JPH0497906A - Super-hard powder and super-hard sintered body - Google Patents

Super-hard powder and super-hard sintered body

Info

Publication number
JPH0497906A
JPH0497906A JP2215412A JP21541290A JPH0497906A JP H0497906 A JPH0497906 A JP H0497906A JP 2215412 A JP2215412 A JP 2215412A JP 21541290 A JP21541290 A JP 21541290A JP H0497906 A JPH0497906 A JP H0497906A
Authority
JP
Japan
Prior art keywords
powder
hard
super
ultra
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2215412A
Other languages
Japanese (ja)
Inventor
Norimasa Uchida
内田 憲正
Hideki Nakamura
秀樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2215412A priority Critical patent/JPH0497906A/en
Publication of JPH0497906A publication Critical patent/JPH0497906A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a super-hard powder useful for manufacturing tools and dies which are cheap and excellent in wear resistance by preparing the powder by atomizing method so that the powder consists of a specified chemical compsn. of Fe and W or Mo and C. CONSTITUTION:The super-hard powder is prepared by atomizing method and consists of the chemical composition of FeaMbC (wherein M is W or Mo, (a) is 2.8-5.0 and (b) is 1.8-4.0 atomic %) and inevitable impurities. By forming a surface hard layer using this super-hard powder by melt spraying method, a surface hardened composite body having good adhesion property, excellent workability and high wear resistance can be obtained. Moreover, by mixing this super-hard powder with Ni-base autogenous alloy powder or Co-base autogenous alloy powder and then compacting by HIP method, etc., composite layers excellent in corrosion resistance and wear resistance can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野コ 本発明は切削工具、塑性加工用工具や金型、および耐熱
耐摩耗部品などに用いられる超硬質粉末および超硬質焼
結成形体に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to ultra-hard powder and ultra-hard sintered compacts used for cutting tools, plastic working tools and molds, heat-resistant and wear-resistant parts, etc. .

〔従来の技術〕[Conventional technology]

従来から切削工具、塑性加工用工具や金型、および耐熱
耐摩耗部品など、大きな耐摩耗性と強度または耐熱性が
要求される用途にはWC粉末を焼結した超硬合金や、高
合金高速度工具鋼粉末を焼結して製造した粉末高速度工
具鋼などが用いられている。
Traditionally, for applications that require high wear resistance, strength, or heat resistance, such as cutting tools, plastic working tools and molds, and heat-resistant and wear-resistant parts, cemented carbide made by sintering WC powder and high-alloy high Powdered high speed tool steel manufactured by sintering speed tool steel powder is used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記した従来の材料はそれぞれ長所、短所があり、その
特性を活かすべく用途に応じて適宜、材料の選定が行な
われている。
Each of the above-mentioned conventional materials has advantages and disadvantages, and materials are selected as appropriate depending on the application in order to take advantage of their characteristics.

例えば超硬合金は硬さが高く耐摩耗性に優れているが、
加工が難しく、比重が大きい等の欠点があり、さらに、
熱膨張係数が約5X10′で鋼の半分以下であるために
、安価な綱との複合や接合が難しいという欠点もある。
For example, cemented carbide has high hardness and excellent wear resistance, but
It has disadvantages such as being difficult to process and having a large specific gravity.
Since the coefficient of thermal expansion is about 5 x 10', which is less than half that of steel, it also has the disadvantage that it is difficult to combine or join with inexpensive steel.

超硬合金の場合、その主原料となるタングステンカーバ
イド(WC)はタングステンの粉末を1400〜160
0℃で炭化して製造する。その製造方法が高価であるこ
と、および本来タングステンの粉末が高価であることも
あって、タングステンカーバイドの粉末も極めて高価で
ある。
In the case of cemented carbide, tungsten carbide (WC), which is the main raw material, is made of tungsten powder with a 1400 to 160
Produced by carbonizing at 0°C. Tungsten carbide powder is also extremely expensive because its manufacturing method is expensive and tungsten powder is inherently expensive.

また超硬合金を焼結して製造する際、炭素含有量(C量
)の調整を極めて厳密に行なわなければならない。C量
が過剰であると遊離炭素を生じ、逆に不足するとη相を
生じて、いずれの場合も機械的性質が劣化する。すなわ
ち安定した品質の製造が難しいという欠点もある。
Furthermore, when manufacturing cemented carbide by sintering, the carbon content (C amount) must be adjusted extremely strictly. If the amount of C is excessive, free carbon will be produced, whereas if it is insufficient, an η phase will be produced, and in either case, the mechanical properties will deteriorate. In other words, it also has the disadvantage that it is difficult to manufacture with stable quality.

一方で粉末高速度工具鋼は加工性が良く、比重も小さく
、粉末の製造は水アトマイズあるいはガスアトマイズ等
により、比較的容易に量産できるのて有利であるが、超
硬合金との対比では硬さが低く、耐摩耗性において今−
歩不十分であるという欠点がある。
On the other hand, powdered high-speed tool steel has good workability, low specific gravity, and the powder can be mass-produced relatively easily by water atomization or gas atomization, which is an advantage. is low, and the wear resistance is
It has the disadvantage of not being slow enough.

本発明は上記の間圧点を解消し、安価で耐摩耗性に優れ
た工具や金型の製造に用いられる超硬質粉末および遁硬
質成形体を提供することを目的とする。
The object of the present invention is to eliminate the above-mentioned pressure point and provide an ultra-hard powder and a super-hard molded body that are inexpensive and have excellent wear resistance and are used in the manufacture of tools and molds.

〔課題を解決するための手段〕[Means to solve the problem]

通常の高速度工具鋼を構成する金属組織要素は、焼もど
しされたマルテンサイト基地とFe、W。
The metallographic elements that make up ordinary high-speed tool steel are a tempered martensitic base, Fe, and W.

Moを主成分とするM、C型の複炭化物およびVを主成
分とするMC型の炭化物からなる。本発明者は高速度鋼
中に存在する二〇M、C型炭化物の特性を種々検討した
ところ、基地との濡れ性が比較的よく、加工性も良い性
質があり、また比重は約L1g/cm 、熱膨張係数は
約9×lO″Gを示し鋼に近い性質を有することがわか
った。
It consists of an M- and C-type double carbide containing Mo as a main component and an MC-type carbide containing V as a main component. The present inventor has studied various properties of 20M and C type carbides present in high speed steel, and has found that they have relatively good wettability with the matrix, good workability, and have a specific gravity of about L1g/ cm, the thermal expansion coefficient was approximately 9×1O″G, and it was found to have properties close to steel.

したがって、本発明者はこのM、C型炭化物の粉末を製
造し、成形することができれば上記の問題点を解消でき
ることに着目した。
Therefore, the inventors of the present invention have focused on the fact that the above-mentioned problems can be solved if powders of M and C type carbides can be manufactured and molded.

さらに、このM、C型炭化物の融点はWCの融点が約2
900℃であるのに対し、1400〜1500℃と非常
に低いので通常の溶解炉で溶解でき、かつ水アトマイズ
法やガスアトマイズ法などの安価でがっ量産性の高い方
法でM、C型度化物の粉末を製造できることに着目して
本発明を完成させたものである。
Furthermore, the melting point of these M and C type carbides is approximately 2
900℃, it is extremely low at 1400-1500℃, so it can be melted in a normal melting furnace, and M and C type hardened products can be melted using methods such as water atomization and gas atomization, which are inexpensive and highly mass-producible. The present invention was completed by focusing on the fact that it is possible to produce a powder of

より具体的には1本発明のうち第1@明は、アトマイズ
法で製造され、原子パーセントでFeaMbC(MはW
および/またはMoでありa=2.8〜5.0. b=
1.8〜4.0)なる化学組成物および不可避不純物か
らなることを特徴とする超硬質粉末であり、第2発明は
アトマイズ法で製造され、原子パーセントでFeaMb
C(MはWおよび/またはMoであり、その40%以下
をCr、V、Nb、Ti、の1種または2種以上で置換
してなり、a=2.8〜5.0.b=1.8〜4.0)
なる化学組成物および不可避不純物からなることを特徴
とする超硬質粉末である。
More specifically, the first @ light of the present invention is produced by an atomization method, and is composed of FeaMbC (M is W) in atomic percent.
and/or Mo and a=2.8 to 5.0. b=
1.8 to 4.0) and unavoidable impurities, the second invention is produced by an atomization method and contains FeaMb
C (M is W and/or Mo, 40% or less of which is substituted with one or more of Cr, V, Nb, Ti, a=2.8-5.0.b= 1.8-4.0)
It is an ultra-hard powder characterized by consisting of a chemical composition and unavoidable impurities.

そして第3発明はアトマイズ法で製造され、原子パーセ
ントでFeaMbC(MはWおよび/またはMoであり
a=2.8〜5.0.b;1.8〜4.0)なる化学組
成物および不可避不純物からなる超硬質粉末を焼結して
なることを特徴とする超硬質焼結成形体、第4発明はア
トマイズ法で製造され、原子パーセントでFeaMbC
(MはWおよび/またはMoであり、その40%以下を
(J、r、 V、 Nb、 Ti、の1種または2種以
上で置換してなり、a=2.8〜5.0.b□1.8〜
4.0)なる化学組成物および不可避不純物からなる超
硬質粉末を、焼結してなる超硬質焼結成形体である。
And the third invention is a chemical composition manufactured by an atomization method and consisting of FeaMbC (M is W and/or Mo, a=2.8-5.0.b; 1.8-4.0) in atomic percent; The fourth invention, which is an ultra-hard sintered compact characterized by being formed by sintering ultra-hard powder containing unavoidable impurities, is manufactured by an atomization method and contains FeaMbC in atomic percent.
(M is W and/or Mo, 40% or less of which is substituted with one or more of (J, r, V, Nb, Ti, a = 2.8 to 5.0. b□1.8~
This is an ultra-hard sintered compact formed by sintering an ultra-hard powder consisting of the chemical composition 4.0) and inevitable impurities.

さらに第5発明はアトマイズ法で製造され、原子パーセ
ントでFeaMbC(MはWおよび/またはMoであり
a=2.8=5.0.b=1.8〜4.0)なる化学組
成物および不可避不純物からなる超硬質粉末、第6発明
はアトマイズ法で製造され、原子パーセントでFeaM
bC(Ml′!Wおよび/またはMoであり、その40
%以下をCr、V、Nb、Ti、の1種または2種以上
で置換してなり、a:2.8〜5.0.b=1.8〜4
.0)なる化学組成物および不可避不純物からなる超硬
質粉末のそれぞれが重量パーセントで60%以上と、実
質的【こFe、Co、 C1lの1種または2種以上か
らなるバインダ粉末の重量パーセントで40%以下とが
均一に分散してなることを特徴とする超硬質焼結成形体
である。
Furthermore, the fifth invention is a chemical composition produced by an atomization method and consisting of FeaMbC (M is W and/or Mo and a=2.8=5.0.b=1.8 to 4.0) in atomic percent; The sixth invention, which is an ultra-hard powder consisting of unavoidable impurities, is produced by an atomization method and contains FeaM in atomic percent.
bC(Ml′!W and/or Mo, and its 40
% or less with one or more of Cr, V, Nb, and Ti, a: 2.8 to 5.0. b=1.8~4
.. The chemical composition consisting of 0) and the ultra-hard powder consisting of unavoidable impurities each account for at least 60% by weight, and the binder powder consisting of one or more of Fe, Co, and C11 accounts for 40% by weight. % or less is uniformly dispersed.

