JPH0498865A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH0498865A
JPH0498865A JP21610090A JP21610090A JPH0498865A JP H0498865 A JPH0498865 A JP H0498865A JP 21610090 A JP21610090 A JP 21610090A JP 21610090 A JP21610090 A JP 21610090A JP H0498865 A JPH0498865 A JP H0498865A
Authority
JP
Japan
Prior art keywords
mos
mos capacitor
capacitor
electrode
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21610090A
Other languages
Japanese (ja)
Other versions
JP2613960B2 (en
Inventor
Kinichi Igarashi
五十嵐 均一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Yamagata Ltd
Original Assignee
NEC Yamagata Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Yamagata Ltd filed Critical NEC Yamagata Ltd
Priority to JP2216100A priority Critical patent/JP2613960B2/en
Publication of JPH0498865A publication Critical patent/JPH0498865A/en
Application granted granted Critical
Publication of JP2613960B2 publication Critical patent/JP2613960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To lessen the variation of capacitance of a semiconductor device by a method wherein MOS transistors set different from each other in threshold voltage are connected in parallel to one end of a first MOS capacitor, and second MOS capacitors connected in series to the MOS transistors respectively are also connected to the other end of the first MOS capacitor. CONSTITUTION:A polycrystalline silicon film 8 is deposited on all the surface of a wafer, and a selective etching is performed to form a gate electrode 16 of a MOS transistor and an upper electrode 17 of a MOS capacitor. Then, N-type impurity ions are implanted using the gate electrode 16 and the upper electrode 17 as a mask to form a source and a drain region 18 and a contact region 19 which serves as the lead-out opening of the lower electrode of the MOS capacitor. On the other hand, boron is introduced to form a P<+>-type diffusion layer 20 which is made to serve as an electrode that keeps a substrate at a certain potential. A hole is bored in the region 19 concerned, and an aluminum wiring 22 is provided. By this setup, the average value of 7% of variation of a conventional semiconductor integrated circuit in capacitance can be reduced to around 3%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to semiconductor integrated circuits.

〔従来の技術〕[Conventional technology]

従来の半導体集積回路は、P型及びN型不純物拡散層に
より形成したPN接合を有する可変容量ダイオードを有
して構成される。
A conventional semiconductor integrated circuit includes a variable capacitance diode having a PN junction formed by P-type and N-type impurity diffusion layers.

一般にPN接合に印加される逆方向印加電圧により、P
N接合部の空乏層幅が変化する為、静電容量が変化する
。この様な性質を利用して逆方向の印加電圧により異な
った静電容量が得られる。
Generally, the reverse applied voltage applied to the PN junction causes P
Since the width of the depletion layer at the N junction changes, the capacitance changes. Utilizing this property, different capacitances can be obtained by applying voltage in the opposite direction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体集積回路は、P型シリコン基板の上にN型
のエピタキシャル層を形成し、その後、フォトリソグラ
フィー工程とホウ素等のP型不純物導入工程を経た後、
導入されたP型不純物の濃度プロファイルを決定する為
の熱拡散を施し、最後にしかるべく金属配線を行なう工
程を経て作成されている。
In conventional semiconductor integrated circuits, an N-type epitaxial layer is formed on a P-type silicon substrate, and then a photolithography process and a process of introducing P-type impurities such as boron are performed.
It is fabricated through the steps of performing thermal diffusion to determine the concentration profile of the introduced P-type impurity, and finally performing appropriate metal wiring.

前述した様に、PN接合を用いた可変容量ダイオードで
は逆方向電圧に対する期待される静電容量の変化が、P
N接合を形成するP型不純物拡散層と、N型エピタキシ
ャル層の濃度プロファイルで決定されている。
As mentioned above, in a variable capacitance diode using a PN junction, the expected change in capacitance with respect to reverse voltage is P
It is determined by the concentration profile of the P-type impurity diffusion layer forming the N-junction and the N-type epitaxial layer.

現紅、不純物の導入工程ではウェーハ面内で不純物の導
入量のばらつきが約7%と大きく、特に5インチ、6イ
ンチウェーハでの量産は不可能である。
In the process of introducing impurities, the variation in the amount of impurities introduced within the wafer surface is as large as about 7%, making mass production of 5-inch and 6-inch wafers particularly impossible.

