JPH0498135A - Detection of temperature - Google Patents

Detection of temperature

Info

Publication number
JPH0498135A
JPH0498135A JP2214440A JP21444090A JPH0498135A JP H0498135 A JPH0498135 A JP H0498135A JP 2214440 A JP2214440 A JP 2214440A JP 21444090 A JP21444090 A JP 21444090A JP H0498135 A JPH0498135 A JP H0498135A
Authority
JP
Japan
Prior art keywords
temperature
phosphor
wafer
temperature sensor
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2214440A
Other languages
Japanese (ja)
Other versions
JP2641606B2 (en
Inventor
Yoichi Ito
陽一 伊藤
Tsunehiko Tsubone
恒彦 坪根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2214440A priority Critical patent/JP2641606B2/en
Publication of JPH0498135A publication Critical patent/JPH0498135A/en
Application granted granted Critical
Publication of JP2641606B2 publication Critical patent/JP2641606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To restrain the occurrence of a temperature difference between a temperature measuring terminal and a coating material by contacting a temperature sensor, in which a temperature measuring terminal is coated with material having large thermal conductivity, with an object to be continuously treated. CONSTITUTION:In the structure of a temperature sensor 13, a cap 23 having a spherical tip is fitted to a quartz fiber 22, in which phosphor 20 (e.g. phosphor to be excited by ultraviolet rays) is applied to a tip and the outer periphery is coated with fluororesin 21, so as to cover the phosphor 20. Then the pulse of the ultraviolet rays is irradiated to the phosphor 20 with a control device 14 in a condition where the cap 23 is contacted with e.g. a wafer 1 to detect the temperature of the wafer 1 by the attenuation time of reflected light from the phosphor 20.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、温度の検出方法に係り、特に連続して処理さ
れる対象物、例えば、エツチング処理される半導体素子
基板(以下、ウェハと略)の温度を検出するのに好適な
温度の検出方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a temperature detection method, and particularly relates to a temperature detection method for detecting a temperature, and particularly for detecting an object to be continuously processed, such as a semiconductor element substrate to be etched (hereinafter abbreviated as wafer). This invention relates to a temperature detection method suitable for detecting the temperature of

[従来の技術] 従来の温度の検出方法としては、例えば、ラフストロン
社発行のカタログ記載のような3つの方法が知られてい
る。
[Prior Art] As a conventional temperature detection method, three methods are known, for example, as described in a catalog published by Lufstron.

その1つは、けい光体を対象物に直接塗布して、これに
紫外線を照射してその反射光の減衰時間の温度依存性を
利用して測定する方法である。
One method is to apply a phosphor directly to an object, irradiate it with ultraviolet rays, and measure by utilizing the temperature dependence of the decay time of the reflected light.

第2の方法は、けい光体を直接対象物に接触させて同様
に測定する方法である。
The second method is to make a similar measurement by bringing the phosphor into direct contact with the object.

第3の方法は、PFAデフロン樹脂で被覆したけい光体
を対象物に接触させて測定する方法である。尚、該方法
は、1988.5.20アステツク(株)発行の「光フ
ァイバー式接触形螢光温度計」カタログにも記載されて
いる。
The third method is to make measurements by bringing a phosphor coated with PFA Deflon resin into contact with an object. This method is also described in the "Optical Fiber Contact Fluorescent Thermometer" catalog published by Astec Co., Ltd. on May 20, 1988.

[発明が解決しようとする課題] 上書−従来技術を、連続して処理される対象物、例えば
、エツチング処理されるウェハの温度の検出に適用する
ことを想定した場合、次のような解決すべき課題がある
[Problems to be Solved by the Invention] Assuming that the above-mentioned prior art is applied to detecting the temperature of an object that is continuously processed, such as a wafer that is being etched, the following solution is possible. There are tasks to be done.

まず、上記従来技術で、その第1の方法は、k−1い光
体をウェハ毎に直接塗布する必要があるために、その作
業に多大な時間を要することと、このけい光体が搬送中
等にはく離して装置内が汚染され、ウェハに付着する異
物が増加してその歩留が低下するといった問題がある。
First, in the above-mentioned prior art, the first method requires the direct coating of the k-1 phosphor on each wafer, which requires a large amount of time, and the phosphor is transported There is a problem that the inside of the apparatus is contaminated by peeling off, and the number of foreign substances adhering to the wafer increases, resulting in a decrease in the yield.

次に、第2の方法では、けい光体がウェハとの接触によ
りはく離してしまい、このため、ウェハの温度を連続的
に測定できないことと、この場合もウェハに付着する異
物が増加してその歩留が低下するという問題がある。
Next, in the second method, the phosphor peels off due to contact with the wafer, so the temperature of the wafer cannot be measured continuously, and also in this case, the amount of foreign matter adhering to the wafer increases. There is a problem that the yield is reduced.

また、第3の方法では、PFAテフロン樹脂の熱伝導率
が小さいためにウェハとけい光体との間に温度差を生じ
てしまい、このためウェハの温度を精度よく検出できな
いという問題があった。
Further, in the third method, since the thermal conductivity of the PFA Teflon resin is low, a temperature difference is generated between the wafer and the phosphor, and as a result, there is a problem that the temperature of the wafer cannot be accurately detected.

本発明の目的は、連続して処理される対象物のは温度を
連続的に精度よく測定できる温度の検出方法を提供する
ことにある。
An object of the present invention is to provide a temperature detection method that can continuously and accurately measure the temperature of objects that are continuously processed.

1課題を解決するための手段] 上記目的を達成するため1こ、温度測定端子を熱伝導率
が大きな材料で被覆した温度センサを、連続して処理さ
れる対象物に接触させて該対象物の温度を測定するよう
にしたものである。
1. Means for Solving the Problem] In order to achieve the above object, 1. a temperature sensor whose temperature measuring terminal is coated with a material having high thermal conductivity is brought into contact with an object to be continuously processed; It is designed to measure the temperature of

[作   用] 温度センサの温度測定端子を熱伝導率が大きな材料で被
覆し、該温度センサを、連続して処理される対象物に接
触させて該対象物の温度を測定する。
[Function] The temperature measuring terminal of the temperature sensor is coated with a material having high thermal conductivity, and the temperature sensor is brought into contact with an object to be continuously processed to measure the temperature of the object.

このため、温度測定端子と被覆材との間に該被覆材の熱
伝導率に起因した温度差が生しるのが抑制され、このた
め、連続して処理される対象物の温度を精度良く検出で
きる。
Therefore, the temperature difference caused by the thermal conductivity of the sheathing material is suppressed from occurring between the temperature measurement terminal and the sheathing material, and therefore the temperature of the continuously processed object can be accurately measured. Can be detected.

また、これと共に、温度センサの対象物への接触により
温度測定端子のはく離を生じることがなく対象物の温度
を連続的に検出することができる。
In addition, the temperature of the object can be continuously detected without peeling of the temperature measurement terminal due to contact of the temperature sensor with the object.

[実 施 例] 以下、本発明の一実施例を適用したいわゆる有磁場型の
マイクロ波プラズマエッヂング装置の構成を第1図〜第
6図により説明する。
[Embodiment] Hereinafter, the configuration of a so-called magnetic field type microwave plasma etching apparatus to which an embodiment of the present invention is applied will be explained with reference to FIGS. 1 to 6.

第1図は、エツチング装置の全体構成を示したものであ
り、ウェハ1のエツチングは、放電管2内に導入したプ
ロセスガス3をマイクロ波4とソレノイド5による磁場
の相互作用によりプラズマ化し、さらに、下部電極6に
高周波電源7により高周波を印加してウェハlに入射す
るイオンのエネルギーを制御しながら行う。ウェハ1の
エツチングが終了すると該エッヂング済みウェハlはウ
ェハ押上げ部材(図示省略)の作動により下部電極6か
ら搬送装置(図示省略)に渡された後に、該搬送装置に
より他の場所へ搬送される。また、新規なウェハが下部
電極6に置かれてエツチングされる。
FIG. 1 shows the overall configuration of the etching apparatus. Etching of a wafer 1 is performed by converting a process gas 3 introduced into a discharge tube 2 into plasma through the interaction of a microwave 4 and a magnetic field by a solenoid 5, and then This is performed while controlling the energy of ions incident on the wafer l by applying high frequency waves to the lower electrode 6 from a high frequency power supply 7. When the etching of the wafer 1 is completed, the etched wafer l is transferred from the lower electrode 6 to a transfer device (not shown) by the operation of a wafer push-up member (not shown), and then transferred to another location by the transfer device. Ru. Also, a new wafer is placed on the bottom electrode 6 and etched.

方、エツチングされるウェハlの冷却は、この場合、下
部電極6表面に溶射したAl2203等の絶縁膜8に直
流電源9により電圧を印加してウェハlを静電吸着した
後、裏面にマスフローコントローラ10を開いてHeガ
ス11を導入することにより行う。
On the other hand, in order to cool the wafer l to be etched, in this case, a DC power supply 9 applies a voltage to the insulating film 8 of Al2203 or the like sprayed on the surface of the lower electrode 6 to electrostatically adsorb the wafer l, and then a mass flow controller is attached to the back surface. This is done by opening 10 and introducing He gas 11.

また、下部電極6は冷媒循環機12により温調され、処
理中のウェハlの温度は、−枚毎に下部電極6に取り付
けられた温度センサ13を制御装置14により動作して
得られた検出値に基づいて制御装置15により制御され
る。
Further, the temperature of the lower electrode 6 is controlled by a refrigerant circulation machine 12, and the temperature of the wafer l being processed is detected by operating a temperature sensor 13 attached to the lower electrode 6 every - wafer by a control device 14. It is controlled by the control device 15 based on the value.

次に、第2図、第3図により温度センサ13の取り付は
方法を説明する。
Next, a method for installing the temperature sensor 13 will be explained with reference to FIGS. 2 and 3.

温度センサ13は、先端が下部電極6表面より数十μm
程度突出するように内部にゴム製のパラギン16を有す
る真空導入端子17を介して下部電極6に取り付けてあ
り、このためにウェハ押上げ部材18には切欠き19が
設けである。これにより、ウェハlとの接触による温度
センサ13のずれ、つまり、静電吸着力により温度セン
サ13は、この場合、下向きに力を受け、該力による温
度センサ13の下方へのずれとHeガスのリークを防止
している。
The tip of the temperature sensor 13 is several tens of μm from the surface of the lower electrode 6.
It is attached to the lower electrode 6 via a vacuum introduction terminal 17 which has a rubber paragon 16 inside so as to protrude to some extent, and for this purpose the wafer pushing member 18 is provided with a notch 19. As a result, the temperature sensor 13 is displaced due to contact with the wafer l, that is, the temperature sensor 13 receives a downward force due to the electrostatic attraction force, and the downward displacement of the temperature sensor 13 due to this force and the He gas This prevents leaks.

また、温度センサ13の突出長が大きいとウェハ1と絶
縁膜8間のすきまが大きくなり静電吸着力が低下または
静電吸着しなくなる。これを防IJ二するには、温度セ
ンサ13の突出長を数十μm(例えば、50μml程度
にする必要がある。
Furthermore, if the protruding length of the temperature sensor 13 is large, the gap between the wafer 1 and the insulating film 8 will be large, and the electrostatic attraction force will be reduced or the electrostatic attraction will not occur. In order to prevent IJ2 from occurring, the protrusion length of the temperature sensor 13 needs to be several tens of μm (for example, about 50 μml).

次に第4図により温度センサ13の構造について説明す
る。
Next, the structure of the temperature sensor 13 will be explained with reference to FIG.

先端にけい光体(例えば、紫外線により励起されるけい
光体)20が塗布され、外周をフッ素樹脂21で被覆さ
れた石英ファイバ22にけい光体20を覆うように先端
が球形のキャップ23が取り付けである。そして、キャ
ップ23をウェハ1に接触させた状態でけい光体20に
制御装置14により紫外線のパルスを照射し、けい光体
20からの反射光の減衰時間によりウェハlの温度を検
出する。ここで、例えば、キャップ23の半径は0.5
mm程度である。キャップ23の材質としては熱伝導率
の大きいΔ(2,Cu、W、S i C等が適している
。つまり、大熱量とキャップ23の厚み(ウェハlとけ
い光体20間の距離)が一定であれば、検出誤差は、キ
ャップ23の熱伝導率に逆比例する。ここで、Al2、
Cu、W、SiCの熱伝導率は、PFAテフロンのそれ
の約1500侶〜500 (@と大きく、検出誤差を極
めて小さくすることが可能である。
A cap 23 having a spherical tip is attached to a quartz fiber 22 whose tip is coated with a phosphor (for example, a phosphor excited by ultraviolet rays) 20 and whose outer periphery is coated with a fluororesin 21 so as to cover the phosphor 20. It is installation. Then, with the cap 23 in contact with the wafer 1, the controller 14 irradiates the phosphor 20 with a pulse of ultraviolet light, and detects the temperature of the wafer 1 based on the decay time of the reflected light from the phosphor 20. Here, for example, the radius of the cap 23 is 0.5
It is about mm. Suitable materials for the cap 23 are Δ(2, Cu, W, SiC, etc.) with high thermal conductivity.In other words, the large amount of heat and the thickness of the cap 23 (distance between the wafer l and the phosphor 20) are constant. If so, the detection error is inversely proportional to the thermal conductivity of the cap 23. Here, Al2,
The thermal conductivities of Cu, W, and SiC are approximately 1,500 to 500 times higher than that of PFA Teflon, making it possible to extremely reduce detection errors.