〔作用〕[Effect]

M、C型炭化物はFe、M、CあるいはFe、M、Cの
化学量論的組成からなる(MはWおよび/またはMoを
示す)が、溶解後アトマイズ法で製造すれば粉末の化学
組成をかなり広い範囲に変えることができる。すなわち
C量に対してFe、WあるいはMoの含有量を化学量論
組成よりも多くすれば、M、C型炭化物と少量の過剰金
属固溶体からなる靭性のある粉末を得ることができる。
M, C type carbide consists of Fe, M, C or a stoichiometric composition of Fe, M, C (M indicates W and/or Mo), but if it is produced by the atomization method after melting, the chemical composition of the powder will change. can vary over a fairly wide range. That is, by increasing the content of Fe, W or Mo relative to the amount of C compared to the stoichiometric composition, it is possible to obtain a powder with toughness consisting of M and C type carbides and a small amount of excess metal solid solution.

化学量論組成よりも少ないときには、Mo□C,W、C
などを少量含む硬い炭化物粉末を得ることができる。
When it is less than the stoichiometric composition, Mo□C, W, C
It is possible to obtain a hard carbide powder containing a small amount of.

このアトマイズ粉末の化学組成を原子パーセントでFe
aMbC(MはWおよび/またはMo)と表わすと、本
発明ではaを2.8〜5.0.  bを1.8〜4.0
とするとき本発明の目的を達成できる。aが2.8末溝
、bが1.8未満ではW、cl Mo、C,Fe、(:
などの炭化物を多量に形成すること、融点が上昇してア
トマイズが難しくなることなどの理由で望ましくない。
The chemical composition of this atomized powder is expressed as Fe in atomic percent.
When expressed as aMbC (M is W and/or Mo), in the present invention, a is 2.8 to 5.0. b from 1.8 to 4.0
When this is done, the object of the present invention can be achieved. When a is 2.8 and b is less than 1.8, W, cl Mo, C, Fe, (:
This is undesirable because it forms a large amount of carbides such as carbides, and the melting point increases, making atomization difficult.

逆にaが5.0を越え、bが4.0を越えると、多量の
金属固溶体が形成されて耐摩耗性が低下する、などの弊
害がでるので望ましくない。
On the other hand, if a exceeds 5.0 and b exceeds 4.0, a large amount of metal solid solution is formed, resulting in disadvantages such as decreased wear resistance, which is not desirable.

また、WおよびMoの40%以下をCr、V、Nb。Further, 40% or less of W and Mo is Cr, V, and Nb.

T1などの炭化物形成元素で置換すると粉末の硬さが高
くなり、耐摩耗性が増す。しかし、40%を越えると、
本発明の目的の一つである加工性の良い硬質粉末が得ら
れず、また、成形体の靭性も低下する。なお、Feの一
部はN1および/またはC。
Substitution with a carbide-forming element such as T1 increases the hardness of the powder and increases its wear resistance. However, if it exceeds 40%,
A hard powder with good workability, which is one of the objects of the present invention, cannot be obtained, and the toughness of the molded product also decreases. Note that part of Fe is N1 and/or C.

で置き換えてもよい。You can also replace it with

上記のM、C炭化物を主とする超硬質粉末を用いて、成
形後焼結により、圧密体を製造する。このときアトマイ
ズ粉末だけでも焼結できるが、これにFe、Ni、Co
、Cuの1種または2種以上の粉末をバインダとして混
合−成形−焼結してやると、比較的低温で真密度の焼結
が可能となり、微細な焼結組織が得られ、靭性が向上す
る。しかし、バインダの量が40%を越えると成形体の
硬さ、耐摩耗性が低下するので焼結体中のバインダの量
は40%以下とする。
A compacted body is produced by molding and sintering using the ultra-hard powder mainly composed of M and C carbides. At this time, it is possible to sinter with just the atomized powder, but it is also possible to sinter with Fe, Ni, Co, etc.
By mixing, molding, and sintering one or more powders of Cu, , and Cu as a binder, true density sintering is possible at a relatively low temperature, a fine sintered structure is obtained, and toughness is improved. However, if the amount of binder exceeds 40%, the hardness and wear resistance of the molded body will decrease, so the amount of binder in the sintered body should be 40% or less.