又、P型不純物導入後の熱拡散工程に関しても熱拡散炉
の濃度プロファイルの差によりP型不純物の拡散状態が
変動する為、最終的なP型不純物の濃度プロファイルに
ばらつきが生ずる。
Further, regarding the thermal diffusion step after introducing the P-type impurity, the diffusion state of the P-type impurity changes due to the difference in the concentration profile of the thermal diffusion furnace, so that variations occur in the final concentration profile of the P-type impurity.

以上述べた様にエピタキシャル層とP型不純物拡散層の
濃度プロファイルのばらつきに起因して、形成されたコ
ンデンサの静電容量がウェーハ面内及びロット間の製品
でばらつきが大きいという欠点を有する。
As described above, due to variations in the concentration profile of the epitaxial layer and the P-type impurity diffusion layer, there is a drawback that the capacitance of the formed capacitor varies greatly within the wafer surface and between lots.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体集積回路は、第1のMOSコンデンサと
、前記第1のMOSコンデンサの一端に並列に接続され
てしきい電圧が順次具なる値に設定された複数のMOS
トランジスタと、前記MOSトランジスタの夫々に直列
に接続し且つ前記第1のMOSコンデンサの他端に接続
された複数の第2のMOSコンデンサを備えて構成され
る。
The semiconductor integrated circuit of the present invention includes a first MOS capacitor and a plurality of MOSs connected in parallel to one end of the first MOS capacitor and having threshold voltages sequentially set to specific values.
A transistor, and a plurality of second MOS capacitors connected in series to each of the MOS transistors and connected to the other end of the first MOS capacitor.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例を示す回路図である。FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

第1図に示すように、MOSコンデンサ1の両端にMO
SトランジスタQlとMOSコンデンサ2の直列接続、
MOSトランジスタC2とMOSコンデンサ3の直列接
続、MOSトランジスタQ、とMOSコンデンサ4の直
列接続が夫々並列に接続されている。
As shown in FIG.
Series connection of S transistor Ql and MOS capacitor 2,
The series connection of the MOS transistor C2 and the MOS capacitor 3, and the series connection of the MOS transistor Q and the MOS capacitor 4 are connected in parallel.

ここで、MOSトランジスタQt 、 C2、Q3ノシ
きイ電圧をVTQI + ”?Q2 、”TQiとし、
MOSコンデンサ1,2.3.4の容量をC1C2、C
s 、C4とすると、入力電圧Vが次の4区間で回路容
量が次の様に変化する。
Here, the voltage of MOS transistors Qt, C2, and Q3 is set as VTQI + "?Q2,"TQi, and
The capacitance of MOS capacitor 1, 2.3.4 is C1C2, C
s and C4, the circuit capacity changes as follows in the next four sections of the input voltage V.

0 ≦V<VTQI ノときC1 VTQI ≦V < V TQ2 (7)ときC1+C
2VTQ2≦V < V TQ3のときc1+C2+C
C1 when 0 ≦V<VTQI C1+C when VTQI ≦V < VTQ2 (7)
2VTQ2≦V<V When TQ3, c1+C2+C
.

V≧VTQSのときCH+C2+C3+C4従って回路
上は、上記入力電圧■の4区間で回路全体の容量が4種
類に段階的に変動する。
When V≧VTQS, CH+C2+C3+C4 Therefore, on the circuit, the capacitance of the entire circuit changes stepwise into four types in the four sections of the input voltage (■).

第2図は本発明の第1の実施例め半導体集積回路の製造
方法を説明するための工程順に示した半導体チップの断
面図である。
FIG. 2 is a cross-sectional view of a semiconductor chip shown in order of steps for explaining a method of manufacturing a semiconductor integrated circuit according to a first embodiment of the present invention.

まず、第2図(a)に示すように、LOGO3(loc
al oxidation of 5ilicon)法
を用いてP型シリコン基板11の表面に60nm〜11
00n程度の厚さのフィールド酸化膜12を形成して素
子形成領域を区画する0次に、素子形成領域の表面を熱
酸化してゲート酸化膜13を形成する。ゲート酸化11
13の厚さは30nm〜50nmとする。その後、MO
Sトランジスタのしきい電圧を決定する為の不純物拡散
層14をリソグラフィー技術、イオン注入技術を用いて
MOSトランジスタ形成領域に形成する。更に、MOS
コンデンサを形成する領域にはリン等のN型不純物をリ
ソグラフィー技術とイオン注入技術を用いて導入する。
First, as shown in FIG. 2(a), LOGO3(loc
A film with a thickness of 60 nm to 11
A field oxide film 12 having a thickness of about 00 nm is formed to define an element formation region. Next, a gate oxide film 13 is formed by thermally oxidizing the surface of the element formation region. Gate oxidation 11
The thickness of 13 is 30 nm to 50 nm. After that, M.O.
An impurity diffusion layer 14 for determining the threshold voltage of the S transistor is formed in the MOS transistor formation region using lithography technology and ion implantation technology. Furthermore, MOS
An N-type impurity such as phosphorus is introduced into the region where the capacitor is to be formed using lithography technology and ion implantation technology.

導入量に関してはドーズ量I X 10 ”cs−2程
度とし、加速エネルギーは100keV程度で打ち込む
Regarding the amount of introduction, the dose is about I x 10''cs-2, and the acceleration energy is about 100 keV.

次に第2図(b)に示すように、ウェーハ全面に多結晶
シリコン膜を約0.4μmの厚さに減圧CVD法により
堆積させた後、選択的にエツチングしてMOSトランジ
スタのゲート電極16と、MOSコンデンサの上部電4
117を形成する。
Next, as shown in FIG. 2(b), a polycrystalline silicon film is deposited on the entire surface of the wafer to a thickness of about 0.4 μm by low-pressure CVD, and then selectively etched to form the gate electrode 16 of the MOS transistor. and the upper voltage of the MOS capacitor 4
117 is formed.

次に、第2図(c)に示すように、ゲート電極16及び
上部電極17をマスクとしてN型不純物をイオン注入し
、MOSトランジスタのソース・ドレイン領域18及び
MOSコンデンサの下部電極の引き出し口にあたるコン
タクト領域19を形成する。N型不純物の導入に関して
は、ヒ素イオンを加速エネルギー70keV、ドーズ量
lX10”C11−”程度でイオン注入する。一方基板
の電位をささえる為の電極としてホウ素を導入してP+
型拡散層20を形成する。不純物導入に関しては加速エ
ネルギー50keV、ドーズ量は1×IQ”cs−”程
度とする。
Next, as shown in FIG. 2(c), using the gate electrode 16 and the upper electrode 17 as masks, N-type impurity ions are implanted into the source/drain regions 18 of the MOS transistor and the extraction opening of the lower electrode of the MOS capacitor. A contact region 19 is formed. Regarding the introduction of N-type impurities, arsenic ions are implanted at an acceleration energy of 70 keV and a dose of about 1X10"C11-". On the other hand, boron is introduced as an electrode to support the potential of the substrate and P+
A mold diffusion layer 20 is formed. Regarding impurity introduction, the acceleration energy is 50 keV and the dose is about 1×IQ "cs-".

次に、第2図(d)に示すように、全面に酸化シリコン
膜21を常圧CVD法により堆積させ、リソグラフィー
工程により、所定の不純物拡散層領域に穴あけを行ない
、アルミニウム配線22をスパッタ法とリソグラフィー
技術を用いて形成する。
Next, as shown in FIG. 2(d), a silicon oxide film 21 is deposited on the entire surface by atmospheric pressure CVD, holes are made in predetermined impurity diffusion layer regions by a lithography process, and aluminum interconnections 22 are formed by sputtering. and formed using lithography technology.

第2図(a)〜(d)により説明したMOSトランジス
タとMOSコンデンサの製造方法と同様の工程で不純物
拡散層14の不純物濃度のみを夫々変えたMOSトラン
ジスタとMOSコンデンサの組合せを形成することによ
り、しきい電圧の夫々異なるMOS)−ラジスタとMO
Sコンデンサの直列接続回路を構成できる。
By forming a combination of a MOS transistor and a MOS capacitor in which only the impurity concentration of the impurity diffusion layer 14 is changed in the same process as the manufacturing method of the MOS transistor and MOS capacitor explained with reference to FIGS. 2(a) to (d), respectively. , MOS with different threshold voltages)-Radistor and MO
A series connection circuit of S capacitors can be constructed.

第3図は本発明の第2の実施例を示す回路図である。FIG. 3 is a circuit diagram showing a second embodiment of the present invention.

この場合、7個のMOSトランジスタQ+Q2.・・・
、Q7と、8個のMOSコンデンサ12、・・・、8か
ら構成されている。第1の実施例では、MOSトランジ
スタの数と同数のしき電圧を決定する為のリソグラフィ
ー工程と不純物導入工程が必要であったが、P型基板の
濃度を適当に選べば、第4図に示す様に不純物導入量と
しきい電圧が比例する関係が得られる為、この性質を利
用してリソグラフィー工程と不純物導入工程を削減する
ことが可能である。即ち、不純物導入量を基準量、基準
量×2.基準量×4の3つを選択し、後は不純物導入量
のくみ合わせにより8通りの不純物導入量が得られる為
、8通りのしきい電圧を得ることが出来る。これにより
リソグラフィー工程と、不純物導入工程を削減すること
が出来る。
In this case, seven MOS transistors Q+Q2. ...
, Q7, and eight MOS capacitors 12, . . . , 8. In the first embodiment, the same number of lithography steps and impurity introduction steps as the number of MOS transistors were required to determine the threshold voltage, but if the concentration of the P-type substrate is appropriately selected, the process shown in FIG. Since a relationship is obtained in which the amount of impurity introduced is proportional to the threshold voltage, it is possible to use this property to reduce the lithography process and the impurity introduction process. That is, the amount of impurity introduced is the standard amount, the standard amount x 2. By selecting three of the reference amount x 4, eight different amounts of impurities can be obtained by combining the amounts of introduced impurities, and therefore eight different threshold voltages can be obtained. This makes it possible to reduce the lithography process and the impurity introduction process.

〔発明の効果〕〔Effect of the invention〕

以上説明した様にMOSトランジスタと、MOSコンデ
ンサの組合せによる容量回路を構成することによって、
静電容量のばらつきを不純物の濃度プロファイルのばら
つきから、MIS構造の絶縁物の厚さに変更することが
できる為、現在のばらつきの平均値7%から約3%程度
に低減できる。
As explained above, by configuring a capacitive circuit using a combination of MOS transistors and MOS capacitors,
Since the variation in capacitance can be changed from the variation in the impurity concentration profile to the thickness of the insulator in the MIS structure, the current average variation of 7% can be reduced to about 3%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す回路図、第2図(
a)〜(d)は本発明の第1の実施例の半導体集積回路
の製造方法を説明するための工程順に示した半導体チッ
プの断面図、第3図は本発明の第2の実施例を示す回路
図、第4図は不純物導入量としきい電圧の関係を示した
図である。 1.2,3.4.7.8−MOSコニiデンサ、11・
・・P型シリコン基板、12・・・フィールド酸化膜、
13・・・ゲート酸化膜、14・・・不純物拡散層、1
5・・・N型拡散層、16・・・ゲート電極、17・・
・上部電極、18・・・ソース・ドレイン領域、19・
・・コンタクト領域、20・・・P+型拡散層、21・
・・酸化シリコン膜、22・・・アルミニウム配線、Q
IQ2 、Qs 、Q6 、Qフ・・・MOSトランジ
スタ、■・・・入力電圧。 、y11図
FIG. 1 is a circuit diagram showing a first embodiment of the present invention, and FIG. 2 (
a) to (d) are cross-sectional views of a semiconductor chip shown in the order of steps to explain the method for manufacturing a semiconductor integrated circuit according to the first embodiment of the present invention, and FIG. The circuit diagram shown in FIG. 4 is a diagram showing the relationship between the amount of impurity introduced and the threshold voltage. 1.2, 3.4.7.8-MOS Konidenser, 11.
...P-type silicon substrate, 12...field oxide film,
13... Gate oxide film, 14... Impurity diffusion layer, 1
5... N type diffusion layer, 16... Gate electrode, 17...
- Upper electrode, 18... source/drain region, 19.
...Contact region, 20...P+ type diffusion layer, 21.
...Silicon oxide film, 22...Aluminum wiring, Q
IQ2, Qs, Q6, QF...MOS transistor, ■...Input voltage. ,y11 figure

Claims (1)

【特許請求の範囲】[Claims]  第1のMOSコンデンサと、前記第1のMOSコンデ
ンサの一端に並列に接続されてしきい電圧が順次異なる
値に設定された複数のMOSトランジスタと、前記MO
Sトランジスタの夫々に直列に接続し且つ前記第1のM
OSコンデンサの他端に接続された複数の第2のMOS
コンデンサを備えたことを特徴とする半導体集積回路。
a first MOS capacitor; a plurality of MOS transistors connected in parallel to one end of the first MOS capacitor and having threshold voltages successively set to different values;
connected in series to each of the first M transistors;
A plurality of second MOSs connected to the other end of the OS capacitor
A semiconductor integrated circuit characterized by being equipped with a capacitor.
JP2216100A 1990-08-16 1990-08-16 Semiconductor integrated circuit Expired - Fee Related JP2613960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2216100A JP2613960B2 (en) 1990-08-16 1990-08-16 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2216100A JP2613960B2 (en) 1990-08-16 1990-08-16 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH0498865A true JPH0498865A (en) 1992-03-31
JP2613960B2 JP2613960B2 (en) 1997-05-28

Family

ID=16683249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2216100A Expired - Fee Related JP2613960B2 (en) 1990-08-16 1990-08-16 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2613960B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400256B1 (en) * 2001-12-26 2003-10-01 주식회사 하이닉스반도체 Method for fabricating of semiconductor memory device
JP2015104074A (en) * 2013-11-27 2015-06-04 セイコーエプソン株式会社 Oscillation circuit, oscillator, electronic apparatus and mobile object

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4136452B2 (en) * 2002-05-23 2008-08-20 株式会社ルネサステクノロジ Semiconductor device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051679A (en) * 1973-09-07 1975-05-08
JPS5772366A (en) * 1980-08-27 1982-05-06 Siemens Ag Monolithic integrated circuit and method of driving same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051679A (en) * 1973-09-07 1975-05-08
JPS5772366A (en) * 1980-08-27 1982-05-06 Siemens Ag Monolithic integrated circuit and method of driving same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400256B1 (en) * 2001-12-26 2003-10-01 주식회사 하이닉스반도체 Method for fabricating of semiconductor memory device
JP2015104074A (en) * 2013-11-27 2015-06-04 セイコーエプソン株式会社 Oscillation circuit, oscillator, electronic apparatus and mobile object

Also Published As

Publication number Publication date
JP2613960B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
JPH01152660A (en) Semiconductor memory and manufacture thereof
US5430317A (en) Semiconductor device
JPH0498865A (en) Semiconductor integrated circuit
US8497556B2 (en) Semiconductor devices with active semiconductor height variation
US3816905A (en) Complex integrated circuit comprising mos transistors obtained by ion implantation
KR100214558B1 (en) Stack type inverter and its fabricating process
US6190983B1 (en) Method for fabricating high-voltage device
US6174760B1 (en) Method of improving vertical BJT gain
JPH023270A (en) Manufacture of hct semiconductor device
JPS5829627B2 (en) Semiconductor storage device and its manufacturing method
JPS6195562A (en) Manufacture of semiconductor device
JPH01128460A (en) Manufacture of semiconductor device
JP2724889B2 (en) Charge transfer element
JPH04264766A (en) Manufacture of semiconductor device
JPH0773115B2 (en) Semiconductor memory device
JPS60117658A (en) Manufacture of mos dynamic memory
JPS59210659A (en) Manufacture of metal oxide semiconductor device
KR100260635B1 (en) Method for manufacturing eeprom device
JP3207625B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
JPS6041870B2 (en) Method for manufacturing complementary MOS integrated circuit device
JPS61185974A (en) Manufacture of semiconductor device
JPH0322565A (en) Semiconductor device
JPS587859A (en) Manufacture of semiconductor memory device
JPH05291530A (en) Semiconductor device and manufacture thereof
JPH03227056A (en) Manufacture of semiconductor integrated circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees