JPH049866B2 - - Google Patents

Info

Publication number
JPH049866B2
JPH049866B2 JP61217914A JP21791486A JPH049866B2 JP H049866 B2 JPH049866 B2 JP H049866B2 JP 61217914 A JP61217914 A JP 61217914A JP 21791486 A JP21791486 A JP 21791486A JP H049866 B2 JPH049866 B2 JP H049866B2
Authority
JP
Japan
Prior art keywords
film
stress
internal stress
sputtering
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61217914A
Other languages
Japanese (ja)
Other versions
JPS6376872A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP21791486A priority Critical patent/JPS6376872A/en
Publication of JPS6376872A publication Critical patent/JPS6376872A/en
Publication of JPH049866B2 publication Critical patent/JPH049866B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、膜を堆積させた後に、加速させたイ
オンを注入することによつて膜の内部応力を低減
する方法に関するものである。膜の内部応力を低
減すること、並びに低減させる過程で内部応力を
所定の値に精密に制御することは、特に半導体集
積回路、X線リソグラフイー用マスク等の製造に
必須の技術であり、本発明はこのような利用目的
に適した応力低減の方法を実現するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of reducing internal stress in a film by implanting accelerated ions after the film has been deposited. Reducing the internal stress of a film and precisely controlling the internal stress to a predetermined value during the reduction process are essential technologies, especially for the production of semiconductor integrated circuits, masks for X-ray lithography, etc. The present invention realizes a stress reduction method suitable for such purposes of use.

[従来の技術] 基板表面に堆積させた膜は、一般に大きな内部
応力を有している。膜を堆積させる方法として、
CVD法およびスパツタ法が用いられることが多
い。これらの方法で堆積させた膜は、一般に大き
な内部応力を残留させている。CVD法のなかで
も、減圧および常圧CVD法は熱反応によつて堆
積を起こさせるため、これらの方法で堆積させた
膜は、膜固有の内部応力のほかに熱応力も残留さ
せている。したがつて、膜の堆積手段としては、
低温で堆積が可能なプラズマCVD法およびスパ
ツタ法が好まれている。低温で膜を堆積させるこ
とは、デバイス特性維持のためにも必要である。
しかしながら、これらの低温堆積方法において
も、膜固有の大きな内部応力が膜中に残留するこ
とは避けられない。
[Prior Art] A film deposited on a substrate surface generally has a large internal stress. As a method of depositing the film,
CVD and sputtering methods are often used. Films deposited by these methods generally retain large residual internal stresses. Among the CVD methods, low-pressure and normal-pressure CVD methods cause deposition through a thermal reaction, so films deposited by these methods retain residual thermal stress in addition to the internal stress inherent in the film. Therefore, as a means of depositing the film,
Plasma CVD and sputtering methods, which allow deposition at low temperatures, are preferred. Depositing films at low temperatures is also necessary to maintain device properties.
However, even with these low-temperature deposition methods, it is inevitable that large internal stress inherent to the film remains in the film.

従来、膜の内部応力の低減化は、堆積時の堆積
条件を変化させることによつて行われてきた。例
えば、高周波スパツタ(以下rfスパツターとい
う)においてはスパツタガス圧力および高周波パ
ワー等(以下rfパワー等という)の装置パラメー
ターを変化させることによつて膜応力を低減させ
てきた。プラズマCVD法においては、rfパワー、
反応ガス組成、反応ガス圧力、堆積時の基板温度
等の装置パラメーターを変化させることによつ
て、膜応力を低減させてきた。
Conventionally, the internal stress of a film has been reduced by changing the deposition conditions during deposition. For example, in high frequency sputtering (hereinafter referred to as RF sputtering), film stress has been reduced by changing equipment parameters such as sputtering gas pressure and high frequency power (hereinafter referred to as RF power, etc.). In plasma CVD method, RF power,
Film stress has been reduced by varying equipment parameters such as reactant gas composition, reactant gas pressure, and substrate temperature during deposition.

しかし、堆積条件を変化させることによつて膜
の内部応力を低減させる従来の方法には、次に述
べる欠点があつた。その第一は、所定の内部応力
を有する膜を、制御性良くかつ再現性良く得るこ
とが困難なことである。このことは、堆積条件を
決定するパラメーターが複数個あるために、それ
ぞれのパラメーターを最適化し、かつ堆積条件を
恒常的に一定に保つことが困難であることに起因
する。たとえば、熱CVD法では、反応ガス組成
および堆積温度によつて膜の内部応力が決定され
るが、これらの反応条件を一定に保つことが困難
であるため所定の応力を持つ膜を得ることは非常
に難しい。プラズマCVD法およびスパツタ法に
おいては、プラズマ状態を恒常的に一定に保持す
ることが要求されるが、この要求を満たすために
は、ガス組成、ガス圧力、rfパワーおよび堆積温
度等の堆積条件を常に一定に保たねばならない。
しかしながら、これらの堆積条件を一定に保つこ
とは非常に困難であり、したがつてプラズマ状態
を一定に保つことは極めて難しい。プラズマ状態
の変動は膜の内部応力について良好な再現性が得
られない原因となる。
However, the conventional method of reducing the internal stress of a film by changing the deposition conditions has the following drawbacks. The first problem is that it is difficult to obtain a film having a predetermined internal stress with good controllability and good reproducibility. This is because there are multiple parameters that determine the deposition conditions, and it is difficult to optimize each parameter and keep the deposition conditions constant. For example, in the thermal CVD method, the internal stress of the film is determined by the reaction gas composition and deposition temperature, but it is difficult to maintain these reaction conditions constant, so it is difficult to obtain a film with a predetermined stress. extremely difficult. In plasma CVD and sputtering methods, it is required to maintain a constant plasma state, but to meet this requirement, deposition conditions such as gas composition, gas pressure, RF power, and deposition temperature must be adjusted. must always be kept constant.
However, it is very difficult to keep these deposition conditions constant, and therefore it is extremely difficult to keep the plasma state constant. Fluctuations in the plasma state cause poor reproducibility of the internal stress in the film.

第二の欠点は、所定の応力を有する膜を得よう
とすると、所定の膜質を持つ膜が堆積条件の範囲
で得られない場合があることである。すなわち、
所定の応力を持つ膜を得るためには、膜の組成を
変化させたり、あるいは膜構造自体を変化させね
ばならない場合がある。膜組成を変化させる例と
しては、プラズマCVD法において、窒化けい素
(SixNyHz)を堆積させる場合、引張応力の小さ
な膜を得ようとするとSiを多く含んだ組成としな
ければならないが、この場合には化学量論に近い
組成(Si3N4)を持ち、かつ小さな引張応力の膜
を得ることはできない。また、膜構造自体を変化
させる例として、スパツタ法により堆積させた金
属膜があげられる。スパツタ法は金属膜の堆積に
広く用いられている。しかしながら、スパツタ法
で堆積させた金属膜は一般に圧縮応力をもち、特
に高融点金属膜およびその化合物膜は、大きな圧
縮応力を残留させている場合が多い。応力を低減
させるために堆積条件を変化させると、膜構造が
変化してしまうことが珍しくない。例えばスパツ
タ条件を適切に選択することによつて、アモルフ
アス状態の窒化タングステン膜を堆積させること
ができるが、アモルフアス状態の膜は1×
1010dyn/cm2の大きな圧縮応力を持つ。しかしな
がら、応力を低減させるためにスパツタ条件を変
化させると結晶化してしまい、アモルフアス状態
の膜を得ることはできない。
The second drawback is that when attempting to obtain a film with a predetermined stress, a film with a predetermined film quality may not be obtained within the range of deposition conditions. That is,
In order to obtain a film with a predetermined stress, it may be necessary to change the composition of the film or change the film structure itself. As an example of changing the film composition, when depositing silicon nitride (Si x N y Hz ) using the plasma CVD method, in order to obtain a film with low tensile stress, the composition must contain a large amount of Si. However, in this case, it is not possible to obtain a film having a composition close to stoichiometry (Si 3 N 4 ) and low tensile stress. Furthermore, an example of changing the film structure itself is a metal film deposited by a sputtering method. Sputtering is widely used for depositing metal films. However, metal films deposited by sputtering generally have compressive stress, and particularly high melting point metal films and films of their compounds often have large residual compressive stress. Changing deposition conditions to reduce stress often results in changes in film structure. For example, by appropriately selecting sputtering conditions, it is possible to deposit a tungsten nitride film in an amorphous state.
It has a large compressive stress of 10 10 dyn/ cm2 . However, if sputtering conditions are changed to reduce stress, crystallization occurs, making it impossible to obtain an amorphous film.

膜を堆積させた後に、アニーリングを行うこと
によつても膜応力を低減させることができる。し
かし、この方法は制御性に乏しいうえに、アニー
リングによつて新たに膜質が変化したり、熱歪が
生じるために実用性に欠ける。
Film stress can also be reduced by performing annealing after depositing the film. However, this method has poor controllability and is impractical because the annealing causes new changes in film quality and thermal distortion.

[発明が解決しようとする問題点] 上記のように、従来の方法は膜の堆積条件によ
つて膜の内部応力を制御するものであるため、制
御性良く膜の内部応力を低減させることができな
い。また従来方法では、所定の膜質を持ち、かつ
所定の膜の内部応力を持つ膜が得られるとは限ら
ない。本発明の目的はこれら従来法の欠点を解消
し、低温で制御性および再現性良く膜の内部応力
を所望の値に低減させることができる方法を提供
することにある。
[Problems to be Solved by the Invention] As mentioned above, the conventional method controls the internal stress of the film by controlling the film deposition conditions, so it is not possible to reduce the internal stress of the film with good controllability. Can not. Further, with the conventional method, it is not always possible to obtain a film having a predetermined film quality and a predetermined internal stress. It is an object of the present invention to provide a method capable of eliminating the drawbacks of these conventional methods and reducing the internal stress of a film to a desired value at low temperatures with good controllability and reproducibility.

[問題点を解決するための手段] 本発明は上記の目的を達成するためになされた
ものであつて、本発明の膜の内部応力低減方法に
よれば、基板上に堆積した膜に加速したイオンを
注入し、前記膜中に前記イオンを存在させること
により前記膜の内部応力を低減することを特徴と
している。
[Means for Solving the Problems] The present invention has been made to achieve the above object, and according to the method for reducing internal stress of a film of the present invention, accelerated stress is applied to a film deposited on a substrate. The method is characterized in that the internal stress of the film is reduced by implanting ions and making the ions exist in the film.

本発明の方法は、堆積膜のすべてに適用可能で
あつて、そうした堆積膜の具体例としては、スパ
ツタ法によつて堆積させたタングステン膜、タン
タル膜、窒化タングステン膜および窒化タンタル
膜のほか、プラズマCVD法によつて堆積させた
窒化珪素膜および窒化ホウ素膜等を挙げることが
できる。
The method of the present invention is applicable to all deposited films, and specific examples of such deposited films include tungsten films, tantalum films, tungsten nitride films, and tantalum nitride films deposited by sputtering. Examples include silicon nitride films and boron nitride films deposited by plasma CVD.

イオン注入は加速したイオンを堆積膜に照射す
ることで行われ、加速したイオン発生機として
は、たとえば、コツククロフトワルトン型加速器
等が一般に使用される。このときのイオン種は任
意に選択できるが、膜への不純物混入を避ける意
味で、膜の構成元素と同じイオン種を選ぶことが
好ましい。
Ion implantation is performed by irradiating the deposited film with accelerated ions, and as the accelerated ion generator, for example, a Kotscroft-Walton type accelerator is generally used. Although the ion species at this time can be selected arbitrarily, it is preferable to select the same ion species as the constituent elements of the film in order to avoid contamination of the film with impurities.

[作用] 本発明は、大きな内部応力を有する膜にイオン
注入を行うと、膜の内部応力が低減するという事
実に基づく。
[Operation] The present invention is based on the fact that when ions are implanted into a film having a large internal stress, the internal stress of the film is reduced.

第1図は、本発明方法の概念図で、基板1上に
形成された堆積膜2に加速されたイオン3が照射
されている状況を示す。膜中に注入されたイオン
は、膜を構成する原子と衝突し、エネルギーを失
う過程において、膜の内部応力を減少させる方向
に膜の微視的状態を変化させる。そして、注入さ
れたイオンが膜中に存在するようにイオンの注入
条件を選ぶことにより、膜の内部応力の低減が最
も効果的におこなわれる。これは本作用が物理的
な機構に基づいており、イオンが膜中に停止する
直前に最も効果的にエネルギーを放出し、膜の微
視的状態を変化させる作用が大きいためである。
この作用によつて膜内部の残留応力が低減する。
FIG. 1 is a conceptual diagram of the method of the present invention, showing a situation in which a deposited film 2 formed on a substrate 1 is irradiated with accelerated ions 3. The ions implanted into the film collide with the atoms that make up the film, and in the process of losing energy, the microscopic state of the film changes in a direction that reduces the internal stress of the film. The internal stress of the film can be most effectively reduced by selecting ion implantation conditions such that the implanted ions are present in the film. This is because this effect is based on a physical mechanism, and energy is most effectively released just before the ions stop in the membrane, and the effect of changing the microscopic state of the membrane is large.
This action reduces the residual stress inside the film.

本発明の膜の内部応力低減方法によれば、膜の
内部応力が圧縮応力である場合及び引張応力であ
る場合の両方の場合において、膜の内部応力を所
定の値にまで低減することができる。本作用は物
理的であるため、大きな内部応力を残留させてい
る膜に広範囲に適用できる。特に有効であるの
は、膜の厚さ方向に対してイオンの放出エネルギ
ー分布が一様になるよう、イオンのエネルギーを
選択する場合である。このようにイオンのエネル
ギーを選択することによつて、膜の厚さ方向の内
部応力分布を一様にすることができる。
According to the method for reducing the internal stress of a membrane of the present invention, the internal stress of the membrane can be reduced to a predetermined value in both cases where the internal stress of the membrane is compressive stress and when it is tensile stress. . Since this effect is physical, it can be applied to a wide range of films that have large residual internal stresses. Particularly effective is the case where the ion energy is selected so that the ion emission energy distribution is uniform in the thickness direction of the film. By selecting the ion energy in this way, the internal stress distribution in the thickness direction of the film can be made uniform.

本発明の方法による内部応力減少の過程は、イ
オン注入量に依存し、イオン電流に依存しない。
したがつて、膜の応力を低減させるために必要な
パラメーターはイオン注入量一つであり、そのイ
オン注入量は精密に制御できる量であるために、
精密に内部応力の低減を容易に行うことができ
る。また、低温で内部応力を低減させるために熱
歪みも生じない。
The process of internal stress reduction by the method of the present invention depends on the ion implantation dose and does not depend on the ion current.
Therefore, the only parameter required to reduce stress in the film is the amount of ion implantation, and since the amount of ion implantation can be precisely controlled,
Internal stress can be easily reduced precisely. Furthermore, since internal stress is reduced at low temperatures, thermal distortion does not occur.

本方法を行うことによつても、膜質をほとんど
変化させることなしに所定の応力にまで膜の内部
応力を低減させることができる。このため、膜形
成に際しては、最適な膜質をうるうえで必要な堆
積条件を選択することができる。そして、所定の
膜質を得た上で、イオン注入によつて内部応力を
減少させれば良い。すなわち、本発明の方法によ
れば、従来方法では得ることが困難であつた所定
の膜質および所定の応力を共に満たした膜を得る
ことができる。また、堆積条件の再現性の悪いこ
とに起因する膜の内部応力のばらつきを、イオン
注入によつて平均化させることもできる。さら
に、膜の内部応力を測定しながら、膜の内部応力
を低減させることも可能となる。
By carrying out this method as well, the internal stress of the film can be reduced to a predetermined stress without substantially changing the film quality. Therefore, when forming a film, it is possible to select the deposition conditions necessary to obtain the optimum film quality. Then, after obtaining a predetermined film quality, the internal stress may be reduced by ion implantation. That is, according to the method of the present invention, it is possible to obtain a film that satisfies both a predetermined film quality and a predetermined stress, which have been difficult to obtain using conventional methods. Furthermore, variations in internal stress in the film due to poor reproducibility of deposition conditions can be averaged out by ion implantation. Furthermore, it is also possible to reduce the internal stress of the film while measuring the internal stress of the film.

[実施例] (1) Si基板上にアモルフアス窒化タングステン膜
をrfスパツタによつて形成した。スパツタガス
は、アルゴン39.0sccm(標準状態CC/分)およ
び窒素7.6sccmを混合して用いた。スパツタ条
件は、rfパワー300Wスパツタガス圧力5m
Torrである。堆積温度は室温である。膜厚は
0.70μmであつた次に膜表面の清浄化を行つた
後、室温で加速エネルギー400keVイオン電流
10μAのN+イオンを注入した。第2図に示した
ように、イオン注入前に1.07×1010dyn/cm2
圧縮応力を持つ膜にイオン注入を行つた結果、
注入量とともに応力が急激に減少し7.5×
1016ions/cm2以上の注入量において膜応力を零
にすることができた。イオン注入によつて膜は
結晶化することはない。上記の効果はNe+を注
入した場合にも同様に得ることができた。
[Example] (1) An amorphous tungsten nitride film was formed on a Si substrate by RF sputtering. The sputtering gas used was a mixture of 39.0 sccm of argon (standard condition CC/min) and 7.6 sccm of nitrogen. The sputtering conditions are RF power 300W and sputtering gas pressure 5m.
It's Torr. The deposition temperature is room temperature. The film thickness is
After cleaning the membrane surface at a temperature of 0.70 μm, an ion current with an acceleration energy of 400 keV was applied at room temperature.
10 μA of N + ions were implanted. As shown in Figure 2, as a result of ion implantation into a film that had a compressive stress of 1.07×10 10 dyn/cm 2 before ion implantation,
The stress decreases rapidly with the injection amount to 7.5×
It was possible to reduce the film stress to zero at an implantation dose of 10 16 ions/cm 2 or more. Ion implantation does not crystallize the film. The above effect could be obtained similarly when Ne + was injected.

(2) Si基板上にタングステン膜をrfスパツタによ
つて形成した。スパツタガスはアルゴンを用い
た。流量は45.0sccmである。スパツタ条件はrf
パワー500W、スパツタガス圧力5mTorrであ
る。堆積温度は室温である。膜厚は0.55μmで
あつた。次に膜表面の清浄化を行つた後、室温
で加速エネルギー400keVイオン電流10μAの
N+イオンを注入した。第3図に示したように
イオン注入前に2.11×1010dyn/cm2の圧縮応力
を持つ膜にイオン注入を行い、圧縮応力を減少
させることができた。上記の結果はNe+を注入
した場合にも同様に得ることができた。
(2) A tungsten film was formed on the Si substrate by RF sputtering. Argon was used as spatuta gas. The flow rate is 45.0 sccm. Spats condition is rf
The power is 500W and the sputtering gas pressure is 5mTorr. The deposition temperature is room temperature. The film thickness was 0.55 μm. Next, after cleaning the membrane surface, an acceleration energy of 400 keV and an ion current of 10 μA were applied at room temperature.
N + ions were implanted. As shown in FIG. 3, ions were implanted into a film having a compressive stress of 2.11×10 10 dyn/cm 2 before ion implantation, and the compressive stress could be reduced. The above results were also obtained when Ne + was injected.

(3) Si基板上に窒化タンタル膜をrfスパツタによ
つて形成した。スパツタガスは、アルゴン
44.0sccmと窒素2.4sccmを混合して用いた。ス
パツタ条件は、rfパワー500W、スパツタガス
圧力5mTorrである。堆積温度は室温である。
膜厚は0.62μmであつた。次に膜表面の清浄化
を行つた後、室温で加速エネルギー400keV、
イオン電流10μAのN+イオンを注入した。第4
図に示したようにイオン注入前に1.72×
1010dyn/cm2の圧縮応力を持つ膜にイオン注入
を行い、圧縮応力を急激に減少させることがで
きた。上記の結果はNe+を注入した場合にも同
様に得ることができた。
(3) A tantalum nitride film was formed on the Si substrate by RF sputtering. Spatuta gas is argon
A mixture of 44.0 sccm and 2.4 sccm of nitrogen was used. The sputtering conditions were an RF power of 500 W and a sputtering gas pressure of 5 mTorr. The deposition temperature is room temperature.
The film thickness was 0.62 μm. Next, after cleaning the membrane surface, the acceleration energy was 400keV at room temperature.
N + ions were implanted with an ion current of 10 μA. Fourth
1.72× before ion implantation as shown in the figure.
By performing ion implantation into a film with a compressive stress of 10 10 dyn/cm 2 , we were able to rapidly reduce the compressive stress. The above results were also obtained when Ne + was injected.

(4) Si基板上にタンタル膜をrfスパツタによつて
形成した。スパツタガスは、アルゴンを用い
た。流量は45.0sccmである。スパツタ条件は、
rfパワー300W、スパツタガス圧力5mTorrで
ある。堆積温度は室温である。膜厚は0.65μm
であつた。次に膜表面の清浄化を行つた後、室
温で加速エネルギー400keV、イオン電流10μA
のN+イオンを注入した。第5図に示したよう
にイオン注入前に1.38×1010dyn/cm2の圧縮応
力を持つ膜にイオン注入を行い、圧縮応力を減
少させることができた。上記の結果はNe+を注
入した場合にも同様に得ることができた。
(4) A tantalum film was formed on the Si substrate by RF sputtering. Argon was used as the spatuta gas. The flow rate is 45.0sccm. The spatuta conditions are
The RF power was 300W and the sputter gas pressure was 5mTorr. The deposition temperature is room temperature. Film thickness is 0.65μm
It was hot. Next, after cleaning the membrane surface, the acceleration energy is 400keV and the ion current is 10μA at room temperature.
N + ions were implanted. As shown in FIG. 5, ions were implanted into a film having a compressive stress of 1.38×10 10 dyn/cm 2 before ion implantation, and the compressive stress could be reduced. The above results were also obtained when Ne + was injected.

(5) Si基板上にプラズマCVD法によつてアモル
フアスSiN膜を堆積させた。堆積条件は、
SiH46.0sccm、N290.0sccm、rfパワー100W、
堆積温度200℃、反応ガス圧力1.0mTorrであ
る。膜厚は1.4μmであつた。次に膜表面の清浄
化を行つた後に室温で加速エネルギー400keV、
イオン電流6μAのNe+イオンを注入した。第6
図に示したようにイオン注入前に3.38×
109dyn/cm2の引張応力を持つ膜にイオン注入
を行つた結果、注入量を増加させるとともに引
張応力が急激に減少し、2.5×1016ions/cm2以上
の注入量において、膜の内部応力を1.00×
109dyn/cm2以下にまで減少させることができ
た。上記の結果はN+を注入した場合にも同様
に得ることができた。また、SiH4ガスのかわ
りにB2H6ガスを用いることよつて得られたア
モフアスBNについても、同様の結果を得るこ
とができた。
(5) An amorphous SiN film was deposited on a Si substrate by plasma CVD. The deposition conditions are
SiH 4 6.0sccm, N 2 90.0sccm, RF power 100W,
The deposition temperature was 200°C and the reaction gas pressure was 1.0 mTorr. The film thickness was 1.4 μm. Next, after cleaning the membrane surface, the acceleration energy was 400keV at room temperature.
Ne + ions were implanted with an ion current of 6 μA. 6th
3.38× before ion implantation as shown in the figure.
As a result of ion implantation into a film with a tensile stress of 10 9 dyn/cm 2 , the tensile stress rapidly decreased as the implantation dose increased; Internal stress 1.00×
It was possible to reduce it to below 10 9 dyn/cm 2 . The above results were also obtained when N + was injected. Similar results were also obtained with amorphous BN obtained by using B 2 H 6 gas instead of SiH 4 gas.

[発明の効果] 以上詳述したように、本発明の方法に従えば、
膜質をほとんど変化させずに低温で膜の内部応力
を低減させ、かつ低減化の過程において膜の内部
応力を制御することができる。本発明の方法は、
精密に設定できるイオン注入量によつて膜応力を
制御できるため、再現性に優れ、原理的に制御性
が高い。
[Effect of the invention] As detailed above, according to the method of the present invention,
It is possible to reduce the internal stress of the film at low temperatures without substantially changing the film quality, and to control the internal stress of the film during the reduction process. The method of the present invention includes:
Since membrane stress can be controlled by precisely setting the amount of ion implantation, it has excellent reproducibility and is theoretically highly controllable.

以上の理由により、本発明の方法は低温下で精
密に膜応力を低減することが要求される半導体集
積回路およびX線リソグラフイー用マスク等に適
用すれば、著しい効果が得られる。
For the above reasons, the method of the present invention can be applied to semiconductor integrated circuits, masks for X-ray lithography, etc., which require precise reduction of film stress at low temperatures, to produce remarkable effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の概念図、第2図は実施例
1における窒化タングステンの応力低減を表す
図、第3図は実施例2におけるタングステンの応
力低減を表す図、第4図は実施例3における窒化
タンタルの応力低減を表す図、第5図は実施例4
におけるタンタルの応力低減を表す図、第6図は
実施例5における窒化珪素の応力低減を表す図で
ある。 1……基板、2……堆積膜、3……イオンビー
ム。
Figure 1 is a conceptual diagram of the method of the present invention, Figure 2 is a diagram showing stress reduction in tungsten nitride in Example 1, Figure 3 is a diagram showing stress reduction in tungsten in Example 2, and Figure 4 is an example Figure 5 shows the stress reduction of tantalum nitride in Example 4.
FIG. 6 is a diagram showing stress reduction in tantalum in Example 5. FIG. 6 is a diagram showing stress reduction in silicon nitride in Example 5. 1...Substrate, 2...Deposited film, 3...Ion beam.

Claims (1)

【特許請求の範囲】 1 基板上に堆積した膜に加速したイオンを注入
し、前記膜中に前記イオンを存在させることによ
り前記膜の内部応力を低減することを特徴とする
膜の内部応力低減方法。 2 特許請求の範囲第1項記載の加速イオンが膜
の構成元素のうちの1種の元素のイオンであるこ
とを特徴とする膜の内部応力低減方法。
[Claims] 1. Reducing the internal stress of a film, characterized by reducing the internal stress of the film by implanting accelerated ions into a film deposited on a substrate and causing the ions to exist in the film. Method. 2. A method for reducing internal stress in a film, characterized in that the accelerated ions according to claim 1 are ions of one of the constituent elements of the film.
JP21791486A 1986-09-18 1986-09-18 Method for relieving internal stress of film Granted JPS6376872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21791486A JPS6376872A (en) 1986-09-18 1986-09-18 Method for relieving internal stress of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21791486A JPS6376872A (en) 1986-09-18 1986-09-18 Method for relieving internal stress of film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62162670A Division JPS6376325A (en) 1987-06-30 1987-06-30 X-ray absorber film of mask for x-ray lithography

Publications (2)

Publication Number Publication Date
JPS6376872A JPS6376872A (en) 1988-04-07
JPH049866B2 true JPH049866B2 (en) 1992-02-21

Family

ID=16711721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21791486A Granted JPS6376872A (en) 1986-09-18 1986-09-18 Method for relieving internal stress of film

Country Status (1)

Country Link
JP (1) JPS6376872A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196283A (en) * 1989-03-09 1993-03-23 Canon Kabushiki Kaisha X-ray mask structure, and x-ray exposure process
JP2810973B2 (en) * 1993-08-09 1998-10-15 工業技術院長 Method for manufacturing fuel electrode for high-temperature fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466767A (en) * 1977-11-08 1979-05-29 Fujitsu Ltd Manufacture for sos construction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466767A (en) * 1977-11-08 1979-05-29 Fujitsu Ltd Manufacture for sos construction

Also Published As

Publication number Publication date
JPS6376872A (en) 1988-04-07

Similar Documents

Publication Publication Date Title
JPH0255934B2 (en)
US5662965A (en) Method of depositing crystalline carbon-based thin films
Bean et al. Silicon/metal silicide heterostructures grown by molecular beam epitaxy
US4579609A (en) Growth of epitaxial films by chemical vapor deposition utilizing a surface cleaning step immediately before deposition
JPS6354215B2 (en)
JP3351843B2 (en) Film formation method
Reif Plasma enhanced chemical vapor deposition of thin crystalline semiconductor and conductor films
Colligon Applications of ion-beam-assisted deposition
JPH049866B2 (en)
US20030056716A1 (en) Esrf source for ion plating epitaxial deposition
JP2939530B2 (en) Crystal growth method of multi-component oxide thin film containing bismuth as a constituent element
JP2800060B2 (en) Method for manufacturing semiconductor film
JPH0647725B2 (en) Method for reducing internal stress in amorphous tungsten compound film
JPH0476217B2 (en)
JP2703228B2 (en) Method for forming silicon nitride film
KR930000228B1 (en) Manufacturing method of heat-proof metal-nitride film for semiconductor device
JPH01168857A (en) Formation of titanium nitride film
JP2916514B2 (en) Manufacturing method of oxide thin film
KR20170095463A (en) Hybrid physical-vapor epitaxy method and apparatus for fabrication of thin films
JPH05166726A (en) Manufacture of compound thin film
JPH0524999A (en) Production of silicon carbide thin film
JP3384312B2 (en) Method of forming crystalline silicon precursor film
Joshi et al. Ion-Enhanced Evaporated Tungsten for VLSI Applications
JPH01156460A (en) Production of crystalline aluminum nitride
JPS63206468A (en) Production of thin nitride film having crystal orientability controlled by projection angle of ion beam

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term