JPH049885B2 - - Google Patents

Info

Publication number
JPH049885B2
JPH049885B2 JP57070266A JP7026682A JPH049885B2 JP H049885 B2 JPH049885 B2 JP H049885B2 JP 57070266 A JP57070266 A JP 57070266A JP 7026682 A JP7026682 A JP 7026682A JP H049885 B2 JPH049885 B2 JP H049885B2
Authority
JP
Japan
Prior art keywords
cylinder
ground
good
receiver
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57070266A
Other languages
Japanese (ja)
Other versions
JPS58187852A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57070266A priority Critical patent/JPS58187852A/en
Publication of JPS58187852A publication Critical patent/JPS58187852A/en
Publication of JPH049885B2 publication Critical patent/JPH049885B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は粘性土地盤におけるアコーステイツ
ク・エミツシヨン(以下AEという)の測定方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring acoustic emission (hereinafter referred to as AE) in a clay ground.

<イ> AEとは 材料に外力が加わり材料内部で微視的なキレ
ツが発生した場合、ひずみの開放によつて大き
なエネルギーが放出する。
<A> What is AE? When an external force is applied to a material and microscopic cracks occur inside the material, a large amount of energy is released as the strain is released.

このエネルギーは一般に超音波を放出するの
でこの超音波を検出することによつて材料内部
における変化を知り破壊の予知をしようとする
のがAEである。
This energy generally emits ultrasonic waves, and AE attempts to detect changes within the material and predict fractures by detecting these ultrasonic waves.

<ロ> AE使用の現状 最近は岩石や砂地盤を対象に、このAEを利
用して岩盤の変形挙動や安定性の評価が行なわ
れるようになつてきた。
<B> Current status of AE use Recently, AE has been used to evaluate the deformation behavior and stability of rock and sandy ground.

これは特に岩盤の砂地盤のような地盤材料自
体がAE発生を活発に行なう場合には有力な手
段となつている。
This is a powerful method, especially when the ground material itself actively generates AE, such as sandy bedrock.

<ハ> AE使用の限界 このように岩石や砂においては使用できる
が、粘土地盤においては使用が困難であつた。
<C> Limitations of AE use As described above, it can be used on rocks and sand, but it was difficult to use on clay ground.

その理由は、粘性土では微小破壊に伴つて
発生するAEがきわめて微弱であること、発
生したAEが距離によつて大きく減衰し観測し
難いためである。
The reason for this is that in cohesive soil, the AE generated by microfractures is extremely weak, and the AE that occurs is greatly attenuated by distance, making it difficult to observe.

本発明は上記のような点を改善するためになさ
れたもので、動態観測手段として優れているAE
を、特に粘性土においても利用し得るようにした
測定方法を提供することを目的とする。
The present invention has been made to improve the above points, and is an excellent means of observing dynamics.
The purpose of the present invention is to provide a measurement method that can be used especially in clayey soil.

第1実施例 <イ> AE検知体 本実施例のAE検知体は、可撓性筒体1内に
良AE発生材2を充填して構成する。
First Example <A> AE Detector The AE detector of this example is constructed by filling a flexible cylindrical body 1 with a good AE generating material 2.

可撓性筒体1としては例えば塩化ビニールパ
イプを使用する。
As the flexible cylinder 1, for example, a vinyl chloride pipe is used.

この場合に可撓性筒体1はAE受信器等の
測定装置を保護でき、良AE発生材2がスム
ーズに充填でき、地盤Gの変形による追従が
容易である、といつた特性を有している必要が
ある。
In this case, the flexible cylindrical body 1 has the following characteristics: it can protect the measuring device such as the AE receiver, it can be filled with the good AE generating material 2 smoothly, and it can easily follow the deformation of the ground G. Must be.

良AE発生材2としては例えば砂、ガラス粉、
細粒岩石、ケイシヤなどの粒状体、あるいはそ
れらをセメントで固結した、敏感にAEを発生
する材料を使用する。
Examples of good AE generating materials 2 include sand, glass powder,
Use granular materials such as fine-grained rock and cassia, or materials that are sensitive to AE, such as cemented materials.

可撓性筒体1の内部には更に、筒1の長手方
向にAE受信器3と前置増幅器4を複数個配置
する。
Inside the flexible cylinder 1, a plurality of AE receivers 3 and preamplifiers 4 are further arranged in the longitudinal direction of the cylinder 1.