また、本発明の超硬質粉末を用いて溶射法等により表面
硬化層を形成させると、密着性が良く加工性にも優れか
つ耐摩耗性の高い表面硬化複合体を得ることができる。
Furthermore, by forming a surface-hardened layer using the ultra-hard powder of the present invention by thermal spraying or the like, a surface-hardened composite with good adhesion, excellent workability, and high wear resistance can be obtained.

さらに、本発明の超硬質粉末とN1基自溶合金粉末やC
o基自溶合金粉末とを混合し、HIPなどで圧密化させ
ると耐食性と耐摩耗性に優れた複合層を形成できる。
Furthermore, the ultrahard powder of the present invention, the N1-base self-fluxing alloy powder and the C
When mixed with O-based self-fluxing alloy powder and consolidated by HIP or the like, a composite layer with excellent corrosion resistance and wear resistance can be formed.

〔実施例〕〔Example〕

次に実施例と図面に基づいて本発明の詳細な説明する。 Next, the present invention will be described in detail based on examples and drawings.

第1表に示す化学組成の超硬質粉末および超硬質成形体
を製造した。溶解は通常の高周波溶解炉を用い、大気雰
囲気中で溶解した。溶湯の温度は1500〜1600℃
で湯の粘性も低く、この後水アトマイズ法によって粉末
の製造を行なったが、良好な状態で製粉できた。
Ultrahard powders and ultrahard compacts having the chemical compositions shown in Table 1 were produced. Melting was carried out in an ordinary high-frequency melting furnace in an atmospheric atmosphere. The temperature of the molten metal is 1500-1600℃
The viscosity of the hot water was low, and powder was then produced using the water atomization method, and the powder was milled in good condition.

この水アトマイズ粉末のうち試料No、1、およびN 
o、4を代表させて焼結テストを行なった。
Among these water atomized powders, samples No. 1, and N
A sintering test was conducted using representative specimens o and 4.

まず、高エネルギー型ボールミルを用いて4Hr粉砕し
た。粉砕後の粉末の平均粒径は約1μmであった。また
酸素量は約5000ppmであった。バインダ粉末は、
Fe粉、Ni粉、およびCO粉とし、それぞれのバイン
ダが焼結成形体中での割合が、10wt%および35t
Mt%となるような比率で混合し、さらに酸素を還元す
るのに必要な量の炭素粉末を加えて、2%のパラフィン
ワックスとともにアルコール中で混合した。
First, it was ground for 4 hours using a high energy ball mill. The average particle size of the powder after pulverization was about 1 μm. Further, the amount of oxygen was about 5000 ppm. The binder powder is
Fe powder, Ni powder, and CO powder are used, and the proportion of each binder in the sintered compact is 10 wt% and 35 t.
The mixture was mixed in a ratio such that Mt%, carbon powder in an amount necessary to reduce oxygen was added, and the mixture was mixed in alcohol with 2% paraffin wax.

乾燥後、成形圧2〜4t/cm”で冷間成形し、脱ワツ
クス、焼結の工程を経てバルクを得た。
After drying, it was cold-formed at a molding pressure of 2 to 4 t/cm'', and a bulk was obtained through wax removal and sintering steps.

第2表に粉末の焼結試験の結果を示す。試料No、1お
よびNo、4の粉末が、真密度の成形体が得られるバイ
ンダの種類、量および焼結温度との関係を示す。また第
1図には試料No、1におけるバインダ量が10%の時
バインダの種類が異なる成形体とバインダを用いない成
形体の焼結温度と密度の関係を示す。
Table 2 shows the results of the powder sintering test. The powders of Samples No. 1 and No. 4 show the relationship between the type and amount of binder and the sintering temperature so that a compact with true density can be obtained. Further, FIG. 1 shows the relationship between sintering temperature and density for a molded body with different types of binder and a molded body without a binder when the binder amount is 10% in sample No. 1.

第2表 COおよびNiをバインダとした場合的1250℃でほ
ぼ真密度の成形体を得た。Feをバインダとする場合は
約1320℃、バインダを用いない場合は約1430℃
でほぼ真密度の成形体を得た。
Table 2 In the case of using CO and Ni as binders, a molded article having approximately true density was obtained at 1250°C. Approximately 1320℃ when Fe is used as a binder, approximately 1430℃ when no binder is used
A molded product with almost true density was obtained.

成形体の硬さはバインダ量10%の場合HRC62〜6
8゜抗折力は50−100kg/me”、バインダ量3
5%の場合)IRc45−50、抗折力は120−15
0kg/mm”であった。また、試料No、1に較べて
試料No、4の焼結体の方が高い硬さが得られた。
The hardness of the molded body is HRC62-6 when the binder amount is 10%.
8゜Transverse rupture strength is 50-100kg/me”, binder amount is 3
5%) IRc45-50, transverse rupture strength 120-15
The sintered body of Sample No. 4 had a higher hardness than that of Sample No. 1.

次に本発明の成形体の高温硬さを測定した。その結果を
第2図に示す。なお、比較として従来の高合金粉末高速
度工具鋼とJISK20種のwc超硬合金の測定も行な
った。第2図に示されるように本発明合金は常温の硬さ
はHvlooo−1150と従来の高合金粉末高速度工
具鋼と同程度であるが硬さの温度依存性が小さいという
興味深い挙動を示すこととがあきらかとなった。
Next, the high temperature hardness of the molded article of the present invention was measured. The results are shown in FIG. For comparison, measurements were also conducted on conventional high-alloy powder high-speed tool steel and JISK 20 class WC cemented carbide. As shown in Figure 2, the alloy of the present invention exhibits an interesting behavior in that the hardness at room temperature is comparable to Hvlooo-1150 and conventional high-alloy powder high-speed tool steel, but the temperature dependence of hardness is small. It became clear that

そのため、高温硬さは高合金粉末高速度工具鋼と比較し
て著しく高く、GoまたはFeをバインダに用いた場合
には、600℃以上でに20種超硬合金よりも高温硬さ
が高いことが判った。
Therefore, the high-temperature hardness is significantly higher than that of high-alloy powder high-speed tool steel, and when Go or Fe is used as a binder, the high-temperature hardness is higher than Class 20 cemented carbide at temperatures above 600°C. It turns out.

この性質から本発明の粉末およびその成形体は使用中に
高温にさ社、される用途、あるいは摩擦熱などで局部的
に昇温しで摩耗するような工具、部品に適用した場合に
特に効果が大きい。
Due to this property, the powder of the present invention and its compact are particularly effective when applied to applications that are exposed to high temperatures during use, or tools and parts that are locally heated due to frictional heat and wear out. is large.

また本発明の超硬質粉末およびその成形体の熱膨張係数
を測定したところ約9.4X104であり、鋼とのロー
付けが無理なく可能である。
Furthermore, the thermal expansion coefficient of the ultra-hard powder of the present invention and its molded product was measured and was approximately 9.4×104, which makes it possible to braze it with steel without difficulty.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、特に高温硬さが高く、かつ比重と熱膨
張係数が鋼に近い粉末あるいはその成形体を得ることが
でき、耐熱、耐摩耗性を必要とする工具、部品類の大幅
な寿命向上が達成できる。
According to the present invention, it is possible to obtain powder or compacts thereof that have particularly high high-temperature hardness, specific gravity and thermal expansion coefficient close to those of steel, and can be used to greatly improve the use of tools and parts that require heat resistance and wear resistance. Lifespan improvement can be achieved.

また、安価な鋼との接合体や複合体の製造が容易にでき
るので工業的効果は非常に大きい。
In addition, since it is easy to manufacture joints and composites with inexpensive steel, it has a very large industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のバインダの種類を変えた超硬質焼結成
形体の焼結温度と密度の関係を示す図、第2図は本発明
によるバインダの種類と焼結温度の異なる超硬質焼結成
形体の高温硬さを示す図で第 ス 第2図 ハンン2′二4tJりA稿老θHβλ清シpトns】捷
3+200 :2”50   13(X)    +350TIJO
○nが31(亡ρ ]450 Fl、T 温浸 (C)
Figure 1 is a diagram showing the relationship between sintering temperature and density of ultra-hard sintered bodies with different types of binder according to the present invention, and Figure 2 is a diagram showing the relationship between ultra-hard sintered bodies with different types of binder and sintering temperature according to the present invention. This is a diagram showing the high temperature hardness of a shape.
○n is 31 (dead rho) 450 Fl, T Digestion (C)

Claims (1)

【特許請求の範囲】 1 アトマイズ法で製造され、原子パーセントでFea
MbC(MはWおよび/またはMoでありa=2.8〜
5.0、b=1.8〜4.0)なる化学組成物および不
可避不純物からなることを特徴とする超硬質粉末。 2 アトマイズ法で製造され、原子パーセントでFea
MbC(MはWおよび/またはMoであり、その40%
以下をCr、V、Nb、Ti、の1種または2種以上で
置換してなり、a=2.8〜5.0、b=1.8〜4.
0)なる化学組成物および不可避不純物からなることを
特徴とする超硬質粉末。 3 アトマイズ法で製造され、原子パーセントでFea
MbC(MはWおよび/またはMoでありa=2.8〜
5.0、b=1.8〜4.0)なる化学組成物および不
可避不純物からなる超硬質粉末を焼結してなることを特
徴とする超硬質焼結成形体。 4 アトマイズ法で製造され、原子パーセントでFea
MbC(MはWおよび/またはMoであり、その40%
以下をCr、V、Nb、Ti、の1種または2種以上で
置換してなり、a=2.8〜5.0、b=1.8〜4.
0)なる化学組成物および不可避不純物からなる超硬質
粉末を焼結してなることを特徴とする超硬質焼結成形体
。 5 アトマイズ法で製造され、原子パーセントでFea
MbC(MはWおよび/またはMoでありa=2.8〜
5.0、b=1.8〜4.0)なる化学組成物および不
可避不純物からなる超硬質粉末粒子の、重量パーセント
で60%以上と、実質的にFe、Ni、Co、Cuの1
種または2種以上からなるバインダ粉末の重量パーセン
トで40%以下とが、均一に分散してなることを特徴と
する超硬質焼結成形体。 6 アトマイズ法で製造され、原子パーセントでFea
MbC(MはWおよび/またはMoであり、その40%
以下をCr、V、Nb、Ti、の1種または2種以上で
置換してなり、a=2.8〜5.0、b=1.8〜4.
0)なる化学組成物および不可避不純物からなる超硬質
粉末粒子の重量パーセントで60%以上と、実質的にF
e、Ni、Co、Cuの1種または2種以上からなるバ
インダ粉末の重量パーセントで40%以下とが、均一に
分散してなることを特徴とする超硬質焼結成形体。
[Claims] 1. Produced by the atomization method and containing Fea in atomic percent
MbC (M is W and/or Mo and a=2.8~
5.0, b=1.8 to 4.0) and unavoidable impurities. 2 Manufactured by atomization method, Fea in atomic percent
MbC (M is W and/or Mo, 40%
The following are substituted with one or more of Cr, V, Nb, and Ti, a=2.8-5.0, b=1.8-4.
0) and inevitable impurities. 3 Produced by atomization method, Fea in atomic percent
MbC (M is W and/or Mo and a=2.8~
5.0, b=1.8-4.0) and an ultra-hard powder consisting of inevitable impurities. 4 Manufactured by atomization method, Fea in atomic percent
MbC (M is W and/or Mo, 40%
The following are substituted with one or more of Cr, V, Nb, and Ti, a=2.8-5.0, b=1.8-4.
An ultra-hard sintered compact characterized by being formed by sintering an ultra-hard powder consisting of a chemical composition of 0) and inevitable impurities. 5 Manufactured by atomization method, Fea in atomic percent
MbC (M is W and/or Mo and a=2.8~
5.0, b = 1.8 to 4.0) and unavoidable impurities.
1. An ultra-hard sintered compact, characterized in that a binder powder consisting of a species or two or more species is uniformly dispersed in a weight percentage of 40% or less. 6 Produced by atomization method, Fea in atomic percent
MbC (M is W and/or Mo, 40%
The following are substituted with one or more of Cr, V, Nb, and Ti, a=2.8-5.0, b=1.8-4.
F
1. An ultra-hard sintered compact, characterized in that a binder powder consisting of one or more of e, Ni, Co, and Cu is uniformly dispersed in a weight percentage of 40% or less.
JP2215412A 1990-08-15 1990-08-15 Super-hard powder and super-hard sintered body Pending JPH0497906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2215412A JPH0497906A (en) 1990-08-15 1990-08-15 Super-hard powder and super-hard sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2215412A JPH0497906A (en) 1990-08-15 1990-08-15 Super-hard powder and super-hard sintered body

Publications (1)

Publication Number Publication Date
JPH0497906A true JPH0497906A (en) 1992-03-30

Family

ID=16671903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2215412A Pending JPH0497906A (en) 1990-08-15 1990-08-15 Super-hard powder and super-hard sintered body

Country Status (1)

Country Link
JP (1) JPH0497906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515445A (en) * 2000-12-20 2004-05-27 トライバッハー インドゥストリ アクチエンゲゼルシャフト Tungsten carbide manufacturing method
US11897166B2 (en) 2018-08-01 2024-02-13 Sacmi Cooperativa Meccanici Imola Societa' Cooperativa Method for compacting powder material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515445A (en) * 2000-12-20 2004-05-27 トライバッハー インドゥストリ アクチエンゲゼルシャフト Tungsten carbide manufacturing method
US11897166B2 (en) 2018-08-01 2024-02-13 Sacmi Cooperativa Meccanici Imola Societa' Cooperativa Method for compacting powder material

Similar Documents

Publication Publication Date Title
US4299629A (en) Metal powder mixtures, sintered article produced therefrom and process for producing same
US6066191A (en) Hard molybdenum alloy, wear resistant alloy and method for manufacturing the same
US3954479A (en) High-temperature and wear-resistant antifriction material having low thermal expansions
CN108642361B (en) High-strength high-hardness ceramic material and production process thereof
CN1929991B (en) High-abrasive material
CN110499442B (en) High-strength corrosion-resistant Cr3C2Light metal ceramic alloy and preparation method thereof
JPS6362474B2 (en)
US5387294A (en) Hard surfacing alloy with precipitated metal carbides and process
US4343650A (en) Metal binder in compaction of metal powders
US3658604A (en) Method of making a high-speed tool steel
NZ197962A (en) Steel-hard carbide composition,tools and method of manufacture
JPH0497906A (en) Super-hard powder and super-hard sintered body
JPS6137946A (en) Composite material and its production
US2778757A (en) Carburized tungsten alloy article
TW200426226A (en) Powder metal composition and method for producing components thereof
US2124020A (en) Metal alloy
WO2016186037A1 (en) Hard sintered alloy and method for manufacturing same
JPS5857502B2 (en) Sintered material with toughness and wear resistance
JPS59118852A (en) Composite high speed steel of sintered hard alloy and its production
CN106048276A (en) Preparation method for high-abrasion-resistance WC-based hard alloy composite
US20120107170A1 (en) Alloy steel powder and their sintered body
US4518427A (en) Iron or steel powder, a process for its manufacture and press-sintered products made therefrom
JP4058807B2 (en) Hard molybdenum alloy, wear-resistant alloy, wear-resistant sintered alloy and method for producing the same
JPH0593201A (en) Superhard sintered compact
JPH01279730A (en) Super hard composite material