JPH0498708A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH0498708A
JPH0498708A JP2214528A JP21452890A JPH0498708A JP H0498708 A JPH0498708 A JP H0498708A JP 2214528 A JP2214528 A JP 2214528A JP 21452890 A JP21452890 A JP 21452890A JP H0498708 A JPH0498708 A JP H0498708A
Authority
JP
Japan
Prior art keywords
dielectric
composition
values
dielectric ceramic
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2214528A
Other languages
Japanese (ja)
Inventor
Hidenori Kuramitsu
秀紀 倉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2214528A priority Critical patent/JPH0498708A/en
Publication of JPH0498708A publication Critical patent/JPH0498708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To prevent any chip lift in reflow soldering by using BaCO3, CaCO3, SrCO3, TiO2, SnO2, La2O3, Pr6O11, Nd2O3, and Sm2O3 wherein each mol ratio is within a specified range. CONSTITUTION:Dielectric porcelain composition is built up in such constitution being expressed in a general formula shown as the Equation I, wherein Ae is an alkaline earth selected from Ca or Sr; Re is at least one rare earth element selected from the group consisting of La, Pr, Nd, Sm; wherein the values of u and v are within ranges such as 0.01<=u<=0.30, 0.01<=v<=0.20; and wherein x, y and z are expressed in mol ratios and x+y+z=1, the values of x, y, z being within the mol ratio range surrounded by a, b, c, d, e, f given in Table I, respectively.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子機器用固定磁器コンデンサの誘電体磁器組
成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a dielectric ceramic composition for a fixed ceramic capacitor for electronic equipment.

従来の技術 以下に従来の誘電体磁器組成物について説明する。誘電
体磁器組成物として下記のような系が知られている。
BACKGROUND OF THE INVENTION A conventional dielectric ceramic composition will be explained below. The following systems are known as dielectric ceramic compositions.

BaO−TiO2・Nd2O3系 BaO・TiO2・Sm2O3系 例えば0.09BaO−0,56TiO2・0.35N
 d 03/2の組成比からなる誘電体磁器組成物を使
用し、誘電体磁器円板を作製し、電気特性および誘電体
磁器の密度を測定して、誘電率・67゜静電容量温度係
数:N40ppm  ℃、良好度Q: 3000.絶縁
抵抗、 8.0 <−101”Ω、絶縁破壊強度: 3
0 k v、’mn及び密度 5.6 g/c+jの値
が得られた。
BaO-TiO2/Nd2O3 system BaO/TiO2/Sm2O3 system e.g. 0.09BaO-0,56TiO2/0.35N
Using a dielectric ceramic composition with a composition ratio of d 03/2, a dielectric ceramic disk was prepared, and the electrical properties and density of the dielectric ceramic were measured to determine the dielectric constant and 67° capacitance temperature coefficient. :N40ppm ℃, Goodness Q: 3000. Insulation resistance, 8.0 <-101”Ω, dielectric breakdown strength: 3
Values of 0 k v,'mn and density 5.6 g/c+j were obtained.

発明が解決しようとする課題 しかしながら上記の従来の構成では、誘電体磁器の密度
が小さいので、一般にL3.2鴫X W 1 、6 a
m以下の積層セラミックコンデンサのりフローはんだ付
ケ、特にペーパーリフローはんだ付けではチップ立ち(
通常、ツームストーン現象、マンハッタン現象と呼ばれ
ている。)が発生しやすいという問題点を有していた。
Problems to be Solved by the Invention However, in the above conventional configuration, since the density of the dielectric porcelain is low, generally
When using adhesive flow soldering for multilayer ceramic capacitors with a diameter of less than m, especially when using paper reflow soldering, chips may stand up (
It is usually called the tombstone phenomenon or the Manhattan phenomenon. ) has the problem of easily occurring.

本発明は上記従来の問題点を解決するもので、誘電体磁
器の密度を太き(して、リフローはんだ付けにおけるチ
ップ立ちを防ぐチップ部品を得ることができる誘電体磁
器組成物を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides a dielectric porcelain composition that can increase the density of the dielectric porcelain to obtain a chip component that prevents chips from standing up during reflow soldering. With the goal.

課題を解決するための手段 この課題を解決するために本発明の誘電体磁器組成物は
、−船蔵 %式%)] )] z Re 03/2で表され、式中AeはCaもしくは
Srのアルカリ土金属で、ReはLa、Pr。
Means for Solving the Problems In order to solve the problems, the dielectric ceramic composition of the present invention is expressed by the formula %)])]z Re 03/2, where Ae is Ca or Sr. alkaline earth metals, Re is La, Pr.

Nd、Smから選ばれる一種以上の希土類元素であり、
UおよびVの値が0.01≦u≦0.30および0.0
1≦v≦0.20なる範囲にある組成を有し、かつx、
yおよびZはモル比を表し、X+y+z=1でx、y、
zの値が第1表に示すa。
One or more rare earth elements selected from Nd and Sm,
The values of U and V are 0.01≦u≦0.30 and 0.0
has a composition in the range of 1≦v≦0.20, and x,
y and Z represent the molar ratio, and with X+y+z=1, x, y,
a whose value of z is shown in Table 1.

b、c、d、e、fで囲まれるモル比の範囲にある組成
の構成を有している。
It has a composition in a molar ratio range surrounded by b, c, d, e, and f.

(以 下 余 白) 第  1  表 作用 この構成によって、ReをLa、Pr、Nd。(Hereafter, extra white) Table 1 action With this configuration, Re is changed to La, Pr, and Nd.

Smから選ぶことにより、La、Pr、Nd、Smの順
で静電容量温度係数をプラス方向に移行することとなる
。また、BaOをCaOで置換することにより、良好度
Qを高(し、絶縁抵抗を大きくすることとなり、BaO
をSr○で置換することにより、誘電率と良好度Qを高
くし、絶縁破壊強度を大きくすることとなる。
By selecting from Sm, the capacitance temperature coefficient shifts in the positive direction in the order of La, Pr, Nd, and Sm. In addition, by replacing BaO with CaO, the quality Q is increased (and the insulation resistance is increased), and BaO
By replacing Sr○ with Sr○, the dielectric constant and goodness Q are increased, and the dielectric breakdown strength is increased.

また、TiO2を5na2で置換することにより、誘電
体磁器の密度を大きくすることとなる。
Furthermore, by replacing TiO2 with 5na2, the density of the dielectric ceramic is increased.

実施例 以下に本発明の一実施例について説明する。Example An embodiment of the present invention will be described below.

(実施例1) 出発原料には化学的に高純度のB a C03゜Ca 
CO3,T i 02. S no2. L a203
゜P r6011. N d203およびSm2(h粉
末を第2表に示す組成比になるように秤量し、めのうボ
ールを備えたゴム内張りのボールミルに純水とともに入
れ、湿式混合後、脱水乾燥した。この乾燥粉末を高アル
ミナ質のるつぼに入れ、空気中で1100℃にて2時間
仮焼した。この仮焼粉末をめのうボールを備えたゴム内
張りのボールミルに純水とともに入れ、湿式粉砕後、脱
水乾燥した。この粉砕粉末に、有機バインダーを加え、
均質とした後、32メツシユのふるいを通して整粒し、
金型と油圧プレスを用いて成形圧力1ton/c−で直
径15−2厚み0.4mに成形した。次いで、成形円板
をジルコニア粉末を敷いたアルミナ質のさやに入れ、空
気中にて第2表に示す焼成温度で2時間焼成し、第2表
の試料番号1〜10に示す組成比の誘電体磁器円板を得
た。
(Example 1) Chemically highly purified B a C03°Ca was used as the starting material.
CO3, T i 02. S no 2. L a203
゜Pr6011. N d203 and Sm2 (h powders were weighed to have the composition ratio shown in Table 2, put into a rubber-lined ball mill equipped with agate balls together with pure water, wet mixed, and then dehydrated and dried. It was placed in an alumina crucible and calcined in air at 1100°C for 2 hours.The calcined powder was placed in a rubber-lined ball mill equipped with agate balls together with pure water, wet-pulverized, and then dehydrated and dried. Add an organic binder to the powder,
After making it homogeneous, it is sized through a 32-mesh sieve,
It was molded to a diameter of 15-2 and a thickness of 0.4 m at a molding pressure of 1 ton/c using a mold and a hydraulic press. Next, the molded disk was placed in an alumina sheath lined with zirconia powder, and fired in air at the firing temperature shown in Table 2 for 2 hours to form a dielectric material having the composition ratio shown in sample numbers 1 to 10 in Table 2. A porcelain disc was obtained.

このようにして得られた誘電体磁器円板は、厚みと直径
と重量を測定し、重量を厚みと直径より算出した体積で
除算して誘電体磁器の密度とした。
The thickness, diameter, and weight of the dielectric ceramic disc thus obtained were measured, and the weight was divided by the volume calculated from the thickness and diameter to determine the density of the dielectric ceramic.

誘電率、良好度Q、静電容量温度係数測定用試料は、誘
電体磁器円板の両面全体に銀電極を焼き付け、絶縁抵抗
、絶縁破壊強度測定用試料は誘電体磁器円板の外周より
内側に1++++++の幅で銀電極の無い部分を設け、
銀電極を焼き付けた。そして、誘電率、良好度Q、静電
容量温度係数は、横河ヒユーレット・パラカード■製デ
ジタルLCRメータのモデル4275Aを使用し、測定
温度20℃、測定電圧1 、 OV r m s 、測
定周波数IMHzでの測定より求めた。なお、静電容量
温度係数は、20℃と85℃の静電容量を測定し、次式
により求めた。
Samples for measuring dielectric constant, quality Q, and capacitance temperature coefficient are baked with silver electrodes on both sides of the dielectric ceramic disk, and samples for measuring insulation resistance and dielectric breakdown strength are placed inside the outer periphery of the dielectric ceramic disk. A part with no silver electrode is provided with a width of 1 + + + + + + in the
Baked silver electrode. The dielectric constant, goodness Q, and temperature coefficient of capacitance were measured using a digital LCR meter model 4275A manufactured by Yokogawa Hewlett-Paracard ■ at a measurement temperature of 20°C, a measurement voltage of 1, OV rms, and a measurement frequency. It was determined by measurement at IMHz. The capacitance temperature coefficient was determined by measuring capacitance at 20° C. and 85° C. using the following formula.

TC−(C−Co)/CoX1/65X106TC:静
電容量温度係数(ppm/℃)Co : 20℃での静
電容量(pF>C:85℃での静電容量(pF) また、誘電率は次式より求めた。
TC-(C-Co)/CoX1/65X106TC: Temperature coefficient of capacitance (ppm/℃) Co: Capacitance at 20℃ (pF>C: Capacitance at 85℃ (pF) Also, dielectric constant was calculated from the following formula.

K=143.8XCoxt、D2 K :誘電率 Co : 20℃での静電容量(pF)D 、誘電体磁
器の直径(IIWll)t :誘電体磁器の厚み(wL
l) さらに、絶縁抵抗は、横河ヒユーレット・パラカード■
製HRメータのモデル4329Aを使用し、測定電圧5
0V、D、C,、測定時間1分間による測定より求めた
K = 143.8
l) Furthermore, the insulation resistance is Yokogawa Heuret Paracard■
Using HR meter model 4329A, the measured voltage was 5.
0V, D, C, was determined by measurement with a measurement time of 1 minute.

そして、絶縁破壊強度は、菊水電子工業■製高電圧電源
PH835に一3形を使用し、試料をシリコンオイル中
に入れ、昇圧速度50V/secにより求めた絶縁破壊
電圧を誘電体厚みで除算し、1−当りの絶縁破壊強度と
した。
The dielectric breakdown strength was determined by using a PH835 type 13 high voltage power supply made by Kikusui Electronics Co., Ltd., placing the sample in silicone oil, and dividing the dielectric breakdown voltage determined by a voltage increase rate of 50 V/sec by the dielectric thickness. , the dielectric breakdown strength per 1-.

測定結果を試料番号1〜10別に第3表に示す。The measurement results are shown in Table 3 for sample numbers 1 to 10.

(以下余白) 第1図は本発明にかかる組成物の主成分の組成範囲を示
す三元図であり、主成分の組成範囲を限定した理由を第
1図を参照しながら説明する。すなわち、A領域では焼
結が著しく困難である。また、B領域では良好度Qが低
下し実用的でなくなる。さらに、C,D領域では静電容
量温度係数がマイナス側に大きくなりすぎて実用的でな
くなる。そして、E領域では静電容量温度係数がプラス
方向に移行するが誘電率が小さく実用的でなくなる。ま
た、ReをLa、Pr、Nd、Smから選ぶことにより
、La、Pr、Nd、Smの順で誘電率を太き(下げる
ことなく静電容量温度係数をプラス方向に移行すること
が可能であり、La。
(The following is a blank space) FIG. 1 is a ternary diagram showing the composition range of the main components of the composition according to the present invention, and the reason for limiting the composition range of the main components will be explained with reference to FIG. That is, sintering is extremely difficult in region A. Furthermore, in region B, the quality Q decreases, making it impractical. Furthermore, in regions C and D, the capacitance temperature coefficient becomes too large on the negative side, making it impractical. In region E, the temperature coefficient of capacitance shifts to a positive direction, but the dielectric constant is too small to be practical. In addition, by selecting Re from La, Pr, Nd, and Sm, it is possible to increase the dielectric constant in the order of La, Pr, Nd, and Sm (move the capacitance temperature coefficient in the positive direction without lowering it). Yes, La.

Pr、Nd、Smの1種あるいは組合せにより静電容量
温度係数の調節が可能である。
The capacitance temperature coefficient can be adjusted by using one type or a combination of Pr, Nd, and Sm.

また、BaOをCaOで置換することにより誘電率、静
電容量温度係数、絶縁破壊強度の値を太き(変えること
なく、良好度Qを向上させ、絶縁抵抗を高くする効果を
有し、その置換率Uが0.01未満では置換効果はなく
、一方0.30を超えると良好度Q、絶縁抵抗が低下し
、静電容量温度係数もマイナス側に大きくなりすぎ実用
的でなくなる。
In addition, by replacing BaO with CaO, the values of dielectric constant, temperature coefficient of capacitance, and dielectric breakdown strength are increased (without changing), and it has the effect of improving quality Q and increasing insulation resistance. If the substitution rate U is less than 0.01, there will be no substitution effect, while if it exceeds 0.30, the goodness Q and insulation resistance will decrease, and the capacitance temperature coefficient will also become too large on the negative side, making it impractical.

また、TiO2をSnO2で置換することにより誘電率
、良好層Q、静電容量温度係数、絶縁抵抗、絶縁破壊強
度の値を大きく変えることな(、誘電体磁器の密度を大
きくする効果を有し、その置換率Vが0.01未満では
置換効果はなく、方0.20を超えると誘電率、良好度
Qが低下し、静電容量湿度係数もマイナス側に大きくな
りすぎ実用的でなくなる。
In addition, by replacing TiO2 with SnO2, the values of dielectric constant, good layer Q, capacitance temperature coefficient, insulation resistance, and dielectric breakdown strength do not change significantly (and have the effect of increasing the density of dielectric ceramic). If the substitution rate V is less than 0.01, there will be no substitution effect, and if it exceeds 0.20, the dielectric constant and goodness Q will decrease, and the capacitance humidity coefficient will become too large on the negative side, making it impractical.

(実施例2) 実施例1の高純度のCaCO3粉末に代えて、高純度の
5rC03粉末を第4表に示す組成比になるように秤量
し、以降の工程を実施例1と同様に処理して第4表の試
料番号11〜20に示す組成比の誘電体磁器円板を得、
実施例1と同様に処理して電気特性および誘電体磁器の
密度を測定した結果を試料番号11〜20別に第5表に
示す。
(Example 2) In place of the high purity CaCO3 powder of Example 1, high purity 5rC03 powder was weighed to have the composition ratio shown in Table 4, and the subsequent steps were carried out in the same manner as in Example 1. to obtain dielectric ceramic disks having composition ratios shown in sample numbers 11 to 20 in Table 4,
The electrical properties and the density of the dielectric ceramics were measured in the same manner as in Example 1. The results are shown in Table 5 for sample numbers 11 to 20.

主成分の組成範囲を限定した理由は実施例1と同様であ
るので説明は省略する。
The reason for limiting the composition range of the main components is the same as in Example 1, so the explanation will be omitted.

なお、BaOをSrOで置換することにより、静電容量
温度係数、絶縁抵抗の値を大きく変えることなく、誘電
率と良好度Qを高くし、絶縁破壊強度を太き(する効果
を有し、その置換率Uが0.01未満では置換効果はな
く、一方0.30を超えると絶縁抵抗が低下し、静電容
量温度係数もマイナス側に太き(なり実用的でなくなる
In addition, by replacing BaO with SrO, it has the effect of increasing the dielectric constant and goodness Q and increasing the dielectric breakdown strength without significantly changing the capacitance temperature coefficient and insulation resistance values. If the substitution rate U is less than 0.01, there will be no substitution effect, while if it exceeds 0.30, the insulation resistance will decrease and the capacitance temperature coefficient will also increase to the negative side (and become impractical).

なお、実施例における誘電体磁器の作製方法では、Ba
CO5,CaCO3,SrCO3,TiO2゜5na2
.La2O3,P r6o11.Nd2O3およびSm
2O3を使用したが、この方法に限定されるものではな
(、所望の組成比になるように、BaTiOsなどの化
合物、あるいは炭酸塩、水酸化物など空気中での加熱に
より、Bad、Cab、SrO。
In addition, in the method for manufacturing dielectric ceramic in the example, Ba
CO5, CaCO3, SrCO3, TiO2゜5na2
.. La2O3,Pr6o11. Nd2O3 and Sm
Although 2O3 was used, it is not limited to this method. (Bad, Cab, SrO.

T i 02.S n 02.L a203.P rs
o+1.N d203およびSm2O3となる化合物を
使用しても実施例と同程度の特性を得ることができる。
T i 02. S n 02. L a203. Prs
o+1. Characteristics comparable to those of the examples can be obtained even when compounds forming N d203 and Sm2O3 are used.

また、上述の基本組成のほかに、5i02゜MnO:、
Fe2O3,Z noなど一般にフラックスと考えられ
ている塩類、酸化物などを、特性を損なわない範囲で加
えることもできる。
In addition to the basic composition mentioned above, 5i02゜MnO:
Salts, oxides, etc. that are generally considered to be fluxes, such as Fe2O3 and Z no. 2, can also be added to the extent that they do not impair the properties.

発明の効果 以上の実施例の説明からも明らかなように本発明は、−
船蔵x [(BaO)++−u+ (Ae○)u]・y
 [(T i 02)(+−V)<5nO2)vlz 
Re 03/2で表され、式中AeはCaもしくはSr
のアルカリ土金属で、ReはLa、Pr。
Effects of the Invention As is clear from the description of the embodiments above, the present invention has the following advantages:
Shipyard x [(BaO)++-u+ (Ae○)u]・y
[(T i 02)(+-V)<5nO2)vlz
Re 03/2, where Ae is Ca or Sr
alkaline earth metals, Re is La, Pr.

Nd、Smから選ばれる一種以上の希土類元素であり、
UおよびVの値が0.01≦u≦0.30および0.0
1≦v≦0.20なる範囲にある組成を有し、かつx、
yおよびZはモル比を表し、X+y+z=IT:x、y
、zの値が第6表に示すa。
One or more rare earth elements selected from Nd and Sm,
The values of U and V are 0.01≦u≦0.30 and 0.0
has a composition in the range of 1≦v≦0.20, and x,
y and Z represent the molar ratio, X+y+z=IT:x,y
, z values are shown in Table 6.

b、c、d、e、fで囲まれるモル比の範囲にある組成
を有する誘電体磁器組成物の構成により、密度の大きな
誘電体磁器となり、この誘電体磁器組成物で面実装用の
小形チップ部品を作製するとりフローはんだ付けでのチ
ップ立ちを防いで、実装性の高い製品を得ることができ
、かつ良好度Qが高く、絶縁抵抗と絶縁破壊強度が大き
い誘電体磁器を得ることができる優れた誘電体磁器組成
物を実現できるものである。
The structure of the dielectric ceramic composition having a composition in the molar ratio range surrounded by b, c, d, e, and f results in a dielectric ceramic with a high density, and this dielectric ceramic composition can be used to create a small size for surface mounting. When manufacturing chip components, it is possible to prevent chips from standing up during flow soldering, to obtain products with high mounting performance, and to obtain dielectric porcelain with high quality Q and high insulation resistance and dielectric breakdown strength. This makes it possible to realize an excellent dielectric ceramic composition.

第  6  表Table 6

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の誘電体磁器組成物の主成分
の組成範囲を説明する三元図である。 代理人の氏名 弁理士 粟野重孝 ほか1名区
FIG. 1 is a ternary diagram illustrating the composition range of the main components of a dielectric ceramic composition according to an embodiment of the present invention. Name of agent: Patent attorney Shigetaka Awano and 1 other person

Claims (1)

【特許請求の範囲】  一般式x[(BaO)_(_1_−_U_)(AeO
)_u]・y[(TiO_2)_(_1_−_V_)(
SnO_2)_v]・zReO_3_/_2で表され、
式中AeはCaもしくはSrのアルカリ土金属で、Re
はLa,Pr,Nd,Smから選ばれる一種以上の希土
類元素であり、uおよびvの値が0.01≦u≦0.3
0および0.01≦v≦0.20なる範囲にある組成を
有し、かつx,yおよびzはモル比を表し、x+y+z
=1でx,y,zの値が表に示すa,b,c,d,e,
fで囲まれるモル比の範囲にある組成を有する誘電体磁
器組成物。 ▲数式、化学式、表等があります▼
[Claims] General formula x[(BaO)_(_1_−_U_)(AeO
)_u]・y[(TiO_2)_(_1_−_V_)(
SnO_2)_v]・zReO_3_/_2,
In the formula, Ae is an alkaline earth metal such as Ca or Sr, and Re
is one or more rare earth elements selected from La, Pr, Nd, and Sm, and the values of u and v are 0.01≦u≦0.3
0 and 0.01≦v≦0.20, and x, y and z represent molar ratios, and x+y+z
= 1 and the values of x, y, z are a, b, c, d, e,
A dielectric ceramic composition having a composition in a molar ratio range surrounded by f. ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
JP2214528A 1990-08-13 1990-08-13 Dielectric porcelain composition Pending JPH0498708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2214528A JPH0498708A (en) 1990-08-13 1990-08-13 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2214528A JPH0498708A (en) 1990-08-13 1990-08-13 Dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH0498708A true JPH0498708A (en) 1992-03-31

Family

ID=16657221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2214528A Pending JPH0498708A (en) 1990-08-13 1990-08-13 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH0498708A (en)

Similar Documents

Publication Publication Date Title
KR930004746B1 (en) Solid dielectric capacitor and method of manufacture
JPH0498708A (en) Dielectric porcelain composition
JP3620314B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JPH04188506A (en) Dielectric porcelain composition
JPH0498707A (en) Dielectric porcelain composition
JPS6386319A (en) Dielectric ceramic composition
JP2568567B2 (en) Dielectric porcelain composition
JP2568565B2 (en) Dielectric porcelain composition
JP3575298B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP2568566B2 (en) Dielectric porcelain composition
JP3024768B2 (en) Dielectric porcelain composition
JPH0498709A (en) Dielectric porcelain composition
JPS6386317A (en) Dielectric ceramic composition
JPH0467514A (en) Dielectric porcelain composite
JPH0498706A (en) Dielectric porcelain composition
JPH0482103A (en) Dielectric porcelain composite
JPH03219502A (en) Dielectric porcelain composition
JPH02242516A (en) Dielectric porcelain composition
JPH0487108A (en) Dielectric porcelain composition
JPH0912359A (en) Dielectric porcelain composition
JPH0487107A (en) Dielectric porcelain composition
JPH04357612A (en) Dielectric porcelain composition
JPH06260032A (en) Dielectric ceramic composition
JPS6386316A (en) Dielectric ceramic composition
JPS6386318A (en) Dielectric ceramic composition