 1990-08-08 Manufacture of extra low oxygen copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20976290A JPH0499236A (en) 1990-08-08 1990-08-08 Manufacture of extra low oxygen copper

Publications (1)

Publication Number Publication Date
JPH0499236A true JPH0499236A (en) 1992-03-31

Family

ID=16578211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20976290A Pending JPH0499236A (en) 1990-08-08 1990-08-08 Manufacture of extra low oxygen copper

Country Status (1)

Country Link
JP (1) JPH0499236A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1230012A2 (en) * 1999-10-13 2002-08-14 Atomic Ordered Materials, L.L.C. Tailoring compositions of matter
US6921497B2 (en) 1999-10-13 2005-07-26 Electromagnetics Corporation Composition of matter tailoring: system I
US6944930B2 (en) * 2000-02-24 2005-09-20 Mitsubishi Materials Corporation Method for manufacturing low-oxygen copper
CN100462455C (en) * 2007-08-24 2009-02-18 云南铜业压铸科技有限公司 Method for smelting pure copper or high-copper alloy raw material
US7655160B2 (en) 2005-02-23 2010-02-02 Electromagnetics Corporation Compositions of matter: system II
US8030082B2 (en) 2006-01-13 2011-10-04 Honeywell International Inc. Liquid-particle analysis of metal materials
US9790574B2 (en) 2010-11-22 2017-10-17 Electromagnetics Corporation Devices for tailoring materials
EP3363919A1 (en) * 2017-02-15 2018-08-22 MKM Mansfelder Kupfer Und Messing Gmbh Method for producing low-hydrogen copper and copper melt and copper element and smelting furnace

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7704403B2 (en) * 1999-10-13 2010-04-27 Electromagnetic Corporation Composition of matter tailoring: system I
US6572792B1 (en) * 1999-10-13 2003-06-03 Atomic Ordered Materials, L.L.C. Composition of matter tailoring: system 1
US6921497B2 (en) 1999-10-13 2005-07-26 Electromagnetics Corporation Composition of matter tailoring: system I
EP1230012A2 (en) * 1999-10-13 2002-08-14 Atomic Ordered Materials, L.L.C. Tailoring compositions of matter
US7238297B2 (en) 1999-10-13 2007-07-03 Electromagnetics Corporation Composition of matter tailoring: system I
US7252793B2 (en) 1999-10-13 2007-08-07 Electromagnetics Corporation Composition of matter tailoring: system I
EP1230012B1 (en) * 1999-10-13 2008-12-10 Electromagnetics Corporation Method of processing matter
US7491348B2 (en) * 1999-10-13 2009-02-17 Electromagnetics Corporation Composition of matter tailoring: system I
US6944930B2 (en) * 2000-02-24 2005-09-20 Mitsubishi Materials Corporation Method for manufacturing low-oxygen copper
US7524356B2 (en) 2000-02-24 2009-04-28 Mitsubishi Materials Corporation Method for manufacturing low-oxygen copper
US7655160B2 (en) 2005-02-23 2010-02-02 Electromagnetics Corporation Compositions of matter: system II
US8030082B2 (en) 2006-01-13 2011-10-04 Honeywell International Inc. Liquid-particle analysis of metal materials
CN100462455C (en) * 2007-08-24 2009-02-18 云南铜业压铸科技有限公司 Method for smelting pure copper or high-copper alloy raw material
US9790574B2 (en) 2010-11-22 2017-10-17 Electromagnetics Corporation Devices for tailoring materials
EP3363919A1 (en) * 2017-02-15 2018-08-22 MKM Mansfelder Kupfer Und Messing Gmbh Method for producing low-hydrogen copper and copper melt and copper element and smelting furnace

Similar Documents

Publication Publication Date Title
JP4674483B2 (en) Copper material manufacturing method and copper material
CN100422364C (en) Superfine copper alloy wire and method for manufacturing same
US4067754A (en) Cold rolled, ductile, high strength steel strip and sheet and method therefor
JPH03133593A (en) Production of ni-based heat-resistant alloy welding wire
JPH0499236A (en) Manufacture of extra low oxygen copper
WO1989011549A1 (en) PRODUCTION OF NON-ORIENTED HIGH-Si STEEL SHEET
US4092178A (en) Process for producing a steel having excellent strength and toughness
US5637274A (en) Palladium alloy thin wire for wire bonding semiconductor elements
JPS5849622B2 (en) Manufacturing method of cold-rolled steel sheet for ultra-deep drawing by continuous annealing
JPS62149857A (en) Production of aluminum alloy foil having excellent formability
JPS6022054B2 (en) High-strength Al alloy thin plate with excellent formability and corrosion resistance, and method for producing the same
JP4098171B2 (en) Manufacturing method of inexpensive stainless steel fine wire with excellent elongation characteristics
JPH0499235A (en) Manufacture of extra low oxygen copper
JPS58171527A (en) Manufacture of low-grade electrical steel sheet
JPH0499234A (en) Manufacture of extra low oxygen copper
JP2864964B2 (en) Fe-Ni-based alloy cold rolled sheet excellent in plating property and solderability and method for producing the same
JPS6254183B2 (en)
JPS62103335A (en) Ultra-high-purity metallic niobium
JPH09176805A (en) Production of aluminum fin material
JPS6314832A (en) Copper alloy for electronic equipment and its production
JPH08218155A (en) Production of zirconium-copper alloy sheet having fine crystal grain
US6797082B1 (en) Manufacture of copper microalloys
USRE31306E (en) Cold rolled, ductile, high strength steel strip and sheet and method therefor
JPS61288036A (en) Copper alloy for lead frame and its production
JP2001073045A (en) Production of high strength copper alloy cast ingot