JPH0496957A - Polypropylene composition for part having high impact resistance - Google Patents

Polypropylene composition for part having high impact resistance

Info

Publication number
JPH0496957A
JPH0496957A JP2213666A JP21366690A JPH0496957A JP H0496957 A JPH0496957 A JP H0496957A JP 2213666 A JP2213666 A JP 2213666A JP 21366690 A JP21366690 A JP 21366690A JP H0496957 A JPH0496957 A JP H0496957A
Authority
JP
Japan
Prior art keywords
weight
polypropylene
modified
elastomer
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2213666A
Other languages
Japanese (ja)
Other versions
JP2885492B2 (en
Inventor
Takao Nomura
孝夫 野村
Takesumi Nishio
西尾 武純
Shinya Kawamura
信也 河村
Akane Okada
岡田 茜
Osamu Fukui
福井 修
Kiyoshi Tsutsui
筒井 清
Tomohiko Akagawa
智彦 赤川
Ikunori Sakai
郁典 酒井
Takashi Deguchi
隆 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Ube Corp
Original Assignee
Toyota Motor Corp
Ube Industries Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Ube Industries Ltd, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2213666A priority Critical patent/JP2885492B2/en
Priority to EP19910307451 priority patent/EP0472344A3/en
Publication of JPH0496957A publication Critical patent/JPH0496957A/en
Application granted granted Critical
Publication of JP2885492B2 publication Critical patent/JP2885492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a polypropylene composition suitable for interior and exterior automative trims such as fender, etc., having excellent rigidity, heat resistance, etc., by blending a polypropylene with a reinforced elastomer and an inorganic filler into which a modified polyamide hybridized with clay minerals is finely dispersed. CONSTITUTION:100 pts.wt. total amounts of (A) 98-30wt.% modified polypropylene prepared by at least partially subjecting a crystalline polypropylene to graft modification with an unsaturated carboxylic acid and (B) 2-70wt.% reinforced elastomer composition comprising (B1: 40-95wt.% modified elastomer prepared by at least partially subjecting ethylene.alpha-olefin copolymer rubber and/or styrene-based hydrogenated rubber to graft modification with an unsaturated carboxylic acid (derivative) and B2: 60-5wt.% polyamide modified with clay minerals are mixed with (C) 1-15 pts.wt. inorganic filler.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、自動車のバンパー等の大型高衝撃性用部品に
好適に用いられる高衝撃性ポリプロピレン組成物に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-impact polypropylene composition suitable for use in large-scale high-impact parts such as automobile bumpers.

更に詳しくは、本発明はポリプロピレンに、粘土鉱物で
ハイブリッド化された変性ポリアミドをあらかじめ微分
散させた強化エラストマーと無機充填剤とを配合するこ
とにより得られ、特に剛性、耐熱性、耐衝撃性、耐受傷
性及び寸法安定性に優れた高衝撃性部品用ポリプロピレ
ン組成物に関する。
More specifically, the present invention is obtained by blending polypropylene with a reinforcing elastomer in which a modified polyamide hybridized with clay minerals is finely dispersed in advance and an inorganic filler, and in particular, it has excellent rigidity, heat resistance, impact resistance, This invention relates to a polypropylene composition for high-impact parts that has excellent scratch resistance and dimensional stability.

〔従来の技術〕[Conventional technology]

結晶性ポリプロピレンは剛性、表面光沢、耐熱性、耐受
傷性、及び機械的強度に優れ射出成形が容易なため、従
来から各種用途に幅広く用いられてきた。しかし、自動
車用バンパー等の大型部品向けの用途には耐衝撃性、耐
熱性、剛性等が不十分であった。このため、結晶性ポリ
プロピレンにタルク等の無機充填剤とエチレン・α−オ
レフィン共重合体ゴムやスチレン系エラストマー成分合
したポリプロピレン組成物が大型耐衝撃部品用として開
発された。
Crystalline polypropylene has been widely used for various purposes because it has excellent rigidity, surface gloss, heat resistance, scratch resistance, and mechanical strength, and is easy to injection mold. However, impact resistance, heat resistance, rigidity, etc. were insufficient for use in large parts such as automobile bumpers. For this reason, polypropylene compositions in which crystalline polypropylene is combined with inorganic fillers such as talc and ethylene/α-olefin copolymer rubber and styrene elastomer components have been developed for use in large impact-resistant parts.

しかし、このポリプロピレン組成物は、耐衝撃性と剛性
や耐熱性とのバランスはさほど改良されておらず、その
上、表面硬度が低いので耐受傷性に劣るという問題があ
った。
However, this polypropylene composition has the problem that the balance between impact resistance, rigidity, and heat resistance has not been significantly improved, and furthermore, the surface hardness is low, resulting in poor scratch resistance.

そこで、剛性や耐熱性、耐衝撃性に優れ、且つ耐受傷性
にも優れるポリプロピレン組成物を得る方法が種々試み
られてきた。例えば、ポリアミド等と変性エラストマー
を結晶性ポリプロピレンに配合したポリプロピレン−ポ
リアミド系組成物等が、これまで開発されてきた(特開
昭59−149940号、特開昭60−110740号
、特開昭62−54743号などの公報など参照)。こ
のポリプロピレン−ポリアミド組成物は、剛性、耐熱性
、耐衝撃性に加え表面硬度が高く耐受傷性も改良されて
いる。
Therefore, various methods have been attempted to obtain polypropylene compositions that have excellent rigidity, heat resistance, impact resistance, and scratch resistance. For example, polypropylene-polyamide compositions in which polyamide, etc. and modified elastomers are blended with crystalline polypropylene have been developed (JP-A-59-149940, JP-A-60-110740, JP-A-62 (Refer to publications such as No.-54743). This polypropylene-polyamide composition has high surface hardness and improved scratch resistance in addition to rigidity, heat resistance, and impact resistance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記ポリプロピレン−ポリアミド系組成
物でも大型部品用としては剛性、耐熱性及び耐衝撃性が
充分なものとは言えず、更にこの組成物は結晶性ポリプ
ロピレン、ポリアミド及び変性エラストマー等のプラス
チック及びエラストマー成分のみから構成されており、
無機充填剤を含んでいないため、線膨張係数が大きいと
いう欠点がある。
However, even the above-mentioned polypropylene-polyamide compositions cannot be said to have sufficient rigidity, heat resistance, and impact resistance for use in large parts, and furthermore, this composition is suitable for use in plastics and elastomers such as crystalline polypropylene, polyamides, and modified elastomers. Consists only of ingredients,
Since it does not contain an inorganic filler, it has the disadvantage of a large coefficient of linear expansion.

このため、このポリプロピレン−ポリアミド系組成物を
用いた成形品は使用環境の温度変化に伴う寸法の変化が
大きかった。この問題は大型部品に使用する場合に特に
顕著である。
For this reason, molded articles using this polypropylene-polyamide composition have large dimensional changes due to changes in the temperature of the environment in which they are used. This problem is particularly noticeable when used in large parts.

ポリプロピレンやその組成物の寸法安定性はタルク等の
無機充填剤の配合により改良できることが一般に知られ
ている。しかし、前記のポリプロピレン−ポリアミド系
組成物に、単に無機充填剤を配合しただけではポリアミ
ドや変性エラストマー等のポリプロピレンマトリックス
での分散構造が破壊され耐衝撃性が大幅に低下すること
が判った。このため、単に無機充填剤を配合しただけで
は大型部品用途への通用は困難であった。
It is generally known that the dimensional stability of polypropylene and compositions thereof can be improved by incorporating inorganic fillers such as talc. However, it has been found that simply adding an inorganic filler to the polypropylene-polyamide composition described above destroys the dispersed structure of the polyamide, modified elastomer, etc. in the polypropylene matrix, resulting in a significant drop in impact resistance. For this reason, it has been difficult to apply the material to large-sized parts simply by adding an inorganic filler.

ポリプロピレンやその組成物の剛性、耐熱性、耐衝撃性
、耐受傷性及び寸法安定性を同時に、且つ大幅に改良す
るためには耐衝撃性改良効果の高いエラストマー等の選
択と、それのポリプロピレンマトリックスへの分散技術
が非常に重要である。
In order to simultaneously and significantly improve the rigidity, heat resistance, impact resistance, scratch resistance, and dimensional stability of polypropylene and its compositions, it is necessary to select an elastomer that has a high impact resistance improvement effect and to use the polypropylene matrix. distribution technology is very important.

そして、耐衝撃改良剤は耐衝撃改良効果が高く、且つ無
機充填剤によってポリプロピレンマトリックス中での分
散構造が破壊されてしまうものであってはならない。
The impact modifier must have a high impact improving effect and must not cause the dispersion structure in the polypropylene matrix to be destroyed by the inorganic filler.

このような状況に鑑み、本発明者等は無機充填剤等によ
ってその分散構造が破壊されないポリプロピレンの耐衝
撃改良剤とその分散技術について鋭意探究した。その結
果、粘土鉱物でハイブリッド化された変性ポリアミドを
エラストマー中にあらかじめ微細均一分散し、硬質、且
つ強靭にした熱可塑性の強化エラストマーを耐衝撃改良
剤として用いた場合、ポリプロピレンマトリックスへの
分散が強化エラストマーの一成分である変性ボリアミド
と変性ポリプロピレンの相溶性による分散に加え、更に
、該強化エラストマーではポリアミド分子鎖が粘土鉱物
を中心に三次元的に広がり、エラストマーとのグラフト
結合によりSem1− IPN的な分散構造を形成して
いることより、ポリプロピレンに配合したとき、エラス
トマーが変性ポリアミドの微細粒子を取り囲むセラミ的
形態でポリプロピレンマトリックスに分散し、耐衝撃性
を大幅に高めるとともに、変性ポリアミドの高い凝集力
によりタルク等無機充填剤の配合によっても、その分散
構造が破壊されることがなく、剛性、耐熱性、耐衝撃性
、耐受傷性および寸法安定性がこれまでの組成物よりは
るかに優れた高衝撃性部品用ポリプロピレン組成物を得
ることが出来ることを見い出し、本発明に至った。
In view of this situation, the present inventors have earnestly investigated an impact modifier for polypropylene whose dispersion structure is not destroyed by inorganic fillers and the like, and a dispersion technique for the same. As a result, when a thermoplastic reinforced elastomer made by preliminarily finely and uniformly dispersing modified polyamide hybridized with clay minerals into an elastomer to make it hard and tough is used as an impact modifier, the dispersion into the polypropylene matrix is strengthened. In addition to dispersion due to the compatibility of modified polyamide and modified polypropylene, which are one component of the elastomer, in this reinforced elastomer, the polyamide molecular chain spreads three-dimensionally around the clay mineral, and due to graft bonding with the elastomer, Sem1-IPN-like When blended with polypropylene, the elastomer is dispersed in the polypropylene matrix in a ceramic-like form surrounding fine particles of modified polyamide, greatly increasing impact resistance and reducing the high aggregation of modified polyamide. Even when inorganic fillers such as talc are added to the composition due to force, its dispersed structure is not destroyed, and its rigidity, heat resistance, impact resistance, scratch resistance, and dimensional stability are far superior to previous compositions. It was discovered that a polypropylene composition for high-impact parts can be obtained, leading to the present invention.