ここにAE受信器3とは原理的にはAE波を検
出してAE信号に変換する変換子(圧電素子)
である。前置増幅器4とはAE受信器からの変
換子出力を増幅する増幅器である。
The AE receiver 3 is basically a transducer (piezoelectric element) that detects AE waves and converts them into AE signals.
It is. The preamplifier 4 is an amplifier that amplifies the transducer output from the AE receiver.

<ロ> AE検知体の埋設 測定時にはまず測定すべき粘性土地盤Gにボ
ーリング孔5を開設する。
<B> Burying the AE detector During measurement, first open a borehole 5 in the sticky ground G to be measured.

このボーリング孔5は可撓性筒体1の外径よ
り多少大きい内径に形成し、その内部に上記の
検知体を挿入する。
This boring hole 5 is formed to have an inner diameter somewhat larger than the outer diameter of the flexible cylinder 1, and the above-mentioned detection body is inserted into the bore hole 5.

筒体1外に存在する空隙は埋め戻し砂6によ
つて充填する。
The voids existing outside the cylindrical body 1 are filled with backfilling sand 6.

また場合によつては筒体1の外径とほぼ等し
い内径のボーリング孔5を削孔し、その中に
AE検知体を圧入する方法を採用することもで
きる。
In some cases, a boring hole 5 with an inner diameter approximately equal to the outer diameter of the cylindrical body 1 is drilled, and a
It is also possible to adopt a method of press-fitting the AE detection body.

<ハ> 作動の確認 次にAE受信器3の配置、作動状態を確認す
るために一つのAE受信器3にパルス電圧を印
加し、疑似AEを発生させ、これを他のAE受信
器3により受信する。
<C> Operation confirmation Next, in order to confirm the arrangement and operation status of the AE receiver 3, a pulse voltage is applied to one AE receiver 3 to generate pseudo AE, which is then transmitted to the other AE receiver 3. Receive.

この結果地中に設置した後のAE検知器の作
動が完全であるか否かのチエツク、AEの伝播
速度の測定などを行うことができる。
As a result, it is possible to check whether the AE detector is functioning properly after it has been installed underground, and to measure the propagation velocity of AE.

<ニ> 地盤変形の検知(第2図) 以上のように設置された状態において地盤G
に変化が発生した場合には筒体が可撓性である
から筒体自体が地盤Gの変化に応じてそのまま
変形する。
<D> Detection of ground deformation (Fig. 2) When installed as described above, the ground G
If a change occurs in the ground G, the cylinder itself is deformed in accordance with the change in the ground G because the cylinder is flexible.

可撓性筒体1の変形に応じ良AE発生材2が
相対的に位置を移動するが、その際にAEが発
生し、このAEを各AE受信器3で観測すること
ができる。
As the flexible cylindrical body 1 deforms, the good AE generating material 2 moves relative to its position, and at this time AE is generated, and this AE can be observed by each AE receiver 3.

良AE発生材2に発生するAEは実際の粘性地
盤Gに発生するAEと比較して放出されるエネ
ルギが大きい。
The AE generated in the good AE generating material 2 releases more energy than the AE generated in the actual viscous ground G.

そのため各AE受信器3は確実にAEを検知し
観測することができる。
Therefore, each AE receiver 3 can reliably detect and observe AE.

観測、集計の結果AEの発生頻度をその変化
によつて地盤Gの変形を評価し、すべり面の位
置を測定することによつて地盤Gの安定性を評
価することができる。
The deformation of the ground G can be evaluated based on changes in the frequency of occurrence of AE as a result of observation and aggregation, and the stability of the ground G can be evaluated by measuring the position of the slip surface.

第2実施例(第3図) 第1方法は可撓性筒体1内の良AE発生材2に
発生するAEを観測する方法であるが、第2方法
は筒体内を充填するのではなく、筒自体に発生す
るAEを観測する方法である。
Second Example (Fig. 3) The first method is a method of observing AE generated in the good AE generating material 2 inside the flexible cylinder 1, but the second method is not to fill the inside of the cylinder. , is a method of observing AE generated in the cylinder itself.

<イ> 検知体 筒体1′を剛性が大きくかつAEを良好に発生
する材料、例えばアルミニウム、しんちゆう、
鉄、他の合金などによつて形成する。
<A> Detector The cylinder 1' is made of a material that has high rigidity and produces good AE, such as aluminum, aluminum,
Made of iron, other alloys, etc.

この良AE発生筒体1′の内部は充填せずに中
空のままにしておき、その内側に直接AE発信
器3、前置増幅器4を取り付ける。
The inside of this good AE generating cylinder 1' is left hollow without being filled, and the AE transmitter 3 and preamplifier 4 are directly attached inside it.