次に、温度センサ13を用いた処理中のウェハ温度の制
御方法を第5図により説明する。
Next, a method of controlling the wafer temperature during processing using the temperature sensor 13 will be explained with reference to FIG.

エツチング処理中のウェハlの温度は、挫度センサ13
がウェハ1裏面に接触することにより検出され、この値
とあらかしめ設定された目標値24との偏差25に応じ
たPID調節器26からの出力によりマスフローコント
ローラIOの開度な変化してHeガス11の流量を調節
し制御される。
The temperature of the wafer l during the etching process is measured by the crushing sensor 13.
is detected by contacting the back surface of the wafer 1, and the output from the PID controller 26 according to the deviation 25 between this value and the preset target value 24 changes the opening degree of the mass flow controller IO, and the He gas The flow rate of 11 is adjusted and controlled.

実際にアルミ製のキャップ23を用いた場合についてウ
ェハ1温度の検出精度について測定した結果を図6に示
す。
FIG. 6 shows the measurement results of the detection accuracy of the wafer 1 temperature when the cap 23 made of aluminum is actually used.

ウェハl温度と検出温度との誤差は±1℃であり、処理
中のウェハlの温度を精度よく制御できることが明らか
になった。
The error between the wafer l temperature and the detected temperature was ±1° C., making it clear that the temperature of the wafer l during processing could be controlled with high accuracy.

例えば、ウェハを冷却し横方向のエツチング進行を抑え
て線幅サブミクロン、クォータミクロンオーダでエツチ
ングする低温エツチングにおいては、エツチング処理中
のウェハの温度制御として高精度な制御が要求され、こ
のようなエツチングにおいて上記したようにウェハの温
度を精度良く検出できることは極めて有効なこととなる
For example, in low-temperature etching, in which the wafer is cooled to suppress lateral etching progress and etched with line widths on the order of submicrons or quarter microns, highly accurate control is required to control the temperature of the wafer during the etching process. In etching, it is extremely effective to be able to accurately detect the temperature of the wafer as described above.

次に、ウェハl温度の他の制御方法を第7図、第8図に
より説明する。
Next, another method of controlling the wafer l temperature will be explained with reference to FIGS. 7 and 8.

前述した方法と異なるところは、温度センサ13からの
信号により冷媒循環機12内の冷媒温度を制御する制御
装置27を設けたことである。
The difference from the method described above is that a control device 27 is provided to control the refrigerant temperature in the refrigerant circulation machine 12 based on a signal from the temperature sensor 13.

ウェハ1温度の検出した値とあらかじめ設定された目標
値24との偏差25に応じたPID調節器26からの出
力により冷媒循環機12内のヒタまたは冷凍機を作動し
て冷媒温度を調整し、下部電極6の温度を制御する。尚
、第7図、第8図で、その他第1図、第5図と同−装置
等は同一符号で示し説明を省略する。
Adjust the refrigerant temperature by operating the heater or refrigerator in the refrigerant circulation machine 12 according to the output from the PID controller 26 according to the deviation 25 between the detected value of the wafer 1 temperature and the preset target value 24, The temperature of the lower electrode 6 is controlled. Note that in FIGS. 7 and 8, other devices that are the same as those in FIGS. 1 and 5 are designated by the same reference numerals, and their explanations will be omitted.

次に、ウェハ1温度の更に他の制御方法を第9図、第1
0図により説明する。
Next, another method of controlling the wafer 1 temperature is shown in FIG.
This will be explained using Figure 0.

前述した2つの方法と異なるところは下部電極6内にヒ
ータ28を設け、温度センサ13からの信号によりヒー
タ28を動作して下部電極6の温度を制御する制御装置
29を設けたところである。
The difference from the two methods described above is that a heater 28 is provided inside the lower electrode 6, and a control device 29 is provided that operates the heater 28 based on a signal from the temperature sensor 13 to control the temperature of the lower electrode 6.

ウェハ1温度の検出した値とあらかじめ設定された目標
値24との偏差25に応じたPID調整器26からの出
力によりヒータ28への入力電圧を変化して下部電極6
の温度を制御する。尚、第9図、第10図で、その他第
1図、第5図と同装置等は同一符号で示し説明を省略す
る。
The input voltage to the heater 28 is changed by the output from the PID regulator 26 according to the deviation 25 between the detected value of the wafer 1 temperature and the preset target value 24, and the voltage applied to the lower electrode 6 is changed.
control the temperature. Note that in FIGS. 9 and 10, the same devices as in FIGS. 1 and 5 are designated by the same reference numerals, and their explanations will be omitted.

次に、温度センサ13の他の取り付は方法を第11図に
より説明する。
Next, another method for attaching the temperature sensor 13 will be explained with reference to FIG.

下部電極6にステンレスのバネ鋼で製作したウェハ1の
自重で変形する程度のバネ定数を有する板ばね30をね
じ31により固定し、この鈑ばね30にナツト32によ
り真空導入端子17を取り付けて温度センサ13を固定
するようにしである。
A plate spring 30 made of stainless steel spring steel and having a spring constant sufficient to be deformed by the weight of the wafer 1 is fixed to the lower electrode 6 with a screw 31, and a vacuum introduction terminal 17 is attached to the plate spring 30 with a nut 32 to adjust the temperature. The sensor 13 is fixed.

こうすることにより、温度センサ13の下部電極6表面
からの突出量が大きくても静電吸着したウェハlに温度
センサ13を確実に接触させることができ検出精度のば
らつきを低減できる効果がある。
By doing so, even if the amount of protrusion of the temperature sensor 13 from the surface of the lower electrode 6 is large, the temperature sensor 13 can be reliably brought into contact with the electrostatically attracted wafer l, which has the effect of reducing variations in detection accuracy.

尚、温度センサな、この場合、板ばねで支持するように
しているが、これに替えて他タイプのばね手段が使用で
きる。つまり、少なくともウェハの自重で変形(変位)
する程度のバネ定数を有するものであれば良い。
Although the temperature sensor is supported by a leaf spring in this case, other types of spring means can be used instead. In other words, at least the wafer is deformed (displaced) by its own weight.
Any spring constant is sufficient as long as it has a spring constant of a certain degree.

次に温度センサ13の他の構造について第12図により
説明する。
Next, another structure of the temperature sensor 13 will be explained with reference to FIG.

第3図で示したものと異なるところは、キャラブ23の
代わりにけい光体20表面に蒸着膜33を形成したとこ
ろであり、同様の検出精度が得られる。膜の材質として
はAg、’Au、’A、C等が適している。尚、しづい
光体、石英ファイバの耐熱温度はそれぞれ450℃、1
000℃であり、けい光体の耐熱温度以下で蒸着すれば
、その性能に特に問題は生じない。
The difference from that shown in FIG. 3 is that a vapor deposited film 33 is formed on the surface of the phosphor 20 instead of the carab 23, and the same detection accuracy can be obtained. Suitable materials for the film include Ag, 'Au, 'A, and C. In addition, the heat resistance temperature of Shizui optical body and quartz fiber is 450℃ and 1
000° C., and if it is deposited at a temperature below the heat-resistant temperature of the phosphor, no particular problem will arise in its performance.

次に温度センサ13の更に他の構造についで第13図に
より説明する。
Next, another structure of the temperature sensor 13 will be explained with reference to FIG.

ステンレス管34内に酸化マグネシウム35を充てんし
て熱電対36を固定したシース型熱電対の先端をキャッ
プ23または蒸着膜33で被覆したものであり、ステン
レスと酸化マグネシウムで全てを被覆した場合に生じる
これらの熱伝導率に起因する測定誤差を小さく抑制でき
、前述のけい光体20を利用したものと路間等の検出精
度が得られる。
This is a sheath type thermocouple in which a stainless steel tube 34 is filled with magnesium oxide 35 and a thermocouple 36 is fixed.The tip of the sheathed thermocouple is covered with a cap 23 or a vapor deposited film 33.This occurs when the entire stainless steel tube 34 is covered with stainless steel and magnesium oxide. Measurement errors caused by these thermal conductivities can be suppressed to a small level, and detection accuracy for road gaps, etc., can be obtained compared to that using the phosphor 20 described above.

しかし、上記のエツチング装置に適用する場合には高周
波電源からの高周波を遮断するためのロバスフィルタを
回路中1こ設ける必要がある。
However, when applied to the above-mentioned etching apparatus, it is necessary to provide one robust filter in the circuit to cut off the high frequency waves from the high frequency power source.

以上、エツチング装置に適用した場合について説明した
が他のウェハな連続して処理するア:。
The above description has been made regarding the case where it is applied to an etching apparatus, but it can also be applied to other applications where wafers are processed continuously.

ハ装置や、スパッタ装置、CVD装置、MBE装置等の
成膜装置にも適用することができる。
The present invention can also be applied to film forming apparatuses such as a sputtering apparatus, a CVD apparatus, an MBE apparatus, and the like.

いずれにしても、このように真空下で連続処理されるウ
ェハに限らず、連続して処理される対象物、つまり、個
数が複数個の対象物、温度測定端子を直接取り付けるこ
とができない対象物等の温度を検出するのに、本発明は
極めて有効である。
In any case, it is not limited to wafers that are continuously processed in this way, but also objects that are processed continuously, that is, objects that have multiple objects, and objects that cannot be directly attached to temperature measurement terminals. The present invention is extremely effective for detecting temperatures such as

また、対象物が、冷却、加熱または冷却も加熱もされな
いものであっても、本発明を実施する上で何等、支障は
生じない。
Further, even if the object is cooled, heated, or neither cooled nor heated, no problem will arise in implementing the present invention.

[発明の効果] 本発明によれば連続して処理される対象物の温度を連続
的に精度よく検出できる効果がある。
[Effects of the Invention] According to the present invention, it is possible to continuously and accurately detect the temperature of objects that are continuously processed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例のマイクロ波エツチング装
置の要部構成図、第2図は、第1図の温度センサ取付部
分の平面図、第3図は、同じく縦断面図、第4図は、温
度センサの要部詳細縦断面区、第5図は、ウェハ温度制
御回路図、第6図は、ウェハ温度測定の実験線図、第7
図は、ウェハ温度の他の制御方法を示すマイクロ波エツ
チング装置の要部構成図、第8図は、同しくウェハ温度
制御回路図、第9区は、ウェハ温度の川に他の制御方法
を示すマイクロ波エツチング装置の要部構成図、第10
図は、同じくウェハ調度制御回路図、第11図は、温度
センサの他の取付は実施例を示す温度センサ取付部分の
縦断面図、第12図は、温度セン1ノーの他の実施例を
示す温度センサの要部詳細縦断面図、第13図は、温度
センサの更に他の実施例を示す温度センサの要部詳細縦
断面図である。 ]、  −−−−−−ウェハ、6−−−−−−下部電極
、8−−−−−−絶縁膜、9−−一−−−直流電源、1
0−−−−−−マスフローコントローラ。 12−−−−−−冷媒循環機、13−−−−−一温度セ
ンザ、14.15.27.29−−−−−制御装置、1
6−−−−−−パツキン、17−−−−−−真空導入端
子、18−−−−−−ウェハ押上げ部材、19−−−−
−−切欠き、20−−−−−一けい光体、 ツブ、 夕、30 石英ファイバ、 PID調節器、 板ばね、33 蒸着膜、 キヤ ヒー ’sz図 43圀 13−一一タシに4〔イピンサ 18−一−ウェハ押上げ″);P戦 第4閃 第5閉 オ 図 叶/4(s) ’47国 7オ 闇 イ 図 y オ lθ 図 オ l 閃 第12目 オ13酊
FIG. 1 is a block diagram of the main parts of a microwave etching apparatus according to an embodiment of the present invention, FIG. 2 is a plan view of the temperature sensor mounting portion of FIG. 1, and FIG. Figure 4 is a detailed longitudinal section of the main part of the temperature sensor, Figure 5 is a wafer temperature control circuit diagram, Figure 6 is an experimental diagram for wafer temperature measurement, and Figure 7 is a detailed longitudinal cross-section of the main part of the temperature sensor.
The figure is a main part configuration diagram of a microwave etching apparatus showing other control methods for wafer temperature, FIG. 8 is a wafer temperature control circuit diagram, and Section 9 shows other control methods for controlling wafer temperature. Main part configuration diagram of the microwave etching apparatus shown in Fig. 10.
The figure also shows a wafer preparation control circuit diagram, Fig. 11 is a vertical sectional view of the temperature sensor mounting part showing another embodiment of the temperature sensor, and Fig. 12 shows another embodiment of the temperature sensor 1. FIG. 13 is a detailed vertical cross-sectional view of a main part of a temperature sensor showing still another embodiment of the temperature sensor. ], ------- Wafer, 6------ Lower electrode, 8--- Insulating film, 9----1--- DC power supply, 1
0---Mass flow controller. 12-------Refrigerant circulation machine, 13-----1 temperature sensor, 14.15.27.29-----Control device, 1
6------Packing, 17------Vacuum introduction terminal, 18---Wafer pushing member, 19------
--- Notch, 20 --- One phosphor, tube, evening, 30 Quartz fiber, PID controller, leaf spring, 33 Vapor-deposited film, Kyahi'sz Figure 43, 13-11, 4 18-1-Wafer push-up''); P-war 4th flash 5th closing O figure / 4 (s) '47 country 7 O darkness I figure y O l θ figure O l Flash 12th eye O 13 drunkenness

Claims (1)

【特許請求の範囲】 1、連続して処理される対象物の温度を検出する方法に
おいて、温度測定端子を熱伝導率が大きな材料で被覆し
た温度センサを前記対象物に接触させて該対象物の温度
を測定することを特徴とする温度の検出方法。 2、前記温度測定端子をけい光体とし、熱伝導率が大き
な材料で成るキャップで前記けい光体を被覆し、前記キ
ャップを前記対象物に接触させる第1請求項に記載の温
度の検出方法。 3、Al、Cu、W、SiCより成るキャップで前記け
い光体を被覆した第2請求項に記載の温度の検出方法。 4、前記温度測定端子をけい光体とし、熱伝導率が大き
な蒸着膜で前記けい光体を被覆し、前記蒸着膜を前記対
象物に接触させる第1請求項に記載の湿度の検出方法。 5、Ag、Au、Alでなる蒸着膜で前記けい光体を被
覆した第4請求項に記載の温度の検出方法。 6、前記温度測定端子を熱電対とし、熱伝導率が大きな
材料で成るキャップで前記熱電対を被覆し、前記キャッ
プを前記対象物に接触させる第1請求項に記載の温度の
検出方法。 7、前記温度測定端子を熱電対とし、熱伝導率が大きな
蒸着膜で前記熱電対を被覆し、前記蒸着膜を前記対象物
に接触させる第1請求項に記載の温度の検出方法。 8、外力を付与して前記温度センサを前記対象物に接触
させる第1請求項ないし第7請求項に記載の温度の検出
方法。 9、静電吸着力により前記温度センサを前記対象物に接
触させる第8請求項に記載の温度の検出方法。 10、前記温度センサをばね力により支持して前記対象
物に接触させる第1請求項ないし第7請求項に記載の温
度の検出方法。 11、静電吸着力により前記温度センサを前記対象物に
接触させると共に、前記温度センサをばね力により支持
して前記対象物に接触させる第1請求項ないし第7請求
項に記載の温度の検出方法。
[Claims] 1. In a method for detecting the temperature of an object that is continuously processed, a temperature sensor whose temperature measurement terminal is coated with a material having high thermal conductivity is brought into contact with the object; A temperature detection method characterized by measuring the temperature of. 2. The temperature detection method according to claim 1, wherein the temperature measurement terminal is a phosphor, the phosphor is covered with a cap made of a material with high thermal conductivity, and the cap is brought into contact with the object. . 3. The temperature detection method according to claim 2, wherein the phosphor is covered with a cap made of Al, Cu, W, or SiC. 4. The humidity detection method according to claim 1, wherein the temperature measuring terminal is a phosphor, the phosphor is covered with a vapor deposited film having high thermal conductivity, and the vapor deposited film is brought into contact with the object. 5. The temperature detection method according to claim 4, wherein the phosphor is coated with a deposited film made of Ag, Au, or Al. 6. The temperature detection method according to claim 1, wherein the temperature measuring terminal is a thermocouple, the thermocouple is covered with a cap made of a material with high thermal conductivity, and the cap is brought into contact with the object. 7. The temperature detection method according to claim 1, wherein the temperature measurement terminal is a thermocouple, the thermocouple is covered with a deposited film having high thermal conductivity, and the deposited film is brought into contact with the object. 8. The temperature detection method according to any one of claims 1 to 7, wherein the temperature sensor is brought into contact with the object by applying an external force. 9. The temperature detection method according to claim 8, wherein the temperature sensor is brought into contact with the object by electrostatic adsorption force. 10. The temperature detection method according to any one of claims 1 to 7, wherein the temperature sensor is supported by a spring force and brought into contact with the object. 11. Temperature detection according to any one of claims 1 to 7, in which the temperature sensor is brought into contact with the object by electrostatic adsorption force, and the temperature sensor is supported by a spring force and brought into contact with the object. Method.
JP2214440A 1990-08-15 1990-08-15 Temperature detector Expired - Fee Related JP2641606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2214440A JP2641606B2 (en) 1990-08-15 1990-08-15 Temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2214440A JP2641606B2 (en) 1990-08-15 1990-08-15 Temperature detector

Publications (2)

Publication Number Publication Date
JPH0498135A true JPH0498135A (en) 1992-03-30
JP2641606B2 JP2641606B2 (en) 1997-08-20

Family

ID=16655812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2214440A Expired - Fee Related JP2641606B2 (en) 1990-08-15 1990-08-15 Temperature detector

Country Status (1)

Country Link
JP (1) JP2641606B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116098A (en) * 2005-10-20 2007-05-10 Applied Materials Inc Capacitively coupled plasma reactor having cooled/heated wafer supporter having uniform temperature distribution
US7374335B2 (en) * 2001-04-20 2008-05-20 Luxtron Corporation In situ optical surface temperature measuring techniques and devices
JP6060403B1 (en) * 2015-11-11 2017-01-18 並木精密宝石株式会社 Sapphire member manufacturing apparatus and sapphire member manufacturing method
JP2023505764A (en) * 2019-12-10 2023-02-13 アプライド マテリアルズ インコーポレイテッド Apparatus for measuring temperature in vacuum and microwave environments

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0159836U (en) * 1987-10-09 1989-04-14
JPH0458122A (en) * 1990-06-26 1992-02-25 Fujitsu Ltd Temperature measuring method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0159836U (en) * 1987-10-09 1989-04-14
JPH0458122A (en) * 1990-06-26 1992-02-25 Fujitsu Ltd Temperature measuring method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7374335B2 (en) * 2001-04-20 2008-05-20 Luxtron Corporation In situ optical surface temperature measuring techniques and devices
JP2007116098A (en) * 2005-10-20 2007-05-10 Applied Materials Inc Capacitively coupled plasma reactor having cooled/heated wafer supporter having uniform temperature distribution
JP4540644B2 (en) * 2005-10-20 2010-09-08 アプライド マテリアルズ インコーポレイテッド Capacitively coupled plasma reactor with cooled / heated wafer support with uniform temperature distribution
JP6060403B1 (en) * 2015-11-11 2017-01-18 並木精密宝石株式会社 Sapphire member manufacturing apparatus and sapphire member manufacturing method
JP2017088453A (en) * 2015-11-11 2017-05-25 並木精密宝石株式会社 Production apparatus of sapphire member and production method of sapphire member
JP2023505764A (en) * 2019-12-10 2023-02-13 アプライド マテリアルズ インコーポレイテッド Apparatus for measuring temperature in vacuum and microwave environments

Also Published As

Publication number Publication date
JP2641606B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
KR200479181Y1 (en) Replaceable upper chamber parts of plasma processing apparatus
US7651269B2 (en) Temperature probes having a thermally isolated tip
US8573836B2 (en) Apparatus and method for evaluating a substrate mounting device
EP1065703A2 (en) Vacuum processing method and apparatus
US11024522B2 (en) Virtual sensor for spatially resolved wafer temperature control
KR101783362B1 (en) Plate shaped body for temperature measurement and temperature measuring apparatus provided with same
JPH04148545A (en) Temperature measuring instrument for photoirradiation heated substrate
KR100402299B1 (en) Arrangement for processing a substrate wafer, and method for operating it
RU2218631C2 (en) INFRARED RADIATION CONTROLLED CIRCUIT ( VARIANTS ), INFRARED RADIATION DETECTOR AND METHOD OF EMPLOYMENT OF INFRARED RADIATION BASED ON SiC
JPH0498135A (en) Detection of temperature
JPH10116885A (en) Substrate temperature controlling mechanism
JPH09320798A (en) Plasma processor
CN106935470A (en) A kind of plasma processor with temperature measuring equipment
JPH0451538A (en) Temperature measuring instrument for plate like object
JP2001093882A (en) Temperature measuring device and vacuum treating device equipped with the same
JP2005147976A (en) Temperature-measuring apparatus, chuck monitor, and plasma processing device
JPH0722482A (en) Film-thickness measuring device and thin-film forming device using film-thickness measuring device
KR20190027027A (en) Apparatus and method for treating substrate
JPS63155727A (en) Low temperature dry etching apparatus
EP0406669A2 (en) Thin film making method on semiconductor substrate and temperature controlling systems therefor
JPH06177116A (en) Gas processing system
JPH10223397A (en) Plasma processor
JPH07151606A (en) Instrument for measuring temperature of substrate
JPH03195928A (en) Manufacturing apparatus for semiconductor
JPH04297054A (en) Method and apparatus for processing semiconductor wafer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees