JPH0499086A - Reflowing device - Google Patents

Reflowing device

Info

Publication number
JPH0499086A
JPH0499086A JP20844090A JP20844090A JPH0499086A JP H0499086 A JPH0499086 A JP H0499086A JP 20844090 A JP20844090 A JP 20844090A JP 20844090 A JP20844090 A JP 20844090A JP H0499086 A JPH0499086 A JP H0499086A
Authority
JP
Japan
Prior art keywords
substrate
film
heat source
heat
source section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20844090A
Other languages
Japanese (ja)
Inventor
Akio Furusawa
彰男 古澤
Kimihito Kuwabara
桑原 公仁
Masahiro Taniguchi
昌弘 谷口
Koichi Kumagai
浩一 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20844090A priority Critical patent/JPH0499086A/en
Publication of JPH0499086A publication Critical patent/JPH0499086A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To collectively perform reflow soldering by providing a heat source section which heats a substrate while it is in contact with the lower surface of the substrate, means which holds and places the substrate on the heat source section, and cooling means which cools a desired electronic parts on the substrate by bringing a cold substance into contact with the parts. CONSTITUTION:A substrate 10 is slightly pressed against a heat resisting film 23. Since melted solder 22 is pressurized, the film is somewhat swelled upward at its central part and the substrate 10 can be brought into close contact with the film 24 toward the peripheral part from the center. Therefore, no air is taken between the substrate 10 and film 24. Moreover, since the film 24 is flexible, no clearance is formed between the substrate 10 and film 24 even when the substrate 10 is somewhat bent and the entire surface of the substrate 10 is uniformly heated by means of the melted solder 22 heated to a prescribed temperature through the film 24. When reflowing is made in the first heat source section 1, in addition, damage of electronic parts 10 which is weaker in heat resisting property can be prevented surely, since the parts 10a are cooled by cooling air blown upon the parts 10a from a cooling nozzle 13.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は基板上に塗布されたペースト状半田を加熱して
リフロー装置けするリフロー装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a reflow apparatus that heats paste-like solder coated on a substrate.

(従来の技術) 従来、リフロー半田付けする場合には、ペースト状半田
を塗布した基板をリフロー炉に挿入している。リフロー
炉は、熱風を吹き付けて加熱する対流方式、赤外線等を
照射する輻射方式、基板をヒートブロック上に載置して
加熱する伝熱方式や、これらを併用した方式等が知られ
ている。
(Prior Art) Conventionally, when performing reflow soldering, a board coated with paste solder is inserted into a reflow oven. Known reflow ovens include a convection method that heats by blowing hot air, a radiation method that irradiates with infrared rays, a heat transfer method that heats the substrate by placing it on a heat block, and a method that uses a combination of these methods.

例えば、第6図に示すように、基板40をリフロー炉4
1内に配設したコンベア42にて搬送する間にその搬送
経路の上部や下部に配置した加熱ユニット43から熱風
を吹き付けたり、赤外線を照射したりして基板40の周
囲の雰囲気温度を240℃程度に所定時間保つように構
成されたものが知られている。
For example, as shown in FIG. 6, the substrate 40 is placed in a reflow oven 4.
While the substrate 40 is being conveyed by the conveyor 42 disposed in the substrate 1, the ambient temperature around the substrate 40 is raised to 240° C. by blowing hot air from the heating unit 43 placed at the upper or lower part of the conveyor path or by irradiating infrared rays. There are known devices that are configured to maintain the temperature at a certain level for a predetermined period of time.

又、特開昭54−80565号公報には、溶融半田等の
加熱された液状物質上に良熱伝導性の板を浮かべ、この
板の上に基板を載せ、良熱伝導性の板を介して基板上の
ペースト状半田をリフローし、半田付けする方法が開示
されている。
Furthermore, in Japanese Patent Application Laid-Open No. 54-80565, a plate with good thermal conductivity is floated on a heated liquid substance such as molten solder, a board is placed on top of this plate, and the plate is placed on top of the plate with good thermal conductivity. A method of reflowing paste-like solder on a board and soldering is disclosed.

(発明が解決しようとする諜J!り ところが、上記リフロー炉41による加熱では基板40
の全面を均一に加熱するのが困難であるばかりでなく、
基板40にハイブリッドIC部品等の耐熱性の低い電子
部品を搭載した状態では、この電子部品が損傷してしま
う恐れがあるため一括してリフロー半田付けすることが
できず、耐熱性の低い電子部品はリフロー半田付けした
後に別途に手作業で半田付けしたり、レーザー光等にて
個別にリフロー半田付けしたりするしかなく、回路基板
の製造工程が複雑になり、コスト高になるという問題が
あった。
(The problem that the invention is trying to solve is that the substrate 40 cannot be heated by the reflow oven 41.)
Not only is it difficult to uniformly heat the entire surface of the
When electronic components with low heat resistance such as hybrid IC components are mounted on the board 40, reflow soldering cannot be performed all at once because there is a risk that the electronic components may be damaged. After reflow soldering, the only option is to perform separate manual soldering or separate reflow soldering using a laser beam, etc., which complicates the circuit board manufacturing process and increases costs. Ta.

又、上記公報に開示されたりフロ一方法では、熱源とし
て加熱された溶融半田を用いているので、原理的には温
度分布が均一となり、基板の全面を均一に加熱すること
が可能であるが、実際には基板にある程度のそりが発生
することは避けられないため、良熱伝導性の板との間に
隙間ができることがあり、隙間が生じると熱伝導性が著
しく低下するため、結局均一な加熱ができないという問
題があり、かつ上記と同様に耐熱性の低い電子部品を搭
載した状態で一括してリフローすることはできないとい
う問題がある。
In addition, in the flow method disclosed in the above publication, heated molten solder is used as a heat source, so in principle the temperature distribution becomes uniform and it is possible to uniformly heat the entire surface of the board. In reality, it is unavoidable that the board will warp to some extent, so a gap may be formed between the board and the plate, which has good thermal conductivity.If a gap occurs, the thermal conductivity will decrease significantly, so it will eventually become uniform. There is a problem in that it is not possible to perform proper heating, and, similarly to the above, there is a problem in that it is not possible to reflow all at once when electronic components with low heat resistance are mounted.

本発明は、上記従来の問題点に鑑み、耐熱性の低い電子
部品が搭載された基板に対して一括してリフロー半田付
けを行え、また均一に加熱できて品質の高い半田付けが
行えるリフロー装置を提供することを目的とする。
In view of the above-mentioned conventional problems, the present invention has developed a reflow device that can perform reflow soldering all at once on boards on which electronic components with low heat resistance are mounted, and that can heat uniformly and perform high quality soldering. The purpose is to provide

(課題を解決するための手段) 本発明のリフロー装置は、上記目的を達成するため、上
面にペースト状半田を塗布されるとともに電子部品を搭
載された基板の下面を接触させて伝熱加熱する熱源部と
、基板を保持して熱源部上に設置する手段と、基板上の
所望の電子部品に対して冷たい物質を接触させて冷却す
る手段とを備えたことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the reflow apparatus of the present invention heats the substrate by heat conduction by bringing the bottom surface of a board on which paste-like solder is applied to the top surface and on which electronic components are mounted into contact with each other. It is characterized by comprising a heat source section, means for holding the board and installing it on the heat source section, and means for bringing a cold substance into contact with desired electronic components on the board to cool them.

又、好適には熱源部が、上面に開口を有する槽の上面開
口を可撓性のある薄膜体にて密閉し、この槽内に少なく
とも加熱状態で流動性を有する流動体を充満するととも
にこの流動体を所定温度に加熱する加熱手段を設けた構
成とされる。
Preferably, the heat source unit seals the top opening of a tank having an opening on the top surface with a flexible thin film, and fills the tank with a fluid having fluidity at least in a heated state. The configuration includes a heating means for heating the fluid to a predetermined temperature.

(作 用) 本発明の上記構成によれば、熱源部にて基板の下面から
伝熱方式で効率的にかつ比較的均一に基板を加熱して基
板上に塗布されたペースト状半田をリフローすることが
でき、しかも耐熱性の低い電子部品に対してはその上方
から冷却手段にて冷却することによってその損傷を確実
に防止することができるため、耐熱性の低い電子部品が
搭載されていても一括してリフロー半田を行うことがで
きる。
(Function) According to the above configuration of the present invention, the heat source unit heats the board efficiently and relatively uniformly by heat transfer from the bottom surface of the board to reflow the paste-like solder applied on the board. Moreover, damage to electronic components with low heat resistance can be reliably prevented by cooling them with a cooling means from above, so even if electronic components with low heat resistance are mounted, Reflow soldering can be performed all at once.

又、熱源部として、加熱手段にて所定温度に加熱された
温度分布の均一な流動体の上面に接するように可撓性の
ある薄膜体を配置し、その薄膜体上に基板を接触させる
ようにしたものを用いることにより、基板の薄膜体に接
する伝熱面に多少の凹凸があ1ても薄膜体との間に隙間
が生じることはなく、薄いために熱伝導性のよい薄膜体
を介して基板を効率的に均一加熱することができ、品質
の高いリフロー半田付けができる。
Further, as a heat source part, a flexible thin film body is arranged so as to be in contact with the upper surface of a fluid having a uniform temperature distribution heated to a predetermined temperature by a heating means, and the substrate is brought into contact with the thin film body. By using a thin film, even if the heat transfer surface in contact with the thin film of the substrate has some unevenness, there will be no gap between the thin film and the thin film, which is thin and has good thermal conductivity. The board can be heated efficiently and uniformly through the wafer, making it possible to perform high-quality reflow soldering.

(実施例) 以下、本発明の一実施例を第1図〜第5図を参照しなが
ら説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 5.

第1図において、1はリフロー用の第1の熱源部、2は
予熱用の第2の熱源部、3は搬入コンベア、4は搬出コ
ンベアである。5は、搬入コンベア3にて搬入された基
板10を、第2の熱源部2、第1の熱源部1、搬出コン
ベア4に順次搬送する搬送装置である。6は、搬出コン
ベア4の下部に配設された基板10の冷却手段である。
In FIG. 1, 1 is a first heat source section for reflow, 2 is a second heat source section for preheating, 3 is an incoming conveyor, and 4 is an outgoing conveyor. Reference numeral 5 denotes a conveyance device that sequentially conveys the substrate 10 carried in by the carry-in conveyor 3 to the second heat source section 2, the first heat source section 1, and the carry-out conveyor 4. Reference numeral 6 denotes cooling means for the substrate 10 disposed at the lower part of the carry-out conveyor 4.

搬送装置5は、基板10の搬送方向に沿って配設された
ガイドレール7と、このガイドレール7に沿って移動可
能な可動体8と、この可動体8に取付けられた昇降手段
9にて昇降されるとともに基板10を吸着して保持する
保持ヘッド11にて構成されている。基板10上には、
第2図に示すように、リフローすべきペースト状半田が
塗布されるとともにその上に耐熱性のある電子部品10
bに限らず、耐熱性の低い電子部品10aが搭載されて
いる。
The transport device 5 includes a guide rail 7 arranged along the transport direction of the substrate 10, a movable body 8 movable along the guide rail 7, and a lifting means 9 attached to the movable body 8. It is composed of a holding head 11 that is moved up and down and attracts and holds the substrate 10. On the substrate 10,
As shown in FIG. 2, a heat-resistant electronic component 10 is coated with paste-like solder to be reflowed.
In addition to the electronic component 10a having low heat resistance, the electronic component 10a is mounted.

保持ヘッド11には、第2図に示すように、基板10の
両端部と中間部のそれぞれ2箇所、計6箇所を吸着して
保持するように吸着ノズル12が設けられるとともに、
この吸着ノズル12にて吸着された基板10上に搭載さ
れた耐熱性の低い電子部品10aの上部に対向するよう
に冷却ノズル13が設けられている。吸着ノズル12は
図示しない吸引源に接続された吸引口14に連通し、冷
却ノズル13は図示しない冷却風供給手段に接続された
冷却風供給口15に連通されている。
As shown in FIG. 2, the holding head 11 is provided with a suction nozzle 12 so as to suction and hold a total of six places, two places each at both ends and an intermediate part of the substrate 10.
A cooling nozzle 13 is provided so as to face the upper part of the electronic component 10a having low heat resistance mounted on the substrate 10 that has been sucked by the suction nozzle 12. The suction nozzle 12 communicates with a suction port 14 connected to a suction source (not shown), and the cooling nozzle 13 communicates with a cooling air supply port 15 connected to a cooling air supply means (not shown).

第1の熱源部1及び第2の熱源部2は、第3図に示すよ
うに構成されている。尚、第2の熱源部2は、基板10
を予熱するために低い温度に制御されているだけで、構
成は第1の熱源部1と同一であるため、以下第1の熱源
部1についてのみ説明する。
The first heat source section 1 and the second heat source section 2 are configured as shown in FIG. 3. Note that the second heat source section 2 is connected to the substrate 10
Since the configuration is the same as that of the first heat source section 1 except that the temperature is controlled to a low temperature in order to preheat the heat source section 1, only the first heat source section 1 will be described below.

第3図において、21は溶融半田22を収容した上面開
放の槽で、その下面には第1の加熱手段23が配設され
、溶融半田22を所定温度に維持するように構成されて
いる。この槽21の開放された上面は、溶融半田22の
上面に接するように配設された例えば50μm厚のポリ
イミドフィルム等の耐熱性フィルム24にて密閉状態で
覆われている。25はこの耐熱性フィルム4の周囲を槽
21の上端部内周に密閉状態で固定する固定枠である。
In FIG. 3, reference numeral 21 denotes a tank with an open top surface containing molten solder 22, and a first heating means 23 is disposed on the lower surface of the tank, and is configured to maintain molten solder 22 at a predetermined temperature. The open top surface of this tank 21 is hermetically covered with a heat-resistant film 24 such as a 50 μm thick polyimide film, which is placed in contact with the top surface of the molten solder 22 . Reference numeral 25 denotes a fixing frame that fixes the periphery of the heat-resistant film 4 to the inner periphery of the upper end of the tank 21 in a sealed state.

この槽21の一例には連通関口27を介してこの槽21
に連通ずる予備槽26が配設され、その下面には第2の
加熱手段28が配設され、かつ第1と第2の加熱手段2
3.28間には断熱材29が介装され、別途に加熱でき
るように構成されている。この予備槽26内の上部には
、溶融半田22内に浸漬した下降位置と上方に退避した
上昇位置との間で昇降可能な浸漬体31が設けられてお
り、この浸漬体31を昇降駆動手段32で下降させて溶
融半田22内に浸漬させると、予備槽26内の溶融半田
22の上面が仮想線で示すように上昇し、そのヘッド圧
Hが槽21内の溶融半田22に作用して加圧するように
構成されている。このようにヘッド圧Hを利用して槽2
1内の溶融半田22を加圧することにより、安定した加
圧状態が得られる。
An example of this tank 21 is that this tank 21 is
A preliminary tank 26 is disposed in communication with the tank, and a second heating means 28 is disposed on the lower surface thereof, and a second heating means 28 is connected to the first and second heating means 2.
A heat insulating material 29 is interposed between 3.28 and is configured to be able to be heated separately. A dipping body 31 that can be raised and lowered between a lowered position where it is immersed in the molten solder 22 and a raised position where it is retracted upward is provided at the upper part of the preliminary tank 26. When it is lowered at 32 and immersed in the molten solder 22, the upper surface of the molten solder 22 in the preliminary tank 26 rises as shown by the imaginary line, and the head pressure H acts on the molten solder 22 in the tank 21. It is configured to apply pressure. In this way, the head pressure H is used to
By pressurizing the molten solder 22 in 1, a stable pressurized state can be obtained.

又、耐熱性フィルム24の破損検出手段33として、浸
漬体31を浸漬して予備槽26内の溶融半田22の上面
が上昇した状態で溶融半田22にて互いに短絡する一対
の電極34a、34bが設けられ、電源35及び警報器
36に接続されていおり、浸漬体31を浸漬した状態で
溶融半田22の上面が下降して画電極34a、34bが
絶縁されたときに警報を発するように構成されている。
Further, as a damage detection means 33 for the heat-resistant film 24, a pair of electrodes 34a and 34b are connected to each other by the molten solder 22 when the immersion body 31 is immersed and the upper surface of the molten solder 22 in the preliminary tank 26 is raised. It is connected to a power source 35 and an alarm 36, and is configured to issue an alarm when the top surface of the molten solder 22 descends and the picture electrodes 34a and 34b are insulated while the immersion body 31 is immersed. ing.

以上の構成において、基l1jlO上のペースト状半田
をリフローして半田付けするには、その基板10を搬入
コンベア3にて搬入し、搬送装置5の保持ヘノドエ1に
て基板1oを吸着保持した状態でこの保持ヘッド11に
て基板1oを第1と第2の熱源部1.2上に順次供給す
る。これら熱源部1.2においては、保持ヘッド11に
て保持した基板10を、第4図に示すように槽21の上
面の耐熱性フィルム24上に接触させ、さらに第5図に
示すように、基板1oを耐熱性フィルム24に向けて若
干押し付ける。その際、溶融半田22が加圧されている
ために、第4図に示すように耐熱性フィルム24はその
中央部が若干上方に膨らんでおり、そのため基板lOを
単に上方から押し付けるだけで中央部から周囲に順次耐
熱性フィルム24に密着させることができて基板1oと
耐熱性フィルム24の間に空気を噛み込むことがない。
In the above configuration, in order to reflow and solder the paste-like solder on the base l1jlO, the board 10 is carried in by the carry-in conveyor 3, and the board 1o is sucked and held by the holding joint 1 of the transport device 5. The holding head 11 sequentially supplies the substrate 1o onto the first and second heat source sections 1.2. In these heat source parts 1.2, the substrate 10 held by the holding head 11 is brought into contact with the heat-resistant film 24 on the upper surface of the tank 21 as shown in FIG. 4, and further, as shown in FIG. The substrate 1o is slightly pressed against the heat-resistant film 24. At this time, since the molten solder 22 is pressurized, the center of the heat-resistant film 24 bulges slightly upward as shown in FIG. Since the heat-resistant film 24 can be brought into close contact with the substrate 1o and the heat-resistant film 24 in order, air will not be trapped between the substrate 1o and the heat-resistant film 24.

又、耐熱性フィルム24は可撓性があるため、基板10
に多少のそりがあっても陳間を住しることがないため、
耐熱性フィルム24が基板1oの下面に沿って強く密着
し、所定温度に加熱された溶融半田22にて耐熱性フィ
ルム24を介して基板10の全面が均一に加熱される。
Furthermore, since the heat-resistant film 24 is flexible, the substrate 10
Even if there is some warpage, there is no need to live in the room,
The heat-resistant film 24 is strongly adhered along the lower surface of the substrate 1o, and the entire surface of the substrate 10 is uniformly heated by the molten solder 22 heated to a predetermined temperature via the heat-resistant film 24.

即ち、溶融半田22は液体状態であるためその温度分布
を容易に均一化でき、その上面に接している薄い耐熱性
フィルム24に対して基板1oの下面を密着状態で押し
付けることによって基板1oに均一に熱が伝わって効率
的に均一加熱される。又、溶融半田22がその上面に接
する耐熱性フィルム24にて覆われているので、その酸
化が防止され、酸化物の性成による熱伝導度の低下や不
均一性の全体を防止できる。かくして、基板10上のペ
ースト状半田が均一にリフローし、高品質の半田付けが
行われる。
That is, since the molten solder 22 is in a liquid state, its temperature distribution can be easily made uniform, and by pressing the lower surface of the substrate 1o in close contact with the thin heat-resistant film 24 that is in contact with the upper surface of the molten solder 22, the temperature distribution can be uniformly applied to the substrate 1o. Heat is transferred to and heated efficiently and uniformly. Furthermore, since the molten solder 22 is covered with the heat-resistant film 24 in contact with its upper surface, its oxidation is prevented, and a decrease in thermal conductivity and overall non-uniformity due to the formation of oxides can be prevented. In this way, the paste-like solder on the substrate 10 reflows uniformly, resulting in high-quality soldering.

又、第1の熱源部1においてリフローする際には、耐熱
性の低い電子部品10aに対してその上方から冷却ノズ
ル13にて冷却風を吹き付けて冷却するので、その損傷
を確実に防止することができる。勿論、この電子部品1
0aのリードも基板10の下面から供給された熱によっ
て確実にリフロー半田付けされる。このように、基板1
oに耐熱性の低い電子部品10aが搭載されていても、
それを損傷する恐れなく、−括してリフロー半田付けを
行うことができる 尚、耐熱性フィルム24が破損した場合には、溶融半田
22が漏れ出して予備槽26内の溶融半田22の上面が
下降し、電極34a、34b間が絶縁されるので、警報
器36が作動してすぐに知ることができ、速やかに適当
な処理を施すことができる。
Furthermore, when reflowing in the first heat source section 1, the electronic component 10a with low heat resistance is cooled by blowing cooling air from above with the cooling nozzle 13, so that damage to the electronic component 10a can be reliably prevented. I can do it. Of course, this electronic component 1
The lead 0a is also reliably reflow soldered by the heat supplied from the bottom surface of the board 10. In this way, the substrate 1
Even if electronic component 10a with low heat resistance is mounted on o,
It is possible to perform reflow soldering all at once without fear of damaging the film. If the heat-resistant film 24 is damaged, the molten solder 22 will leak out and the top surface of the molten solder 22 in the preliminary tank 26 will be Since the electrodes 34a and 34b are insulated, the alarm 36 can be activated and the alarm can be detected immediately, allowing appropriate treatment to be taken promptly.

又、作業終了時には、まず第1の加熱手段23の作動を
停止して槽21の溶融半田22を冷却固化させ、その時
の収縮分を予備槽26から供給することによって耐熱性
フィルム24を保護し、槽21内の溶融半田22が冷却
固化した後、第2の加熱手段28の作動を停止して予備
槽26内の溶融半田22を冷却固化させる。又、作業開
始時には、同様の理由から第2の加熱手段28を作動さ
せて予備槽26内の半田を溶融させた後、第1の加熱手
段23を作動させ、槽21内の半田を溶融させる。
Furthermore, when the work is finished, first the operation of the first heating means 23 is stopped, the molten solder 22 in the tank 21 is cooled and solidified, and the heat-resistant film 24 is protected by supplying the shrinkage at that time from the preliminary tank 26. After the molten solder 22 in the tank 21 is cooled and solidified, the operation of the second heating means 28 is stopped and the molten solder 22 in the preliminary tank 26 is cooled and solidified. Furthermore, at the start of work, for the same reason, the second heating means 28 is activated to melt the solder in the preliminary tank 26, and then the first heating means 23 is activated to melt the solder in the tank 21. .

上記実施例では、加熱流動体として溶融半田2を用いた
が、シリコンオイル等を用いることもできる。又、薄膜
体としてポリイミドフィルム等の耐熱性フィルム24を
用いた例を示したが、その他必要な強度と加熱流動体に
対する耐熱性があり、かつ加熱流動体が透過して上方に
流出することのない任意の材質の薄い膜状体を用いるこ
とができる。
In the above embodiment, molten solder 2 was used as the heating fluid, but silicone oil or the like may also be used. In addition, an example is shown in which a heat-resistant film 24 such as a polyimide film is used as the thin film, but it also has the necessary strength and heat resistance against the heated fluid, and also has the ability to prevent the heated fluid from passing through and flowing upward. It is possible to use a thin film-like body made of any material.

又、耐熱性の低い電子部品10aを冷却する手段として
冷却ノズル13から冷却風を吹き出すようにした例を示
したが、冷却ブロックを接触させて冷却するようにして
もよい。
Further, although an example has been shown in which cooling air is blown out from the cooling nozzle 13 as a means for cooling the electronic component 10a with low heat resistance, it may be cooled by bringing a cooling block into contact with the electronic component 10a.

(発明の効果) 本発明によれば、熱源部にて基板の下面がら伝熱方式で
効率的にかつ比較的均一に基板を加熱して基板上に塗布
されたペースト状半田をリフローすることができ、しか
も耐熱性の低い電子部品に対してはその上方から冷却手
段にて冷却することによってその損傷を確実に防止する
ことができるため、耐熱性の低い電子部品が搭載されて
いても一括してリフロー半田を行うことができるという
効果を発揮する。
(Effects of the Invention) According to the present invention, it is possible to reflow the paste-like solder applied on the substrate by efficiently and relatively uniformly heating the substrate using a heat transfer method from the bottom surface of the substrate in the heat source section. Moreover, damage to electronic components with low heat resistance can be reliably prevented by cooling them with a cooling means from above, so even if electronic components with low heat resistance are installed, they can be cooled all at once. This has the effect of allowing reflow soldering to be performed.

又、熱源部として、加熱手段にて所定温度に加熱された
温度分布の均一な流動体の上面に接するように可撓性の
ある薄膜体を配置し、その薄膜体上に基板を接触させる
ようにしたものを用いることにより、基板の薄膜体に接
する伝熱面に多少の凹凸があっても薄膜体との間に陳間
が生じることはなく、薄いために熱伝導性のよい薄膜体
を介して基板を効率的に均一加熱することができ、品質
の高いリフロー半田付けができる。
Further, as a heat source part, a flexible thin film body is arranged so as to be in contact with the upper surface of a fluid having a uniform temperature distribution heated to a predetermined temperature by a heating means, and the substrate is brought into contact with the thin film body. By using a thin film, even if the heat transfer surface in contact with the thin film of the substrate has some unevenness, there will be no gap between the thin film and the thin film, which is thin and has good thermal conductivity. The board can be heated efficiently and uniformly through the wafer, making it possible to perform high-quality reflow soldering.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の縦断正面図、第2図は同要
部である保持ヘッド部の拡大図、第3図は熱源部の構成
を示す縦断側面図、第4図、第5図は基板の加熱直前と
加熱状態における薄膜体との接触状態を示す断面図、第
6図は従来例の構成図である。 1−−−−−−・・−・・−一−−−〜−−・・−・第
1の熱源部0−・・−・・−−−−−一−−−−−−・
−・基板1   ・−・−・−−−−−一保持ヘッド3
・・−・−−−−−−−・−−−−−−−−−−−・−
冷却ノズル1−・−・・−・−・−・−槽 2・−・−−−−一・−・・・−・・−−一−−−−−
溶融半田3   −・−・−・−第1の加熱手段4−−
−−−・−−−−−−−・・・−・−−一−−−−−−
耐熱性フィルム。
Fig. 1 is a longitudinal sectional front view of one embodiment of the present invention, Fig. 2 is an enlarged view of the holding head section which is the main part, Fig. 3 is a longitudinal sectional side view showing the configuration of the heat source section, Fig. 4, FIG. 5 is a sectional view showing the state of contact with the thin film body immediately before heating the substrate and in the heated state, and FIG. 6 is a configuration diagram of a conventional example. 1--------・・--・-1-----~--・・--First heat source part 0--・--・・-------1-----
−・Substrate 1 ・−・−・−−−−−−Holding head 3
・・−・−−−−−−−・−−−−−−−−−−−・−
Cooling nozzle 1−・−・・−・−・−・−Tank 2・−・−−−−1・−・−・・−−1−−−−−
Molten solder 3 -----First heating means 4--
−−−・−−−−−−−・・・−・−−1−−−−−−
Heat resistant film.

Claims (2)

【特許請求の範囲】[Claims] (1)上面にペースト状半田を塗布されるとともに電子
部品を搭載された基板の下面を接触させて伝熱加熱する
熱源部と、基板を保持して熱源部上に設置する手段と、
基板上の所望の電子部品に対して冷たい物質を接触させ
て冷却する手段とを備えたことを特徴とするリフロー装
置。
(1) a heat source unit that conductively heats the bottom surface of a board on which paste solder is applied and electronic components are mounted by contacting it, and a means for holding the board and installing it on the heat source unit;
1. A reflow apparatus comprising: means for bringing a cold substance into contact with desired electronic components on a substrate to cool them.
(2)熱源部が、上面に開口を有する槽の上面開口を可
撓性のある薄膜体にて密閉し、この槽内に少なくとも加
熱状態で流動性を有する流動体を充満するとともにこの
流動体を所定温度に加熱する加熱手段を設けて構成した
ことを特徴とする請求項1記載のリフロー装置。
(2) The heat source unit seals the top opening of a tank having an opening on the top surface with a flexible thin film, and fills the tank with a fluid that has fluidity at least in a heated state, and fills the tank with a fluid that is fluid at least in a heated state. 2. The reflow apparatus according to claim 1, further comprising heating means for heating the reflow to a predetermined temperature.
JP20844090A 1990-08-06 1990-08-06 Reflowing device Pending JPH0499086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20844090A JPH0499086A (en) 1990-08-06 1990-08-06 Reflowing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20844090A JPH0499086A (en) 1990-08-06 1990-08-06 Reflowing device

Publications (1)

Publication Number Publication Date
JPH0499086A true JPH0499086A (en) 1992-03-31

Family

ID=16556248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20844090A Pending JPH0499086A (en) 1990-08-06 1990-08-06 Reflowing device

Country Status (1)

Country Link
JP (1) JPH0499086A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011235311A (en) * 2010-05-11 2011-11-24 Yokota Technica:Kk Heat transfer apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011235311A (en) * 2010-05-11 2011-11-24 Yokota Technica:Kk Heat transfer apparatus

Similar Documents

Publication Publication Date Title
KR101187940B1 (en) Repair apparatus and method for electronic component and heat-transfer cap
US20070170227A1 (en) Soldering method
US5735450A (en) Apparatus and method for heating a board-mounted electrical module for rework
US8925170B2 (en) Method for removing an electronic component from a substrate
US4909429A (en) Method and apparatus for solder deposition
US4840305A (en) Method for vapor phase soldering
JP3918779B2 (en) Soldering method for non-heat resistant parts
TWI664882B (en) Laser assisted bonding apparatus and manufacturing method of semiconductor device
US6572009B2 (en) Passive and active heat retention device for solder fountain rework
JP4001341B2 (en) Bonding method and apparatus
JPH0499086A (en) Reflowing device
KR20150118034A (en) Carrying heating device
JPH02114696A (en) Reflow soldering method and device therefor
JP2854940B2 (en) Heating equipment
JP4526555B2 (en) Soldering method for printed circuit boards
JP2006222170A (en) Method of soldering
JP2001320163A (en) Reflow device and its board heating method
KR102212841B1 (en) Method and apparatus for manufacturing semiconductor devices
JP2538130B2 (en) Optical beam soldering method
JP2002111194A (en) Flow soldering method and device
KR20190108007A (en) Reflow sordering apparatus for light emitting device and method for the same
JPH07131149A (en) Reflow soldering device
JPH01270388A (en) Soldering method for printed board and soldering device
JPH0377772A (en) Method and device for infrared heating type reflow soldering
JPH04253565A (en) Light beam soldering method