<ロ> 測定方法(1) 測定すべき粘性土地盤Gに筒体1′外径より
多少大径のボーリング孔5を削孔し筒体1′を
挿入する。地盤Gの変化を確実に把握するため
にボーリング孔5との間に発生する間隙へ埋め
戻し砂6で充分充填する。
<B> Measuring method (1) A boring hole 5 with a diameter slightly larger than the outer diameter of the cylinder 1' is drilled in the sticky ground G to be measured, and the cylinder 1' is inserted. In order to reliably grasp changes in the ground G, the gap created between the bore hole 5 and the hole 5 is sufficiently filled with backfilling sand 6.

このように筒体1′の周面を埋め戻し砂を介
して地盤Gと間接的に接触関係を持ち、地盤G
に変化が生じた場合には地盤Gと共に変形する
筒体1′に発生するAEを観測する。
In this way, the circumferential surface of the cylindrical body 1' is in indirect contact with the ground G through the backfilling sand, and the ground G
When there is a change in the AE, the AE generated in the cylinder 1', which deforms with the ground G, is observed.

筒体1′に発生したAEから地盤Gの変化や安
定性を評価する。
The changes and stability of the ground G are evaluated from the AE generated in the cylinder 1'.

<ハ> 測定方法(2) 筒体1′外径とほぼ等しい内径のボーリング
孔5を削孔する。
<C> Measurement method (2) Drill a bore hole 5 with an inner diameter approximately equal to the outer diameter of the cylinder 1'.

そして孔内に筒体1′を強力に圧入する。 Then, the cylindrical body 1' is forcefully press-fitted into the hole.

そうすれば筒体1′外面とボーリング孔5内
面との間に空隙が生じず、粘性土と面接触する
ことになる。
In this way, no gap will be created between the outer surface of the cylinder 1' and the inner surface of the borehole 5, resulting in surface contact with the cohesive soil.

AEの発生や測定は前記実施例と同様である。 The generation and measurement of AE are the same as in the previous example.

なお筒体1′を使用する第2実施例では観測
終了後、筒体1′の引き抜きによつてAE受信器
3等の高額の計測装置を回収することができ
る。
In the second embodiment using the cylindrical body 1', expensive measuring devices such as the AE receiver 3 can be recovered by pulling out the cylindrical body 1' after the observation is completed.

<ニ> 測定方法の選定 既述した第1方法と第2方法は地盤Gの剛性
によつて適宜使い分ける。
<D> Selection of measurement method The first method and the second method described above are used appropriately depending on the rigidity of the ground G.

すなわち地盤Gが比較的剛性が小さい場合に
は前記第1実施例の方法を、 また地盤Gがこれとは逆の場合には第2実施
例の方法を採用すると効果的である。
That is, when the ground G has relatively low rigidity, it is effective to use the method of the first embodiment, and when the ground G is the opposite, it is effective to use the method of the second embodiment.

本発明は以上説明したように、良好にAEを
発生する材料を充填した可撓性筒体を、あるい
は良好にAEを発生する材料で形成した筒体を、
粘性土地盤中に設置し、地盤の変化に伴う筒体
の変形によりこの良AE発生材から発生するAE
を測定する方法である。
As explained above, the present invention uses a flexible cylinder filled with a material that generates AE well, or a cylinder made of a material that generates AE well.
The AE generated from this good AE-generating material is installed in a sticky ground, and the cylinder deforms due to changes in the ground.
This is a method of measuring

従つて従来AE発生を利用することが困難で
あつた粘性土地盤においてもAEの測定が可能
となり、その測定結果を観測、集計することに
より、粘性土地盤安定性の評価や地すべり面の
位置決定に利用できることになつた。
Therefore, it is now possible to measure AE even in cohesive ground, where it has been difficult to use AE generation in the past, and by observing and aggregating the measurement results, it is possible to evaluate the stability of the cohesive ground and determine the location of the landslide surface. It is now available for use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図:本発明の測定方法の一実施例説明図、
第2図:地盤の変化時の説明図、第3図:他の筒
体を使つた場合の測定方法説明図。 1:可撓性筒体、1′:良AE発生筒体、2:良
AE発生材、3:AE受信器、4:前置増幅器、
5:ボーリング孔、6:埋戻し砂(充填材)。
FIG. 1: An explanatory diagram of an embodiment of the measurement method of the present invention,
Figure 2: An explanatory diagram when the ground changes. Figure 3: An explanatory diagram of the measurement method when using another cylinder. 1: Flexible cylinder, 1': Good AE generating cylinder, 2: Good
AE generating material, 3: AE receiver, 4: preamplifier,
5: Borehole, 6: Backfilling sand (filling material).

Claims (1)

【特許請求の範囲】 1 良好にアコーステイツク エミツシヨン
(AE)を発生する材料を充填した可撓性筒体を、 あるいは良好にAEを発生する材料で形成した
筒体を、 粘性土地盤中に埋設し、 筒体の変形によりこの良AE発生材から発生す
るAEを、 筒体内の受信器で測定することによつて行う、 粘性土地盤における地盤の変化を検知する方法。
[Claims] 1. A flexible cylinder filled with a material that produces good acoustic emission (AE), or a cylinder made of a material that produces good AE, is buried in a clay ground. A method for detecting ground changes in cohesive soil by measuring the AE generated from this good AE generating material by the deformation of the cylinder using a receiver inside the cylinder.
JP57070266A 1982-04-28 1982-04-28 Measuring method for acoustic emission in cohesive soil ground Granted JPS58187852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57070266A JPS58187852A (en) 1982-04-28 1982-04-28 Measuring method for acoustic emission in cohesive soil ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57070266A JPS58187852A (en) 1982-04-28 1982-04-28 Measuring method for acoustic emission in cohesive soil ground

Publications (2)

Publication Number Publication Date
JPS58187852A JPS58187852A (en) 1983-11-02
JPH049885B2 true JPH049885B2 (en) 1992-02-21

Family

ID=13426547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57070266A Granted JPS58187852A (en) 1982-04-28 1982-04-28 Measuring method for acoustic emission in cohesive soil ground

Country Status (1)

Country Link
JP (1) JPS58187852A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE990565A1 (en) * 1999-07-07 2001-02-21 Dermot Gerard O'dwyer A device for detecting the proximity of an underground cable during digging
JP2009198285A (en) * 2008-02-21 2009-09-03 Nittoc Constr Co Ltd Rock-bed slope state determination system and rock-bed slope state determination method
GB0901443D0 (en) 2009-01-29 2009-03-11 Univ Loughborough Acoustic emission soil slope displacement rate sensor
KR101294136B1 (en) * 2012-05-10 2013-08-08 한국지질자원연구원 Device for prediction underground dynamic behavior by using acoustic emission sensor and producing method thereof
JP7060533B2 (en) * 2019-02-26 2022-04-26 公益財団法人鉄道総合技術研究所 Shear wave velocity measuring device

Also Published As

Publication number Publication date
JPS58187852A (en) 1983-11-02

Similar Documents

Publication Publication Date Title
US10697294B2 (en) Vibration while drilling data processing methods
Malmgren et al. The excavation disturbed zone (EDZ) at Kiirunavaara mine, Sweden—by seismic measurements
US11619018B2 (en) Soil probing device having built-in generators and detectors for compressional waves and shear waves
JP2007231729A (en) Method and device for prior survey in tunnel construction
JP3380795B2 (en) Rock bed exploration method
JP5867957B2 (en) Method and system for predicting rock strength
US20190257972A1 (en) Vibration while drilling data processing methods
NO342739B1 (en) Downhole measurements of acoustic sludge velocity
CN204152507U (en) A kind of sound wave well logging transducer
WO2019161203A1 (en) Acoustic impedance while drilling acquisition and processing system
CN115390129A (en) In-situ acoustic penetration device with built-in longitudinal and transverse wave transmitting and receiving transducers
JPH049885B2 (en)
CN108181026A (en) A kind of drilling hole stress test device and method
JP6887842B2 (en) Ground exploration method and penetration tester
JP7200013B2 (en) Tunnel Face Forward Exploration System and Tunnel Face Forward Exploration Method
JP2884270B2 (en) Underground sound detection sensor
JP3662007B2 (en) Fixed piston sampler with cone function
Sagong et al. Cross-hole seismic technique for assessing in situ rock mass conditions around a tunnel
CN211783355U (en) Effective grouting length test system for anchor rod
JPS6283685A (en) Method for measuring ae in ground
CN110905012A (en) Building pile foundation detection method
JPS62501583A (en) Method and apparatus for investigating transport processes in solid media in situ
CN111781634A (en) Geophone for soft sandy soil
Ghafghazi et al. Instrumented Becker penetration test for improved characterization of gravelly deposits
JP3875095B2 (en) Dynamic behavior detector