本発明のポリプロピレン組成物は不飽和カルボン酸及び
/又はその誘導体で変性されたポリプロピレン中への分
散性が通常のエラストマーに比べはるかに優れ、且つそ
の分散形態が無機充填剤の配合によっても破壊しない硬
質で強靭な強化エラストマーを用いることにより剛性、
耐熱性、耐衝撃性、耐受傷性、及び寸法安定性を改良し
た点に大きな特徴がある。
The polypropylene composition of the present invention has far better dispersibility in polypropylene modified with unsaturated carboxylic acids and/or derivatives thereof than that of ordinary elastomers, and its dispersion form is not destroyed even by the addition of inorganic fillers. Rigidity is achieved by using a hard and strong reinforced elastomer.
Its major features include improved heat resistance, impact resistance, scratch resistance, and dimensional stability.

[課題を解決するための手段] 即ち、本発明に従えば、変性ポリプロピレン(a)98
〜30重量%と強化エラストマー組成物(b)2〜70
重量%からなるポリプロピレン樹脂組成物(c)100
重量部に対し、無機充填剤(d)1重量部以上15重量
部未満を配合して成る高衝撃部品用ポリプロピレン組成
物が提供される。
[Means for solving the problem] That is, according to the present invention, modified polypropylene (a) 98
~30% by weight and reinforced elastomer composition (b) 2~70
Polypropylene resin composition (c) consisting of 100% by weight
A polypropylene composition for high-impact parts is provided, which contains 1 part by weight or more and less than 15 parts by weight of an inorganic filler (d) per part by weight.

上記の高衝撃部品用ポリプロピレン組成物において、好
ましくは成分(a)が結晶性ポリプロピレン(e)の少
なくとも一部を不飽和カルボン酸またはその誘導体でグ
ラフト変性した変性ポリプロピレンである。
In the above-mentioned polypropylene composition for high-impact parts, component (a) is preferably a modified polypropylene obtained by graft-modifying at least a portion of crystalline polypropylene (e) with an unsaturated carboxylic acid or a derivative thereof.

更に、本発明の好ましい態様に従えば、成分(b)が、
エチレン・α−オレフィン共重合体ゴム及び/又はスチ
レン系水添ゴムの少なくとも一部を不飽和カルボン酸ま
たはその誘導体でグラフト変性された変性エラストマー
(g)40〜95重看%と粘土鉱物で変性したポリアミ
ド(h)60〜5重量%とからなる高衝撃部品用ポリプ
ロピレン組成物が提供される。
Furthermore, according to a preferred embodiment of the present invention, component (b) is
A modified elastomer (g) in which at least a portion of an ethylene/α-olefin copolymer rubber and/or hydrogenated styrene rubber is graft-modified with an unsaturated carboxylic acid or a derivative thereof (40 to 95% by weight) and modified with a clay mineral. There is provided a polypropylene composition for high impact parts comprising 60 to 5% by weight of polyamide (h).

更に、好ましくは、本発明の高衝撃部品用ポリプロピレ
ン組成物は成分(b)が、変性エラストマー成分(g)
と変性ポリアミド成分(h)とからなる組成物100重
量部に対し、エチレン及び/又はα−オレフィンと不飽
和カルボン酸またはその誘導体及び/又は不飽和エポキ
シ化合物との共重合体(i)1〜20重量部を配合して
なる。
Furthermore, preferably, in the polypropylene composition for high impact parts of the present invention, component (b) is a modified elastomer component (g).
Copolymer (i) 1 to 1 of ethylene and/or α-olefin and unsaturated carboxylic acid or its derivative and/or unsaturated epoxy compound to 100 parts by weight of the composition consisting of and modified polyamide component (h) 20 parts by weight are blended.

本発明で用いる成分(a)の変性ポリプロピレンは、結
晶性ポリプロピレン(e)をグラフト変性して得る事が
できる。
The modified polypropylene of component (a) used in the present invention can be obtained by graft-modifying crystalline polypropylene (e).

結晶性ポリプロピレン(e)は、メルトインデックス(
ASTM 01238.230°C,2160g)が0
.3〜70g/10分のポリプロピレンの結晶性単独重
合体、エチレンとのランダムまたはブロック共重合体お
よびこれらの混合物のいずれの結晶性ポリプロピレンで
もよい。エチレン・プロピレン共重合体は、エチレン含
有率がランダム共重合体では6重量%以下、ブロック共
重合体では3〜15重量%であるものが好ましい。
Crystalline polypropylene (e) has a melt index (
ASTM 01238.230°C, 2160g) is 0
.. Any crystalline polypropylene of 3 to 70 g/10 min polypropylene homopolymer, random or block copolymer with ethylene, and mixtures thereof may be used. The ethylene/propylene copolymer preferably has an ethylene content of 6% by weight or less in the case of a random copolymer, and 3 to 15% by weight in the case of a block copolymer.

上記結晶性ポリプロピレンのうち、特に好ましいものは
メルトインデックスが0.3〜50g/lO分でエチレ
ン含有率が3〜10重量%のエチレン・プロピレンブロ
ック共重合体である。
Among the above crystalline polypropylenes, particularly preferred are ethylene-propylene block copolymers having a melt index of 0.3 to 50 g/lO min and an ethylene content of 3 to 10% by weight.

グラフト変性原料のモノマーとしては不飽和カルボン酸
およびその誘導体が用いられる。
Unsaturated carboxylic acids and derivatives thereof are used as monomers for graft modification raw materials.

不飽和カルボン酸およびその誘導体としてはアクリル酸
、メタアクリル酸、マレイン酸、イタコン酸、フマル酸
、シトラコン酸、クロトン酸、グリシジルメタクリレー
ト、2−ヒドロキシエチルメタクリレート、ポリエチレ
ングリコールジメタクリレート、N−メチロールメタク
リルアミド、メタクリル酸カルシウム、γ−メタクリロ
キシプロピルトリメトキシシラン、アクリルアミド、メ
タクリルアミド等や無水マレイン酸、無水イタコン酸、
無水シトラコン酸等を用いる。好ましくは無水マレイン
酸、無水イタコン酸等の酸無水物が良い。
Unsaturated carboxylic acids and their derivatives include acrylic acid, methacrylic acid, maleic acid, itaconic acid, fumaric acid, citraconic acid, crotonic acid, glycidyl methacrylate, 2-hydroxyethyl methacrylate, polyethylene glycol dimethacrylate, and N-methylolmethacrylamide. , calcium methacrylate, γ-methacryloxypropyltrimethoxysilane, acrylamide, methacrylamide, etc., maleic anhydride, itaconic anhydride,
Use citraconic anhydride or the like. Preferred are acid anhydrides such as maleic anhydride and itaconic anhydride.

グラフト変性の反応開始剤としては、有機過酸化物等の
ラジカル発生化合物を用いることができる。場合によっ
ては反応開始剤を用いることなく加熱処理によってグラ
フト変性を起こさせてもよい。反応開始剤は、特に制限
されるものではなく、1分半減期を得るための分解温度
が、250°C以下のものであればよい。このような反
応開始剤としては、ヒドロペルオキシド、ジアルキルペ
ルオキシド、ペルオキシエステル等の有機過酸化物等が
ある。本発明で使用される有機過酸化物としては、例え
ばt−ブチルペルオキシベンゾエート、シクロヘキサノ
ンペルオキシド、2,5−ジメチル2.5−ジ(ベンゾ
イルペルオキシ)ヘキサン、t−ブチルペルオキシアセ
テート、メチルエチルケトンペルオキシド、ジクミルペ
ルオキシド、2゜5−ジメチル−2,5−ジ(t−ブチ
ルペルオキシ)ヘキサン等をあげることができる。使用
に際しては、反応条件等に応じて適宜選択することがで
きる。
As a reaction initiator for graft modification, a radical generating compound such as an organic peroxide can be used. In some cases, graft modification may be caused by heat treatment without using a reaction initiator. The reaction initiator is not particularly limited as long as it has a decomposition temperature of 250°C or less to obtain a half-life of 1 minute. Examples of such reaction initiators include organic peroxides such as hydroperoxides, dialkyl peroxides, and peroxy esters. Examples of the organic peroxide used in the present invention include t-butyl peroxybenzoate, cyclohexanone peroxide, 2,5-dimethyl 2,5-di(benzoylperoxy)hexane, t-butyl peroxyacetate, methyl ethyl ketone peroxide, dicumyl Examples include peroxide, 2.5-dimethyl-2,5-di(t-butylperoxy)hexane, and the like. When used, it can be appropriately selected depending on the reaction conditions and the like.

グラフト変性結晶性ポリプロピレンは、前記結晶性ポリ
プロピレンと前記変性原料モノマーおよび前記反応開始
剤とを混合し、窒素雰囲気中または空気中で溶融混練す
ることによって得る事もできるし、結晶性ポリプロピレ
ンをトルエンまたはキシレン中に加圧、加熱溶解し前記
変性原料モノマーおよび前記反応開始剤を滴下しながら
撹拌混合することによっても得ることができる。溶融混
練は2軸押比機、ニーダ−、バンバリーミキサ−等の混
練機を用いてもよいが、通常は単軸押出機で行うことが
できる。混合温度は原料ポリプロピレンの融点以上の温
度で通常175〜280°Cで行なう。溶融混合時間は
、原料等によって異なるが、一般に約1〜20分間で行
うことができる。
Graft-modified crystalline polypropylene can be obtained by mixing the crystalline polypropylene, the modified raw material monomer, and the reaction initiator, and melt-kneading the mixture in a nitrogen atmosphere or air, or by mixing the crystalline polypropylene with toluene or It can also be obtained by dissolving the modified raw material monomer and the reaction initiator in xylene under pressure and heating, and stirring and mixing while dropping the modified raw material monomer and the reaction initiator. Melt-kneading may be performed using a kneader such as a twin-screw press ratio machine, a kneader, or a Banbury mixer, but it can usually be carried out using a single-screw extruder. The mixing temperature is usually 175 to 280°C, which is higher than the melting point of the raw material polypropylene. The melt-mixing time varies depending on the raw materials, etc., but it can generally be carried out for about 1 to 20 minutes.

原料の混合割合は原料ポリプロピレン100重量部に対
し原料変性モノマー約0.05〜3.0重量部、反応開
始剤約0.002〜1重量部である。七ツマ−が約0.
05重量部より少ない場合には変性の効果が得られず、
一方5重量部を超える場合にはモノマーのグラフト効率
が極端に低下し未反応子ツマ−が増加するため好ましく
ない。
The mixing ratio of the raw materials is approximately 0.05 to 3.0 parts by weight of the raw material modified monomer and approximately 0.002 to 1 part by weight of the reaction initiator per 100 parts by weight of the raw material polypropylene. The seven-point mark is about 0.
If it is less than 0.05 parts by weight, no modification effect can be obtained,
On the other hand, if it exceeds 5 parts by weight, the grafting efficiency of the monomer will be extremely reduced and the amount of unreacted molecules will increase, which is not preferable.

上記のようにして得る変性ポリプロピレンは、モノマー
グラフト率が約0.03重量%以上、好ましくは約0.
1〜1O00重量%であって、メルトインデックスが約
0.5〜200g/10分であるものがよい。
The modified polypropylene obtained as described above has a monomer graft ratio of about 0.03% by weight or more, preferably about 0.03% by weight or more.
1 to 1000% by weight and a melt index of about 0.5 to 200 g/10 minutes.

メルトインデックスが0.5/10分より小さい場合は
、成形加工性を低下させる場合があり、一方、200g
/10分を超えると分子量が低下しすぎるため、所望の
性能を有する材料が得られない。
If the melt index is smaller than 0.5/10 minutes, molding processability may be reduced;
If the heating time exceeds 10 minutes, the molecular weight decreases too much, making it impossible to obtain a material with the desired performance.

これら変性ポリプロピレンは単独で用いてもよいし、ま
た変性ポリプロピレンと未変性の結晶性ポリプロピレン
とをポリプロピレン100重!fflに対し不飽和カル
ボン酸またはその誘導体モノマーのグラフト量が0.0
3重量部を上回る範囲で併用して用いることができる。
These modified polypropylenes may be used alone, or modified polypropylene and unmodified crystalline polypropylene may be used in combination with polypropylene 100 times more! The amount of unsaturated carboxylic acid or its derivative monomer grafted to ffl is 0.0
It can be used in combination in an amount exceeding 3 parts by weight.

本発明において強化エラストマー成分(b)を構成する
変性エラストマー(g)はエチレン・α−オレフィン共
重合体ゴムやスチレン系水添ゴムを不飽和カルボン酸ま
たはその誘導体で変性した変性ゴムの単独及び/又はエ
ラストマー成分(f)との混合物のいずれでもよい。
In the present invention, the modified elastomer (g) constituting the reinforcing elastomer component (b) is a modified rubber obtained by modifying an ethylene/α-olefin copolymer rubber or a hydrogenated styrene rubber with an unsaturated carboxylic acid or a derivative thereof. Alternatively, it may be a mixture with the elastomer component (f).

エチレン・α−オレフィン共重合体ゴムは、エチレン含
有率が30〜95重量%、好ましくは60〜90重量%
のエチレン・α−オレフィン共重合体ゴムである。α−
オレフィン成分としては炭素数3〜20のものがあり例
えばプロピレン、1−ブテン、1−ペンテン、1−ヘキ
セン、4−メチル−1ペンテン、1−デセンなどを挙げ
ることが出来る。
The ethylene/α-olefin copolymer rubber has an ethylene content of 30 to 95% by weight, preferably 60 to 90% by weight.
This is an ethylene/α-olefin copolymer rubber. α−
The olefin component includes those having 3 to 20 carbon atoms, such as propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, and 1-decene.

α−オレフィン成分は単独でもよ(また2種類以上の混
合物でもよい。さらに場合によっては微量のジェノ成分
を含有しても差しつかえない。
The α-olefin component may be used alone (or a mixture of two or more types may be used). Furthermore, in some cases, a trace amount of Geno component may be included.

変性エチレン・α−オレフィン共重合体ゴムは上記エチ
レン・α−オレフィン共重合体ゴムをグラフト変性して
得る事が出来る。グラフト変性原料の七ツマ−は前記変
性ポリプロピレンのグラフト変性モノマーと同様の不飽
和カルボン酸およびその誘導体が用いられる。またグラ
フト変性の反応開始剤も前記の有機過酸化物等のラジカ
ル発生化合物を同様に用いることができる。場合によっ
ては反応開始剤を用いることなく加熱処理によってグラ
フト変性を起こさせてもよい。
The modified ethylene/α-olefin copolymer rubber can be obtained by graft-modifying the above-mentioned ethylene/α-olefin copolymer rubber. The same unsaturated carboxylic acid and its derivatives as the graft-modified monomer of the modified polypropylene are used as the graft-modified raw material. Further, as a reaction initiator for graft modification, radical generating compounds such as the above-mentioned organic peroxides can be similarly used. In some cases, graft modification may be caused by heat treatment without using a reaction initiator.

変性エチレン・α−オレフィン共重合体ゴムは、原料エ
チレン・α−オレフィン共重合体ゴムとグラフト変性原
料モノマーとを開始剤の存在下、溶液中で加熱混合撹拌
するか、または原料エチレン・α−オレフィン共重合体
ゴムとグラフト変性原料モノマーとを加熱溶融混練する
ことによって製造される。この様にして製造される変性
エチレン・α−オレフィン共重合体ゴムは、原料モノマ
ーグラフト率が約0.01〜10重量%、好ましくは約
0.1〜3.0重量%であってメルトインデンクスが約
0.01〜50g/10分、好ましくは0.05〜15
g/10分となる様に各原料割合、反応条件を適宜選択
する。
The modified ethylene/α-olefin copolymer rubber is produced by heating and stirring the raw material ethylene/α-olefin copolymer rubber and the graft-modified raw material monomer in a solution in the presence of an initiator, or by heating and stirring the raw material ethylene/α-olefin copolymer rubber in a solution in the presence of an initiator. It is produced by heating, melting, and kneading an olefin copolymer rubber and a graft-modified raw material monomer. The modified ethylene/α-olefin copolymer rubber produced in this way has a raw material monomer grafting ratio of about 0.01 to 10% by weight, preferably about 0.1 to 3.0% by weight, and is melt indensified. about 0.01 to 50 g/10 minutes, preferably 0.05 to 15
The ratio of each raw material and the reaction conditions are appropriately selected so that the reaction rate is 100 g/10 minutes.

変性エチレン・α−オレフィン共重合体ゴムのモノマー
グラフト率が0.05重量%未満では変性の効果が得ら
れず、また5、0重量%を超えるとグラフト変性時にゴ
ムの架橋度が高くなり変性ポリアミドとの溶融混合が困
難となる。
If the monomer grafting rate of the modified ethylene/α-olefin copolymer rubber is less than 0.05% by weight, no modification effect will be obtained, and if it exceeds 5.0% by weight, the degree of crosslinking of the rubber will increase during graft modification, resulting in poor modification. Melt mixing with polyamide becomes difficult.

また、スチレン系水添ゴムは、−散大がA(B−A)、
、で表されるブロック共重合体を水素添加処理して得ら
れる水素添加誘導体である。ここで上記一般弐において
、Aはモノビニル置換芳香族炭化水素の重合体ブロック
、Bは共役ジエンのエラストマー性重合体ブロックであ
り、nは1〜5の整数である。
In addition, styrene-based hydrogenated rubber has - dilation of A (B-A),
It is a hydrogenated derivative obtained by hydrogenating a block copolymer represented by . Here, in the above general 2, A is a monovinyl-substituted aromatic hydrocarbon polymer block, B is a conjugated diene elastomeric polymer block, and n is an integer from 1 to 5.

重合体ブロックAを構成する単量体のモノビニル置換芳
香族炭化水素は、好ましくはスチレンであるが、α−メ
チルスチレン、ビニルトルエンその他の低級アルキル置
換スチレン、ビニルナフタレン基も用いられる。
The monovinyl-substituted aromatic hydrocarbon monomer constituting the polymer block A is preferably styrene, but α-methylstyrene, vinyltoluene, other lower alkyl-substituted styrenes, and vinylnaphthalene groups may also be used.

重合体Bにおける共役ジエン単量体はブタンジエンもし
くはイソプレンが好ましく、また、両者の混合物でもよ
い。重合体ブロックBを形成するためにブタジェンが単
一の共役ジエン単量体として用いられる場合には、ブロ
ック共重合体が水素添加されて二重結合が飽和された後
にエラストマー性を保持しているためには、ポリブタジ
ェンブロックにおけるミクロ構造中、1.2−ミクロ構
造が20〜50%となる重合条件を採用する事が好まし
い。より好ましくは1,2−ミクロン構造が35〜45
%のものである。
The conjugated diene monomer in polymer B is preferably butane diene or isoprene, or may be a mixture of the two. When butadiene is used as the single conjugated diene monomer to form polymer block B, the block copolymer retains elastomeric properties after being hydrogenated to saturate the double bonds. In order to achieve this, it is preferable to adopt polymerization conditions such that the 1.2-microstructure accounts for 20 to 50% of the microstructure in the polybutadiene block. More preferably, the 1,2-micron structure is 35 to 45
%belongs to.

ブロック共重合体中の重合体ブロックAの重量平均分子
量は5.000〜125,000 、重合体プロ、りB
のそれは15,000〜250.000の範囲にあるこ
とが好ましい。
The weight average molecular weight of polymer block A in the block copolymer is 5.000 to 125,000,
is preferably in the range of 15,000 to 250,000.

これらのブロック共重合体の製造方法としては、数多く
の方法が提案されている。代表的な方法として、例えば
特公昭40−23798号公報に記載された方法があっ
て、リチウム溶媒またはチーグラー型触媒を用いて不活
性溶媒中でブロック共重合を行なわせる。
Many methods have been proposed for producing these block copolymers. A typical method is, for example, the method described in Japanese Patent Publication No. 40-23798, in which block copolymerization is carried out in an inert solvent using a lithium solvent or a Ziegler type catalyst.

これらのブロック共重合体の水素添加処理は、例えば特
公昭42−8704号、同43−6636号又は同46
−20814号等の各公報に記載された方法により、不
活性溶媒中で触媒の存在下に水素添加することによって
行われる。この水素添加では、重合体ブロックB中のオ
レフィン基二重結合の少なくとも50%、好ましくは8
0%以上が水素添加され、重合体ブロックA中の芳香族
性不飽和結合の25%以下が水素添加される。上記のブ
ロック共重合体としては、具体的にはスチレン・ブチレ
ン・スチレン共重合体(SBS)を水素添加した共重合
体(SEBS)、スチレン・イソプレン・スチレン共重
合体(SIS)を水素添加した共重合体(SEPS)等
が挙げられる。
Hydrogenation treatment of these block copolymers is described, for example, in Japanese Patent Publication No. 42-8704, No. 43-6636, or No. 46
This is carried out by hydrogenation in the presence of a catalyst in an inert solvent according to the methods described in various publications such as No. 20814. In this hydrogenation, at least 50%, preferably 8%, of the olefinic group double bonds in polymer block B are
0% or more of the aromatic unsaturated bonds in the polymer block A are hydrogenated, and 25% or less of the aromatic unsaturated bonds in the polymer block A are hydrogenated. Specifically, the above block copolymers include hydrogenated copolymers (SEBS) of styrene-butylene-styrene copolymers (SBS) and hydrogenated styrene-isoprene-styrene copolymers (SIS). Examples include copolymers (SEPS) and the like.

また、上記のスチレン系水添ブロック共重合体をグラフ
ト変性して得られる変性水添ブロック共重合体のグラフ
ト変性原料モノマー、グラフト変性反応開始剤、製造方
法およびグラフト変性原料モノマー、グラフト率等は前
記変性エチレン・αオレフイン共重合体ゴムと同様であ
る。
In addition, the graft modification raw material monomer, graft modification reaction initiator, manufacturing method, graft modification raw material monomer, grafting ratio, etc. of the modified hydrogenated block copolymer obtained by graft modification of the above styrene-based hydrogenated block copolymer are This is the same as the modified ethylene/α-olefin copolymer rubber.

これら変性スチレン系水添ブロック共重合体ゴムおよび
変性エチレン・α−オレフィン共重合体ゴムは単独で用
いてもよいし、またエチレン・αオレフイン共重合体ゴ
ム及び/又はスチレン系水添ブロック共重合体ゴムとを
エラストマー100重量部に対して不飽和カルボン酸ま
たはその誘導体モノマーのグラフト量が0.01重量部
を上回る範囲で併用して用いることが出来る。
These modified styrene-based hydrogenated block copolymer rubbers and modified ethylene/α-olefin copolymer rubbers may be used alone, or the ethylene/α-olefin copolymer rubbers and/or the styrene-based hydrogenated block copolymer rubbers may be used alone. A composite rubber can be used in combination with the unsaturated carboxylic acid or its derivative monomer in an amount exceeding 0.01 part by weight based on 100 parts by weight of the elastomer.

また、更に強化エラストマー(b)を構成する変性ポリ
アミド樹脂(h)はポリアミド100重量部に対して0
.05〜10重量部、好ましくは0.1〜7重量部の特
定の粘土鉱物を均一に分散、複合化耐熱性や剛性等を大
幅に改良したものである。粘土鉱物の割合が0.05重
量部未満であると耐熱性や剛性等の改良効果が認められ
ず、15重量部を越えると溶融時の流動性が著しく低下
し射出成形が不可能となる場合がある。
Furthermore, the modified polyamide resin (h) constituting the reinforced elastomer (b) is 0% based on 100 parts by weight of the polyamide.
.. 05 to 10 parts by weight, preferably 0.1 to 7 parts by weight of a specific clay mineral is uniformly dispersed, and the composite heat resistance, rigidity, etc. are greatly improved. If the proportion of clay minerals is less than 0.05 parts by weight, no improvement effect on heat resistance or rigidity will be observed, and if it exceeds 15 parts by weight, fluidity during melting will decrease significantly and injection molding will become impossible. There is.

本発明の変性ポリアミドに使用されるポリアミド樹脂と
しては、脂肪族、脂環族、芳香族等のジアミンと脂肪族
、脂環族芳香族のジカルボン酸との重縮合によって得ら
れるポリアミド、ラクタムから得られるポリアミド、ア
ミノカルボン酸の縮合によって得られるポリアミドある
いはこれらの成分からなる共重合ポリアミド等が挙げら
れる。
Polyamide resins used in the modified polyamide of the present invention include polyamides obtained by polycondensation of aliphatic, alicyclic, aromatic, etc. diamines and aliphatic, alicyclic aromatic dicarboxylic acids, and lactams. Polyamides obtained by condensation of aminocarboxylic acids, copolyamides made of these components, and the like can be mentioned.

具体的にはナイロン−6、ナイロン−6,6、ナイロン
−6,10、ナイロン−9、ナイロン−11、ナイロン
−12、ナイロン−6/6.6、ナイロン12.12等
が挙げられる。
Specific examples include nylon-6, nylon-6,6, nylon-6,10, nylon-9, nylon-11, nylon-12, nylon-6/6.6, and nylon 12.12.

上記ポリアミド樹脂を変性するための粘土鉱物は、主に
層状珪酸塩であり、その形状は通常−辺の長さが0.0
02〜Iumで厚みが6〜20人のものである。このよ
うな層状珪酸塩の原料としては例えば珪酸マグネシウム
または珪酸アルミニウムの層から構成される層状フィロ
珪酸鉱物等がある。
The clay minerals used to modify the above polyamide resins are mainly layered silicates, whose shape is usually - side length 0.0
The size is 02-Ium and the thickness is 6-20 people. Examples of raw materials for such layered silicates include layered phyllosilicate minerals composed of layers of magnesium silicate or aluminum silicate.

具体的には、モンモリロナイト、サポナイト、バイデラ
イト、ノントロンナイト、ヘクトライト、スティブンサ
イトなどのスメクタイト系粘土鉱物やバーミキュライト
、ハロイサイトなどがある。
Specifically, there are smectite clay minerals such as montmorillonite, saponite, beidellite, nontronite, hectorite, and stevensite, vermiculite, and halloysite.

これらは天然のものであっても合成されたものであって
もよい。これらのなかでは、特にモンモリロナイトが好
ましい。
These may be natural or synthetic. Among these, montmorillonite is particularly preferred.

各々の層状珪酸塩は平均的に20Å以上離れてポリアミ
ド中に均一に分散されるのが好ましい。層状珪酸塩をポ
リアミド樹脂中に分散させる方法については特に制限は
ないが、層状珪酸塩の原料が多層状粘土鉱物である場合
には、膨潤化剤と接触させて、予め層間を拡げて層間に
モノマーを取り込みやすくした後、ポリアミドモノマー
と混合し重合する方法(特開昭62−64827号、特
開昭62−72723号、特開昭62−74957号な
どの各公報参照)によってもよい。また、膨潤化剤に高
分子化合物を用い、予め層間を100Å以上に拡げてこ
れをポリアミド樹脂と溶融混合する方法によってもよい
Preferably, each layered silicate is uniformly dispersed in the polyamide with an average separation of 20 Å or more. There are no particular restrictions on the method of dispersing the layered silicate in the polyamide resin, but if the raw material for the layered silicate is a multilayered clay mineral, the layered silicate is brought into contact with a swelling agent to expand the interlayers in advance and create a layer between the layers. It is also possible to use a method in which the monomer is made easy to incorporate, and then mixed with a polyamide monomer and polymerized (see Japanese Patent Application Laid-open Nos. 62-64827, 62-72723, and 62-74957). Alternatively, a method may be used in which a polymer compound is used as the swelling agent, the interlayer gap is expanded to 100 Å or more, and the mixture is melt-mixed with the polyamide resin.

粘土鉱物によって変性された変性ポリアミドは個々の粘
土鉱物の眉間よりポリアミド分子鎖が三次元法がり粘土
鉱物を中心とした高い凝集力を有しており、耐熱性や剛
性を大幅に改良している。
Modified polyamide modified with clay minerals has a high cohesive force centered on clay minerals, with the polyamide molecular chains being three-dimensionally shaped from the eyebrows of individual clay minerals, and has significantly improved heat resistance and rigidity. .

更に、成分(i)は、官能基としての1種又は2種以上
の基を有する変性エチレン及び/又はα−オレフィン共
重合体である。
Furthermore, component (i) is a modified ethylene and/or α-olefin copolymer having one or more groups as functional groups.

該変性エチレン及び/又はα−オレフィン共重合体はエ
チレン及び/又は炭素数3〜20のα−オレフィンとの
(共)重合体に不飽和カルボン酸またはその誘導体や不
飽和エポキシ化合物をグラフト反応させることによって
製造する事が出来る。
The modified ethylene and/or α-olefin copolymer is obtained by grafting an unsaturated carboxylic acid or a derivative thereof or an unsaturated epoxy compound onto a (co)polymer of ethylene and/or an α-olefin having 3 to 20 carbon atoms. It can be manufactured by

エチレン以外のα−オレフィンとしてはプロピレン、1
〜ブテン、1−ペンテン、1−へキサン、4−メチル−
1−ペンテン、■−オクテン、1−デセン等を例示する
事が出来る。
α-olefins other than ethylene include propylene, 1
~butene, 1-pentene, 1-hexane, 4-methyl-
Examples include 1-pentene, -octene, and 1-decene.

不飽和カルボン酸又はその酸誘導体としては、具体的に
はアクリル酸、メタクリル酸、マレイン酸、フマル酸、
イタコン酸、シトラコン酸、テトラヒドロフタル酸等の
不飽和カルボン酸、無水マレイン酸、無水イタコン酸、
無水シトラコン酸、テトラヒドロ無水フタル酸等の不飽
和カルホン酸の無水物、アクリル酸メチル、メタクリル
酸メチル、マレイン酸ジメチル、マレイン酸モノメチル
等の不飽和カルボン酸のエステル等を例示する事が出来
る。
Specific examples of unsaturated carboxylic acids or acid derivatives thereof include acrylic acid, methacrylic acid, maleic acid, fumaric acid,
Unsaturated carboxylic acids such as itaconic acid, citraconic acid, and tetrahydrophthalic acid, maleic anhydride, itaconic anhydride,
Examples include anhydrides of unsaturated carboxylic acids such as citraconic anhydride and tetrahydrophthalic anhydride, and esters of unsaturated carboxylic acids such as methyl acrylate, methyl methacrylate, dimethyl maleate, and monomethyl maleate.

不飽和エポキシ化合物としては、例えば、グリシジルア
クリレート、グリシジルメタクリレート等の不飽和モノ
カルボン酸のグリシジルエステル;マレイン酸、イタコ
ン酸、シトラコン酸等の不飽和ポリカルボン酸のモノグ
リシジルエステル或いはポリグリシジルエステル等が挙
げられる。
Examples of unsaturated epoxy compounds include glycidyl esters of unsaturated monocarboxylic acids such as glycidyl acrylate and glycidyl methacrylate; monoglycidyl esters and polyglycidyl esters of unsaturated polycarboxylic acids such as maleic acid, itaconic acid, and citraconic acid. Can be mentioned.

不飽和カルボン酸又はその酸誘導体をエチレン及び/又
はα−オレフィン(共)重合体に共重合する方法は、例
えば(共)重合体を溶融させ、グラフトモノマーを添加
してグラフト共重合させる方法或いは溶媒に溶解させグ
ラフトモノマーを添加して共重合させる等の公知の種々
の方法を採用する事が出来る。
A method of copolymerizing an unsaturated carboxylic acid or an acid derivative thereof into an ethylene and/or α-olefin (co)polymer includes, for example, a method of melting the (co)polymer and adding a graft monomer to carry out graft copolymerization; Various known methods can be employed, such as dissolving it in a solvent and adding a graft monomer to copolymerize it.

不飽和エポキシ化合物との共重合は、前記αオレフィン
の1種又は2種と、1分子中エチレン性不飽和結合及び
エポキシ基を各1個有する不飽和エポキシ単量体とをラ
ジカル開始剤を使用して共重合させる方法やエチレン及
び/又はα−オレフィン(共)重合体に不飽和エポキシ
化合物をグラフト化する方法等によって製造する事が出
来る。
For copolymerization with an unsaturated epoxy compound, one or two of the α-olefins and an unsaturated epoxy monomer having one ethylenically unsaturated bond and one epoxy group in each molecule are copolymerized using a radical initiator. It can be produced by a method of copolymerizing ethylene and/or an α-olefin (co)polymer, or a method of grafting an unsaturated epoxy compound onto an ethylene and/or α-olefin (co)polymer.

これらの中で特に好ましい変性エチレン及び/又はα−
オレフィン共重合体としてエチレン・エチルメタクリレ
ート・無水マレイン酸共重合体、エチレン・グリシジル
メタクリレート共重合体や前記変性ポリプロピレン(a
)を挙げる事が出来る。
Among these, particularly preferred are modified ethylene and/or α-
Olefin copolymers include ethylene/ethyl methacrylate/maleic anhydride copolymers, ethylene/glycidyl methacrylate copolymers, and the modified polypropylene (a
) can be mentioned.

不飽和カルボン酸またはその誘導体や不飽和エポキシ化
合物のグラフト量は0.3〜5重量%が好ましい。グラ
フト量が0.1重量%未満では変性ポリアミド樹脂との
相溶性改良効果が極めて低いため機械的強度の改良効果
がない。一方10重量%を超えると一部架橋を起こし、
組成物の表面外観や成形性を低下させる。
The amount of grafting of the unsaturated carboxylic acid or its derivative or the unsaturated epoxy compound is preferably 0.3 to 5% by weight. If the amount of grafting is less than 0.1% by weight, the effect of improving compatibility with the modified polyamide resin is extremely low, so that there is no effect of improving mechanical strength. On the other hand, if it exceeds 10% by weight, some crosslinking will occur,
Decrease the surface appearance and moldability of the composition.

本発明において、成分(d)として使用される無機充填
剤は、粉末状充填剤として、例えばアルミナ、酸化マグ
ネシウム、酸化カルシウム、亜鉛華等の酸化物、水酸化
アルミニウム、水酸化マグネシウム、水酸化カルシウム
等の水和金属酸化物、炭酸カルシウム、炭酸マグネシウ
ム等の炭酸塩、タルク、クレー、ペントネイト等のよう
なケイ酸塩、ホウ酸バリウム等のホウ酸塩、リン酸アル
ミニウム等のリン酸塩、硫酸バリウム等の硫酸塩及びこ
れらの2種類以上の混合物、繊維状充填材として、例え
ばガラス繊維、チタン酸カリウム繊維、セラミックス繊
維、ワラストナイト、炭素繊維、SUS繊維、モスハイ
ジ等、その他ガラスピーズ、ガラスフレーク、マイカ等
を挙げることができる。
In the present invention, the inorganic filler used as component (d) is a powder filler such as oxides such as alumina, magnesium oxide, calcium oxide, zinc white, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, etc. Hydrated metal oxides such as calcium carbonate, carbonates such as magnesium carbonate, silicates such as talc, clay, pentonate, etc., borates such as barium borate, phosphates such as aluminum phosphate, sulfuric acid. Sulfates such as barium and mixtures of two or more of these, fibrous fillers such as glass fibers, potassium titanate fibers, ceramic fibers, wollastonite, carbon fibers, SUS fibers, moss hygiene, etc., other glass peas, glass Examples include flakes, mica, and the like.

また、無機充填材の表面をシラン化合物、例えばビニル
エトキシシラン、2−アミノプロピルトリエトキシシラ
ン、2−グリシドキシプロピルメトキシシラン等やチタ
ネート系化合物等で処理をしておいてもよい。これらの
中では特に粉末状充填材としてタルク、繊維状充填材と
してガラス繊維が好ましい。
Further, the surface of the inorganic filler may be treated with a silane compound such as vinylethoxysilane, 2-aminopropyltriethoxysilane, 2-glycidoxypropylmethoxysilane, or a titanate compound. Among these, talc is particularly preferred as the powdery filler, and glass fiber is particularly preferred as the fibrous filler.

本発明の高衝撃性部品用ポリプロピレン組成物は結晶性
ポリプロピレン(e)の少なくとも一部を不飽和カルボ
ン酸またはその誘導体で変性した変性ポリプロピレン(
a)98〜30重量%、好ましくは90〜50重量%と
変性エラストマー(g)と粘土鉱物で変性したポリアミ
ド(h)とからなる強化エラストマー組成物(b)2〜
70重量%、好ましくは10〜50重量%とからなるポ
リプロピレン樹脂組成物(c)100重量部に対し無機
充填剤(d)1重量部以上15重量部未満、好ましくは
5重量部以上15重量部未満によって構成される。
The polypropylene composition for high-impact parts of the present invention is a modified polypropylene (e) in which at least a portion of crystalline polypropylene (e) is modified with an unsaturated carboxylic acid or a derivative thereof.
a) Reinforced elastomer composition (b) 2 consisting of 98-30% by weight, preferably 90-50% by weight of a modified elastomer (g) and a polyamide (h) modified with clay minerals
70% by weight, preferably 10 to 50% by weight of the inorganic filler (d) per 100 parts by weight of the polypropylene resin composition (c), 1 part by weight or more and less than 15 parts by weight, preferably 5 parts by weight or more and 15 parts by weight. Consists of less than.

成分(d)の無機充填剤がポリプロピレン樹脂組成物(
c)に対し1重量部未満の場合には寸法安定性の改良効
果が無く、15重量部以上では、充填剤による耐受傷性
の悪化や射出成形品でのフローマークの発生といった外
観品質の問題が発生する。
The inorganic filler of component (d) is a polypropylene resin composition (
For c), if the amount is less than 1 part by weight, there will be no improvement in dimensional stability, and if it is more than 15 parts by weight, there will be problems with appearance quality such as deterioration of scratch resistance due to filler and occurrence of flow marks in injection molded products. occurs.

また、ポリプロピレン樹脂組成物(c)において、強化
エラストマー(b)が2重量%より少ない場合には高衝
撃性部品用ポリプロピレン組成物としては十分な耐衝撃
性の改良効果が得られない。
Furthermore, if the reinforcing elastomer (b) is less than 2% by weight in the polypropylene resin composition (c), a sufficient effect of improving impact resistance cannot be obtained as a polypropylene composition for high impact components.

逆に、強化エラストマー(b)が70重量%を超えると
ポリプロピレン樹脂組成物(c)の分散構造がエラスト
マーを海とする海−島構造となり、充填剤の配合によっ
ても、剛性、耐熱性、耐受傷性が大幅に低下する。
On the other hand, when the reinforcing elastomer (b) exceeds 70% by weight, the dispersed structure of the polypropylene resin composition (c) becomes a sea-island structure with the elastomer as the sea, and depending on the filler blend, the stiffness, heat resistance, and Vulnerability is significantly reduced.

更に、ポリプロピレン樹脂組成物(c)において、強化
エラストマー組成物(b)は不飽和カルボン酸またはそ
の誘導体で変性した変性エラストマー(g)40〜95
重量%、好ましくは40〜80重量%と粘土鉱物で変性
した変性ポリアミド(h)60〜5重量%、好ましくは
60〜20重量%とから構成され、成分(h)の変性ポ
リアミドが60重量%以上では強化エラストマー組成物
の分散構造が変性ポリアミド(h)を海とする海−島構
造を呈し、強化エラストマー(b)の配合による耐衝撃
性の改良効果が十分とはいえず、5重量%以下では充填
剤の配合によっても剛性、耐熱性の改良効果が少なく、
特に耐受傷性に対する改良効果がない。
Furthermore, in the polypropylene resin composition (c), the reinforced elastomer composition (b) is a modified elastomer (g) modified with an unsaturated carboxylic acid or a derivative thereof.
% by weight, preferably 40-80% by weight, and 60-5% by weight, preferably 60-20% by weight of a modified polyamide (h) modified with a clay mineral, with the modified polyamide of component (h) being 60% by weight. In the above case, the dispersed structure of the reinforced elastomer composition exhibits a sea-island structure with the modified polyamide (h) as the sea, and the effect of improving impact resistance due to the addition of the reinforced elastomer (b) cannot be said to be sufficient; In the following cases, the effect of improving rigidity and heat resistance is small even by adding fillers.
In particular, there is no improvement effect on scratch resistance.

また本発明は、上記成分(g)と成分(h)とからなる
組成物(b)  100重量部に対しエチレン及び/又
はα−オレフィンと不飽和カルボン酸またはその誘導体
及び/又は不飽和エポキシ化合物との共重合体の)を1
〜20重量部を配合し構成されるものである。成分(i
)が1重量部未満では強化エラストマー(b)において
変性ポリアミドの分散向上による物性改良効果が現れず
20重量部を超えると著しく成形性を低下させるため好
ましい結果が得られない。
The present invention also provides a composition (b) consisting of the above component (g) and component (h), in which ethylene and/or α-olefin, an unsaturated carboxylic acid or a derivative thereof, and/or an unsaturated epoxy compound are added to 100 parts by weight of the composition (b). ) of copolymer with 1
~20 parts by weight. component (i
) is less than 1 part by weight, the effect of improving the physical properties of the reinforced elastomer (b) by improving the dispersion of the modified polyamide does not appear, and if it exceeds 20 parts by weight, the moldability is significantly reduced, making it impossible to obtain favorable results.

本発明の高衝撃性部品用ポリプロピレン組成物を得るに
は、先ず強化エラストマー組成物(b)を製造したのち
本組成物を製造する他には特に制限はな(通常の公知の
方法を用いることができる。
In order to obtain the polypropylene composition for high-impact parts of the present invention, there is no particular restriction other than first producing the reinforced elastomer composition (b) and then producing the present composition (using a conventional known method). I can do it.

強化エラストマー(b)を得るには変性エラストマー(
g)と変性ポリアミド(h)とを、また本組成物にエチ
レン及び/又はα−オレフィンと不飽和カルボン酸また
はその誘導体及び/又は不飽和エポキシ化合物との共重
合体(1)とを前記範囲で種々の公知方法、例えばヘン
シェルミキサ■−ブレンダー リボンブレンダー、タン
フラブレンダー等でトライブレンドし、−軸押出機、二
軸押出機、ニーダ−、バンバリーミキサ−等で溶融混合
後、ペレット化する方法を採用することができる。
To obtain the reinforced elastomer (b), a modified elastomer (
g) and the modified polyamide (h), and the copolymer (1) of ethylene and/or α-olefin with an unsaturated carboxylic acid or its derivative and/or an unsaturated epoxy compound in the above range. Various known methods can be used, such as tri-blending using a Henschel mixer, blender, ribbon blender, tumbler blender, etc., melt-mixing using a screw extruder, twin screw extruder, kneader, Banbury mixer, etc., and then pelletizing. can be adopted.

次いで該強化エラストマー(b)と変性ポリプロピレン
(a)及び無機充填剤とを前記範囲で、前記方法にて溶
融混合しペレット化する方法で製造することができる。
Next, the reinforced elastomer (b), the modified polypropylene (a), and the inorganic filler can be melt-mixed in the above range and pelletized by the above method.

混練工程をより簡略化するために、予め強化エラストマ
ー組成物(b)を製造する工程を、本発明の組成物の製
造工程の中に組み入れて行うことも可能である。すなわ
ち、第一段階で強化エラストマー(b)をつくり、第二
段階で強化エラストマー(b)が溶融状態の場に変性ポ
リプロピレン(a)及び無機充填剤を投入して製造する
ことができる。また、第一段階で変性ポリプロピレン(
a)と無機充填剤(d)とを十分溶融混合し、第二段階
で強化エラストマー(b)を投入し製造する方法も採用
できる。本方法をより効果的にするには長いL/Dを有
し且つ通常の原料供給口の他にシリンダ一部に原料供給
口を備えた二軸押出機を用いることが好ましい。
In order to further simplify the kneading process, it is also possible to incorporate a step of manufacturing the reinforced elastomer composition (b) in advance into the manufacturing process of the composition of the present invention. That is, the reinforced elastomer (b) is produced in the first step, and the modified polypropylene (a) and the inorganic filler are added to the molten state of the reinforced elastomer (b) in the second step. In addition, in the first step, modified polypropylene (
It is also possible to adopt a manufacturing method in which a) and the inorganic filler (d) are sufficiently melted and mixed, and the reinforcing elastomer (b) is added in the second step. In order to make this method more effective, it is preferable to use a twin-screw extruder having a long L/D and having a raw material supply port in a part of the cylinder in addition to the usual raw material supply port.

本発明の熱可塑性樹脂組成物には、酸化防止剤、紫外線
吸収剤、滑剤、顔料、帯電防止剤、銅害防止剤、難燃剤
、中和剤、可塑剤、造核剤、染料、発泡側、スリップ剤
等の一般的な添加剤を本発明の目的を損わない範囲で配
合してもよい。
The thermoplastic resin composition of the present invention includes an antioxidant, an ultraviolet absorber, a lubricant, a pigment, an antistatic agent, a copper damage inhibitor, a flame retardant, a neutralizing agent, a plasticizer, a nucleating agent, a dye, and a foaming agent. General additives such as , slip agents, etc. may be blended within the range that does not impair the purpose of the present invention.

〔実施例〕〔Example〕

以下、実施例によって、本発明を更に詳細に説明するが
、本発明をこれら実施例に限定するものでないことはい
うまでもない。本発明の実施例で用いた測定方法は以下
の通りである。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but it goes without saying that the present invention is not limited to these Examples. The measurement method used in the examples of the present invention is as follows.

引張強度(TYS) (kg/cnl)   :  八STM  0638曲
げ強度(FS) (kg/c++1)  : ASTM D2584曲げ
弾性率(FM) (kg/cIIN)  : ASTM D2584アイ
ゾツト衝撃強度(IZoo) (kg  −cm/cm)   :  八STM  D
256熱変形温度(HDT) (”C):ASTM D648 表面硬度(RH) (Rスケール) : ASTM D785高速度衝撃強
度(HSI) (kg−cm)  :厚さ1.6 mm、直径100m
mの円板を成形し、その円板を試験 片として一10°Cでラウンドミ サイルを2.5 ttm / secの速度でこの円板
に落下させ、破壊 の際の応力−ひすみ曲線の面 積から破壊エネルギーを算出 傷付き性 する面衝撃測定法(LJBE法) で行った。
Tensile strength (TYS) (kg/cnl): 8STM 0638 Flexural strength (FS) (kg/c++1): ASTM D2584 Flexural modulus (FM) (kg/cIIN): ASTM D2584 Izoot impact strength (IZoo) (kg - cm/cm): 8 STM D
256 Heat Deformation Temperature (HDT) (''C): ASTM D648 Surface Hardness (RH) (R Scale): ASTM D785 High Velocity Impact Strength (HSI) (kg-cm): Thickness 1.6 mm, Diameter 100 m
A round missile is dropped onto this disk at a speed of 2.5 ttm/sec at -10°C using the disk as a test piece, and the area of the stress-strain curve at failure is calculated. The fracture energy was calculated using the scratch surface impact measurement method (LJBE method).

:厚さ2mm、 1oOanX 100mmの平板(射
出成形)を試験片と し、本試験片に荷重1 kgをか けた#80のサンドペーパーで 一往復摩擦し、傷付き部を目 視で観察し評価した。傷が目 立たないものは二〇、目立つ ものは:×とした。
: A flat plate (injection molded) with a thickness of 2 mm and 100 mm x 100 mm was used as a test piece, and the test piece was rubbed back and forth with #80 sandpaper with a load of 1 kg, and the scratched portion was visually observed and evaluated. A score of 20 was given to those with inconspicuous scratches, and a score of × was given to those with noticeable scratches.

線膨張係数 (mm/mm/”C)  : ASTM D696(−
30°C〜30°C) 上記物性評価用試験片は成形温度240°C1金型温度
50°C1射出時間15sec 、冷却時間30sec
の条件下で射出成形にて行った。また、実施例及び比較
例に使用した各原料は以下の通りである。
Linear expansion coefficient (mm/mm/”C): ASTM D696(-
30°C to 30°C) The above test piece for physical property evaluation was molded at 240°C, mold temperature was 50°C, injection time was 15 seconds, and cooling time was 30 seconds.
This was done by injection molding under the following conditions. Moreover, each raw material used in the examples and comparative examples is as follows.

1)ポリプロピレン(以下PPと略称する)メルトイン
デックス15 g /10分、エチレン含量10重量%
の結晶性エチレン・プロピレン共重合体:宇部興産製J
815HK 2)変性ポリプロピレン(以下MPPと略称する)メル
トインデックス1.Og/10分、エチレン含量10重
量%の結晶性エチレン・プロピレンブロック共重合体1
00重量部に対し、無水マレイン酸0.2重量部、t−
プチルペルオキシベンソエート0.2重量部を■−ブレ
ンダーでトライブレンドし、単軸押出機にて220°C
で溶融混合後、ペレ・ント化した。
1) Polypropylene (hereinafter abbreviated as PP) melt index 15 g/10 min, ethylene content 10% by weight
Crystalline ethylene-propylene copolymer: Ube Industries J
815HK 2) Modified polypropylene (hereinafter abbreviated as MPP) melt index 1. Og/10 min, crystalline ethylene/propylene block copolymer 1 with ethylene content 10% by weight
00 parts by weight, 0.2 parts by weight of maleic anhydride, t-
Tri-blend 0.2 parts by weight of butyl peroxybensoate in a ■-blender, and heat at 220°C in a single-screw extruder.
After melting and mixing, the mixture was pelletized.

3)更に、強化エラストマー(以下REと略称する)は
ポリアミド成分、エラストマー成分、その他の成分とを
表1に示した組成比でV−ブレンダーでトライブレンド
し、二軸押出機(2条タイプスクリュウ、L/D40)
を用い240°Cにて溶融混合後、ペレット化し製造し
た。
3) Furthermore, the reinforced elastomer (hereinafter abbreviated as RE) is prepared by tri-blending the polyamide component, elastomer component, and other components in the composition ratio shown in Table 1 in a V-blender, and then using a twin-screw extruder (two-thread type screw , L/D40)
After melt-mixing at 240° C., the mixture was made into pellets.

4)ポリアミド成分 通常のポリアミド(以下PAと略称する)は宇部興産製
ナイロン−61013Bをもちいた。
4) Polyamide Component As a normal polyamide (hereinafter abbreviated as PA), nylon-61013B manufactured by Ube Industries was used.

変性ポリアミド(以下MPAと略称する)は以下の方法
により製造し用いた。層状珪酸塩−単位の厚みが平均的
に9.5人で一辺の平均長さが約0、1 mモンモリロ
ナイト100gを101の水に分散し、これに51.2
 gの12−アミノドデカン酸と24dの濃塩酸を加え
、5分間撹拌したのち濾過した。
Modified polyamide (hereinafter abbreviated as MPA) was produced and used by the following method. Layered silicate - The average thickness of the unit is 9.5 mm and the average side length is approximately 0.1 m. 100 g of montmorillonite is dispersed in 101 parts of water, and 51.2 m of montmorillonite is dispersed in 101 parts of water.
g of 12-aminododecanoic acid and 24d of concentrated hydrochloric acid were added, stirred for 5 minutes, and then filtered.

さらにこれを十分洗浄したのち、真空乾燥した。Furthermore, this was thoroughly washed and then vacuum dried.

この操作により、12−アミノドデカン酸アンモニウム
イオンとモンモリロナイトの複合体を調整した。次に撹
拌機付の反応容器に、10kgのε−力プロラクタム、
1kgの水及び200 gの乾燥した前期複合体を入れ
100°Cで反応系内が均一な状態になるように撹拌し
た。さらに温度を260°Cに上昇させ、15kg/c
mの加圧下で1時間撹拌した。その後放圧し水分を反応
容器から揮散させながら、常圧化で3時間反応を行った
。反応終了後、反応容器の下部ノズルからストランド状
に取り出した反応物を水冷し、カッティングを行い、平
均分子量15000のポリアミド及びモンモリロナイト
2重量%からなる変性ポリアミドペレットを得た。この
ペレットを熱水中に浸漬し未反応モノマーを抽出、除去
したのち真空乾燥機で乾燥した。
Through this operation, a complex of ammonium 12-aminododecanoate ion and montmorillonite was prepared. Next, 10 kg of ε-force prolactam was added to a reaction vessel equipped with a stirrer.
1 kg of water and 200 g of the dried pre-composite were added and stirred at 100°C so that the inside of the reaction system was in a uniform state. Furthermore, the temperature was increased to 260°C, and 15kg/c
The mixture was stirred for 1 hour under a pressure of m. Thereafter, the pressure was released to volatilize water from the reaction vessel, and the reaction was carried out at normal pressure for 3 hours. After the reaction was completed, the reaction product taken out in the form of a strand from the lower nozzle of the reaction vessel was cooled with water and cut to obtain modified polyamide pellets consisting of polyamide with an average molecular weight of 15,000 and 2% by weight of montmorillonite. The pellets were immersed in hot water to extract and remove unreacted monomers, and then dried in a vacuum dryer.

5)エラストマー成分 以下のエラストマー成分を用いた。5) Elastomer component The following elastomer components were used.

EPR(略称):ムーニー粘度ML、。470、エチレ
ン含量73重量%のエチレン・プロピレン共重合体ゴム 変性EPR(以下MEPRと略称する)  :EPR1
00重量部に対し、無水マレイン酸0.8重量部、ジク
ミルペルオキシド0.4重量部を加え、100°Cバラ
キシレン溶液中で変性した変性エチレン・プロピレン共
重合体ゴム。
EPR (abbreviation): Mooney viscosity ML. 470, ethylene-propylene copolymer rubber modified EPR with ethylene content of 73% by weight (hereinafter abbreviated as MEPR): EPR1
A modified ethylene-propylene copolymer rubber obtained by adding 0.8 parts by weight of maleic anhydride and 0.4 parts by weight of dicumyl peroxide to 00 parts by weight, and modifying the rubber in a varaxylene solution at 100°C.

5EBS−1(略称)ニジエル化学社製クレイトンG 
1650 SEBS−2(略称)ニジエル化学社製クレイトンG 
1657 M5EBS  (略称)ニジエル化学社製クレイトンG
1901x 6)無機充填剤 平均粒径2廂のタルクを用いた。
5EBS-1 (abbreviation) Clayton G manufactured by Nigel Chemical Co., Ltd.
1650 SEBS-2 (abbreviation) Clayton G manufactured by Nigel Chemical Co., Ltd.
1657 M5EBS (abbreviation) Clayton G manufactured by Nigel Chemical Co., Ltd.
1901x 6) Inorganic filler Talc with an average particle size of 2 feet was used.

裏旅班上 ポリプロピレン樹脂組成物として、MPP 10重量%
とPP60重量%、RE−120重量%、及びポリプロ
ピレン樹脂組成物100重量部に対しタルク11.1重
量部を■−ブレンダーでトライブレンドし、異方向二軸
押出機(2FCM−65φ単軸押出機)を用い250℃
で溶融混合後、ペレット化した。このペレットを80℃
で熱風乾燥し230℃で射出成形して試験片を作製した
As a polypropylene resin composition on Urababan, MPP 10% by weight
60% by weight of PP, 120% by weight of RE-1, and 11.1 parts by weight of talc per 100 parts by weight of the polypropylene resin composition were tri-blended in a ■-blender, and then mixed in a different direction twin screw extruder (2FCM-65φ single screw extruder). ) at 250℃
After melting and mixing, the mixture was pelletized. This pellet was heated at 80°C.
A test piece was prepared by drying with hot air and injection molding at 230°C.

裏施拠l二i ポリプロピレン樹脂組成物としてMPP 10重量%と
PP55重量%および強化エラストマー(RE−2〜5
)25重量%、及びこのポリプロピレン樹脂組成物10
0重量部に対しタルク11.1重量部を実施例1と同様
の方法でペレット化し、試験片を得た。
Backing material 10% by weight of MPP and 55% by weight of PP as a polypropylene resin composition and reinforced elastomer (RE-2 to 5)
) 25% by weight, and this polypropylene resin composition 10
0 parts by weight and 11.1 parts by weight of talc were pelletized in the same manner as in Example 1 to obtain test pieces.

実施■旦 ポリプロピレン樹脂組成物としてMPP 10重世%と
PP30重量%およびRE−650重量%、及びこのポ
リプロピレン樹脂組成物1oO重量部に対しタルク11
.1重量部を実施例Iと同様の方法でペレット化し、試
験片を得た。
The polypropylene resin composition used was 10% MPP, 30% by weight of PP, and 50% by weight of RE-6, and 11% of talc per 100 parts by weight of this polypropylene resin composition.
.. 1 part by weight was pelletized in the same manner as in Example I to obtain a test piece.

此Jd汁尤 ポリプロピレン樹脂組成物としてPP80重量%とEP
R25重量%、及びこのポリプロピレン樹脂組成物10
0重量部に対しタルク11.1重量部をV−ブレンダー
でトライブレンドし、異方向二軸押出式(2FCM−6
5φ単軸押出機)を用い220°Cで溶融混合後ペレッ
ト化した。このペレットを80°Cで熱風乾燥し230
″Cで射出成形して試験片を作製した。
This Jd soup polypropylene resin composition contains 80% by weight of PP and EP.
R25% by weight, and this polypropylene resin composition 10
0 parts by weight and 11.1 parts by weight of talc were tri-blended using a V-blender, and then mixed using a twin-screw extrusion method in different directions (2FCM-6
After melt-mixing at 220°C using a 5φ single-screw extruder, the mixture was pelletized. The pellets were dried with hot air at 80°C and
A test piece was prepared by injection molding.

ル較貫I ポリプロピレン樹脂組成物としてMPP 10重量%と
PP70重量%及びRE−120重量%を実施例1と同
様の方法でペレット化し、試験片を得た。
Comparison I A polypropylene resin composition containing 10% by weight of MPP, 70% by weight of PP, and 20% by weight of RE-1 was pelletized in the same manner as in Example 1 to obtain a test piece.

北較拠主 ポリプロピレン樹脂組成物としてMPP 10重量%と
PP60重量%、EPR4重量%、5EBS−23重量
%、MSEBS 3重量%及びMPA 10重量%、及
びこのポリプロピレン樹脂組成物100重量部に対しタ
ル911.1重量部を実施例1と同様の方法でペレット
化し、試験片を得た。
The main polypropylene resin composition was MPP 10% by weight, PP 60% by weight, EPR 4% by weight, 5EBS-23% by weight, MSEBS 3% by weight and MPA 10% by weight, and Tal based on 100 parts by weight of this polypropylene resin composition. 911.1 parts by weight was pelletized in the same manner as in Example 1 to obtain a test piece.

此1d吐土 RE−2の代わりにエラストマー(E−1)を用いたこ
と以外は、実施例2〜4と同様に行った。
The same procedure as in Examples 2 to 4 was carried out except that elastomer (E-1) was used instead of this 1d soil RE-2.

止較拠エ ポリプロピレン樹脂組成物としてMPP 10重量%と
PP40重量%、RE−225重量%、及びこのポリプ
ロピレン樹脂組成物100重量部に対しタルク33.3
重量部を実施例2と同様の方法でペレット化して試験片
を得た。
The base polypropylene resin composition was 10% by weight of MPP, 40% by weight of PP, 225% by weight of RE-2, and 33.3 parts by weight of talc per 100 parts by weight of this polypropylene resin composition.
Parts by weight were pelletized in the same manner as in Example 2 to obtain test pieces.

得られた結果を第1表に示す。The results obtained are shown in Table 1.

1じし1 〔発明の効果] 本発明は、粘土鉱物でハイブリッド化された変性ポリア
ミドをあらかじめエラストマー中に微細均一分散し、硬
質、且つ強靭にした強化エラストマーをポリプロピレン
の耐衝撃改良剤としてもちい、更に無機充填剤を配合す
ることにより、ポリプロピレン組成物の剛性、耐熱性、
耐受傷性、機械的強度等を損なうことなく耐衝撃性及び
寸法精度を向上したものである。
1 [Effects of the Invention] The present invention uses a reinforced elastomer made by finely and uniformly dispersing modified polyamide hybridized with clay minerals in an elastomer to make it hard and tough as an impact modifier for polypropylene. Furthermore, by blending an inorganic filler, the rigidity, heat resistance,
It has improved impact resistance and dimensional accuracy without compromising scratch resistance, mechanical strength, etc.

本発明により提供される新規な組成物は通常の射出成形
、押出成形等の成形加工法により成形でき、また剛性、
耐熱性、耐受傷性、耐衝撃性に優れており、フェンダ−
、バンパー、ホイールキャップ、スポイラ−、インスト
ルメントパネル、トリム等の自動車用内外装部品、家電
部品、機械部品等の工業用部品各種及びその他耐熱性と
耐衝撃性、耐受傷性が要求される用途に好適に用いられ
る。
The novel composition provided by the present invention can be molded by conventional molding methods such as injection molding and extrusion, and has high rigidity and
It has excellent heat resistance, scratch resistance, and impact resistance, making it perfect for fenders.
, various interior and exterior parts for automobiles such as bumpers, hubcaps, spoilers, instrument panels, and trims, various industrial parts such as home appliance parts, mechanical parts, and other applications that require heat resistance, impact resistance, and scratch resistance. It is suitably used for.

Claims (1)

【特許請求の範囲】 1、(i)変性ポリプロピレン(a)98〜30重量%
と(ii)強化エラストマー組成物(b)2〜70重量
%からなるポリプロピレン樹脂組成物(c)100重量
部に対し、無機充填剤(d)1重量部以上15重量部未
満を配合させて成る高衝撃部品用ポリプロピレン組成物
。 2、変性ポリプロピレン(a)が、結晶性ポリプロピレ
ン(e)の少なくとも一部を不飽和カルボン酸またはそ
の誘導体でグラフト変性された変性ポリプロピレンであ
る請求項1に記載の高衝撃性部品用ポリプロピレン組成
物。 3、強化エラストマー組成物(b)がエラストマー(f
)の少なくとも一部を不飽和カルボン酸またはその誘導
体でグラフト変性された変性エラストマー(g)40〜
95重量%と粘土鉱物で変性したポリアミド(h)60
〜5重量%とからなる請求項1に記載の高衝撃性部品用
ポリプロピレン組成物。 4、エラストマー(f)が、エチレン・α−オレフィン
共重合体ゴム及び/又はスチレン系水添ゴムである請求
項1〜3のいずれか1項に記載の高衝撃性部品用ポリプ
ロピレン組成物。 5、強化エラストマー組成物(b)が、変性エラストマ
ーと変性ポリアミドとからなる組成物100重量部に、
更にエチレン及び/又はα−オレフィンと、不飽和カル
ボン酸またはその誘導体及び/又は不飽和エポキシ化合
物との共重合体(i)を1〜20重量部を、配合してな
る請求項1〜4のいずれか1項に記載の高衝撃性部品用
ポリプロピレン組成物。 6、変性エラストマー(g)のグラフト量が変性エラス
トマーに対し0.01〜10重量%である請求項1〜5
のいずれか1項に記載の高衝撃性部品用ポリプロピレン
組成物。
[Claims] 1. (i) Modified polypropylene (a) 98 to 30% by weight
and (ii) 100 parts by weight of a polypropylene resin composition (c) consisting of 2 to 70% by weight of a reinforced elastomer composition (b), and 1 part by weight or more and less than 15 parts by weight of an inorganic filler (d). Polypropylene composition for high impact parts. 2. The polypropylene composition for high-impact parts according to claim 1, wherein the modified polypropylene (a) is a modified polypropylene obtained by graft-modifying at least a portion of the crystalline polypropylene (e) with an unsaturated carboxylic acid or a derivative thereof. . 3. The reinforced elastomer composition (b) is an elastomer (f
) Modified elastomer (g) 40~
Polyamide (h) 60 modified with 95% by weight and clay minerals
5. The polypropylene composition for high impact parts according to claim 1, comprising 5% by weight. 4. The polypropylene composition for high impact components according to any one of claims 1 to 3, wherein the elastomer (f) is an ethylene/α-olefin copolymer rubber and/or a hydrogenated styrene rubber. 5. The reinforced elastomer composition (b) is added to 100 parts by weight of a composition consisting of a modified elastomer and a modified polyamide,
Further, 1 to 20 parts by weight of a copolymer (i) of ethylene and/or α-olefin and unsaturated carboxylic acid or its derivative and/or unsaturated epoxy compound are blended. The polypropylene composition for high impact parts according to any one of the items. 6. Claims 1 to 5, wherein the grafting amount of the modified elastomer (g) is 0.01 to 10% by weight based on the modified elastomer.
The polypropylene composition for high impact parts according to any one of the above.
JP2213666A 1990-08-14 1990-08-14 Polypropylene composition for high impact parts Expired - Fee Related JP2885492B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2213666A JP2885492B2 (en) 1990-08-14 1990-08-14 Polypropylene composition for high impact parts
EP19910307451 EP0472344A3 (en) 1990-08-14 1991-08-13 Reinforced elastomer composition and polypropylene composition containing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2213666A JP2885492B2 (en) 1990-08-14 1990-08-14 Polypropylene composition for high impact parts

Publications (2)

Publication Number Publication Date
JPH0496957A true JPH0496957A (en) 1992-03-30
JP2885492B2 JP2885492B2 (en) 1999-04-26

Family

ID=16642951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2213666A Expired - Fee Related JP2885492B2 (en) 1990-08-14 1990-08-14 Polypropylene composition for high impact parts

Country Status (1)

Country Link
JP (1) JP2885492B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030181A (en) * 2000-07-14 2002-01-31 Jsp Corp Polyolefin resin composition for foaming
KR101116043B1 (en) * 2011-07-29 2012-03-13 이순만 Thermo plastic elastomer and process for self adhesive rubberized asphalt sheet
WO2013094763A1 (en) * 2011-12-22 2013-06-27 トヨタ紡織株式会社 Thermoplastic resin composition, method for producing same, and molded body
WO2013094764A1 (en) * 2011-12-22 2013-06-27 トヨタ紡織株式会社 Thermoplastic resin composition and method for producing same
JP2013147646A (en) * 2011-12-22 2013-08-01 Toyota Boshoku Corp Thermoplastic resin composition using plant-originated polyamide resin and molded article
JP2013147645A (en) * 2011-12-22 2013-08-01 Toyota Boshoku Corp Thermoplastic resin composition and method for producing the same
US10829626B2 (en) 2016-03-31 2020-11-10 Toyota Boshoku Kabushiki Kaisha Dispersion diameter adjustment method and thermoplastic resin composition
US10934424B2 (en) 2015-12-01 2021-03-02 Toyota Boshoku Kabushiki Kaisha Molded body and production method therefor
US11046822B2 (en) 2015-12-01 2021-06-29 Toyota Boshoku Kabushiki Kaisha Modifier, usage therefor, production method for modifier, and carrier for additive material
JP2021519835A (en) * 2018-03-29 2021-08-12 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Reinforced polyolefin composite
US11992980B2 (en) 2016-03-11 2024-05-28 Toyota Boshoku Kabushiki Kaisha Foamed resin molded article and method for manufacturing same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030181A (en) * 2000-07-14 2002-01-31 Jsp Corp Polyolefin resin composition for foaming
KR101116043B1 (en) * 2011-07-29 2012-03-13 이순만 Thermo plastic elastomer and process for self adhesive rubberized asphalt sheet
JP2016027178A (en) * 2011-12-22 2016-02-18 トヨタ紡織株式会社 Thermoplastic resin composition and method for producing the same
US9353251B2 (en) 2011-12-22 2016-05-31 Toyota Boshoku Kabushiki Kaisha Thermoplastic resin composition and method for producing same
JP2013147646A (en) * 2011-12-22 2013-08-01 Toyota Boshoku Corp Thermoplastic resin composition using plant-originated polyamide resin and molded article
JP2013147645A (en) * 2011-12-22 2013-08-01 Toyota Boshoku Corp Thermoplastic resin composition and method for producing the same
JP2013147647A (en) * 2011-12-22 2013-08-01 Toyota Boshoku Corp Thermoplastic resin composition and method for producing the same
KR20140105826A (en) * 2011-12-22 2014-09-02 도요다 보쇼꾸 가부시키가이샤 Thermoplastic resin composition and method for producing same
CN104024324A (en) * 2011-12-22 2014-09-03 丰田纺织株式会社 Thermoplastic resin composition and method for producing same
KR20140106685A (en) * 2011-12-22 2014-09-03 도요다 보쇼꾸 가부시키가이샤 Thermoplastic resin composition, method for producing same, and molded body
WO2013094763A1 (en) * 2011-12-22 2013-06-27 トヨタ紡織株式会社 Thermoplastic resin composition, method for producing same, and molded body
WO2013094764A1 (en) * 2011-12-22 2013-06-27 トヨタ紡織株式会社 Thermoplastic resin composition and method for producing same
JP2016166365A (en) * 2011-12-22 2016-09-15 トヨタ紡織株式会社 Thermoplastic resin composition
US9493642B2 (en) 2011-12-22 2016-11-15 Toyota Boshoku Kabushiki Kaisha Thermoplastic resin composition, method for producing same, and molded body
JP2016222932A (en) * 2011-12-22 2016-12-28 トヨタ紡織株式会社 Thermoplastic resin composition and method for producing the same
US9840615B2 (en) 2011-12-22 2017-12-12 Toyota Boshoku Kabushiki Kaisha Thermoplastic resin composition, method for producing same, and molded body
US10934424B2 (en) 2015-12-01 2021-03-02 Toyota Boshoku Kabushiki Kaisha Molded body and production method therefor
US11046822B2 (en) 2015-12-01 2021-06-29 Toyota Boshoku Kabushiki Kaisha Modifier, usage therefor, production method for modifier, and carrier for additive material
US11992980B2 (en) 2016-03-11 2024-05-28 Toyota Boshoku Kabushiki Kaisha Foamed resin molded article and method for manufacturing same
US10829626B2 (en) 2016-03-31 2020-11-10 Toyota Boshoku Kabushiki Kaisha Dispersion diameter adjustment method and thermoplastic resin composition
JP2021519835A (en) * 2018-03-29 2021-08-12 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Reinforced polyolefin composite
US12104048B2 (en) 2018-03-29 2024-10-01 Agency For Science, Technology And Research Reinforced polyolefin composite

Also Published As

Publication number Publication date
JP2885492B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
US5091462A (en) Thermoplastic resin composition
US5206284A (en) Thermoplastic resin composition
EP0472344A2 (en) Reinforced elastomer composition and polypropylene composition containing same
CN1053685C (en) Glass fiber reinforced propylene polymer graft composition
JP2722697B2 (en) Thermoplastic propylene resin composition
US4849471A (en) Impact-resistant polyamide composition
JPH0496957A (en) Polypropylene composition for part having high impact resistance
JP2885507B2 (en) High rigidity parts made of polypropylene resin composition
US5391607A (en) Thermoplastic resin composition
JPH1143565A (en) Polypropylene resin composition for interior and exterior automotive trim
JPS6317297B2 (en)
JP2831786B2 (en) Thermoplastic resin composition
JPH11335553A (en) Thermoplastic resin composition and molded article
JPH10298366A (en) Polypropylene resin composition
US5548013A (en) Thermoplastic resin composition
JP3017233B2 (en) Resin composition
JPH0496956A (en) Polypropylene composition
JPH08164588A (en) Composite plastic molding
JP4258959B2 (en) Polypropylene resin composition and production method
JP2528163B2 (en) Highly rigid and impact resistant polyamide resin composition
JP2006137888A (en) Bright material-containing resin composition
CA2054975A1 (en) Reinforced polypropylene resin composition
JP2885490B2 (en) Reinforced elastomer composition
JP3483616B2 (en) Painted soft resin bumper
JP4306054B2 (en) Thermoplastic elastomer composition and thermoplastic resin composition using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees