JPH0496214A - Exposure treatment device - Google Patents

Exposure treatment device

Info

Publication number
JPH0496214A
JPH0496214A JP2206409A JP20640990A JPH0496214A JP H0496214 A JPH0496214 A JP H0496214A JP 2206409 A JP2206409 A JP 2206409A JP 20640990 A JP20640990 A JP 20640990A JP H0496214 A JPH0496214 A JP H0496214A
Authority
JP
Japan
Prior art keywords
light
light source
exposure
stepper
sor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2206409A
Other languages
Japanese (ja)
Other versions
JP2697264B2 (en
Inventor
Isamu Shimoda
下田 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2206409A priority Critical patent/JP2697264B2/en
Publication of JPH0496214A publication Critical patent/JPH0496214A/en
Application granted granted Critical
Publication of JP2697264B2 publication Critical patent/JP2697264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70991Connection with other apparatus, e.g. multiple exposure stations, particular arrangement of exposure apparatus and pre-exposure and/or post-exposure apparatus; Shared apparatus, e.g. having shared radiation source, shared mask or workpiece stage, shared base-plate; Utilities, e.g. cable, pipe or wireless arrangements for data, power, fluids or vacuum

Abstract

PURPOSE:To efficiently use both of an X-ray stepper and an optical stepper by using only an SOR light source and using a proper wavelength selecting means. CONSTITUTION:X-rays that are passed through a Be film 11 of SOR light 3a taken out from a port 2a of an SOR light source 1 is supplied to an X-ray stepper 12. Further, light (g-rays) having different wave length from that of X-rays that are passed through an optical filter 21 of the SOR light 3b taken out from the port 2b is supplied to an optical stepper 22. Thus, in this embodiment, light having the optimal wave length to the respective steppers (exposure devices) is taken out from SOR light radiated from the different ports 2a, 2b of the single SOR light source 1 by a wave length selecting means 11, 12 for being used as exposure light in order to constitute an exposure treatment device.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は露光処理装置に関し、特にシンクロトロン放射
光(Synchrotoronorbital  ra
diation、略して5OR)のようなX線から可視
光に至る広い波長帯域の光を放射する光源手段を利用し
た半導体素子製造用に好適な露光処理装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an exposure processing apparatus, and particularly to an exposure processing apparatus that uses synchrotron radiation (Synchrotron radiation).
The present invention relates to an exposure processing apparatus suitable for manufacturing semiconductor devices using a light source means that emits light in a wide wavelength range from X-rays to visible light, such as 5OR diation (abbreviated as 5OR).

(従来の技術) 現在の半導体集積回路の生産には多くの場合UV光(例
えばg線、波長436nm)を露光光源とし、ウェハ面
を複数の領域に分割して各分割領域毎にマスク(レチク
ル)とウェハとの位置合わせを行いその後露光をするプ
ロセスを複数回繰り返して行う、所謂ステップアンドリ
ピート方式を用いた露光装置(以下「光ステツパ−」と
称す、)が使用されている。
(Prior Art) In the production of current semiconductor integrated circuits, in most cases UV light (for example, G-line, wavelength 436 nm) is used as an exposure light source, the wafer surface is divided into multiple regions, and a mask (reticle) is used for each divided region. An exposure apparatus (hereinafter referred to as an "optical stepper") using a so-called step-and-repeat method is used, in which the process of aligning the wafer with the wafer and performing exposure is repeated multiple times.

一般の半導体集積回路の一生産はこのような露光プロセ
スを10〜20回繰り返して行なわれている。このとき
の各々の露光プロセスは所定の線幅精度、位置合わせ精
度を満足するような光ステッパーによって行なわれてい
る。
One production of a typical semiconductor integrated circuit involves repeating such an exposure process 10 to 20 times. Each exposure process at this time is performed by an optical stepper that satisfies predetermined line width accuracy and alignment accuracy.

第5図は従来のこのような光ステッパーの光学系の要部
概略図である。
FIG. 5 is a schematic diagram of the main parts of the optical system of such a conventional optical stepper.

同図においては高圧水銀灯51から放射された光をコン
デンサーレンズ52−1とミラーMl。
In the figure, light emitted from a high-pressure mercury lamp 51 is transferred to a condenser lens 52-1 and a mirror Ml.

M2を介して光学フィルター52−2に入射させ、該光
学フィルター52−2によりUV光(例えばg線の光)
のみを通過させている。そして該光学フィルター52−
2からのし■光をレンズ52−3とレンズ52−4によ
り集光し該UV光でマスク53面を照射している。そし
て該UV光で照明されたマスク53面上の回路パターン
を投影光学系54によりウェハステージ56に載置した
ウェハ55面上に縮少投影している。
UV light (for example, G-line light) is incident on the optical filter 52-2 through M2, and the UV light (for example, G-line light) is
It is only passing through. And the optical filter 52-
The incoming light from the UV light source 2 is focused by lenses 52-3 and 52-4, and the surface of the mask 53 is irradiated with the UV light. Then, the circuit pattern on the surface of the mask 53 illuminated with the UV light is reduced and projected by the projection optical system 54 onto the surface of the wafer 55 placed on the wafer stage 56.

このような露光装置において、最近サブミクロンパター
ンを用いた超LSIを対象とし、光源手段としてX線を
用いた露光装置が注目されている。
Among such exposure apparatuses, exposure apparatuses that use X-rays as a light source have recently been attracting attention for VLSIs using submicron patterns.

X線を露光光源として使用する場合には、現在のところ
X線に対する適当な光学系(投影レンズ)が存在しない
為にマスクとウェハを密着配置し、又は近接配置して等
信置光させる必要がある。
When using X-rays as an exposure light source, there is currently no suitable optical system (projection lens) for X-rays, so it is necessary to place the mask and wafer in close contact with each other, or to place them close to each other to achieve isotropic illumination. There is.

このようなX線を利用した露光袋WfX線ステッパー)
においてサブミクロンパターンの転写を行うにはサブミ
クロンパターンを等倍で形成したマスクを用いなければ
ならず、又一般にウェハの大口径化を考慮するとウェハ
全面を一括露光するマスクを作成するのは難しい為、現
在のところステップアンドリピート方式が採用される傾
向にある。
Exposure bag Wf X-ray stepper that uses such X-rays)
In order to transfer a submicron pattern, it is necessary to use a mask with a submicron pattern formed at the same magnification, and in general, considering the large diameter of the wafer, it is difficult to create a mask that exposes the entire wafer at once. Therefore, there is currently a tendency to adopt a step-and-repeat method.

X線を露光光とするステップアンドリピート方式の露光
装置(以下rX線ステッパー」と称す、)においては光
源手段としてX線管球やシンクロトロン放射光源(以下
rsOR光ORと称する。)の使用が考えられる。
In a step-and-repeat type exposure apparatus (hereinafter referred to as rX-ray stepper) that uses X-rays as exposure light, an X-ray tube or a synchrotron radiation light source (hereinafter referred to as rsOR light OR) is used as a light source means. Conceivable.

このSOR光源に関しては例えば刊行物〃オブトロニク
スl) l 989年3月号、「シンクロトロン放射光
とその応用」に詳述されている。
This SOR light source is described in detail, for example, in the publication "Synchrotron radiation and its applications" published in the March 989 issue of Obtronics.

SOR光源はX線ステッパーとして用いたとき次のよう
な利点がある。
The SOR light source has the following advantages when used as an X-ray stepper.

(イ)X線ビームの平行性が良い、この為半影ボケや幾
何学的誤差のような転写誤差が小さい。
(a) The parallelism of the X-ray beam is good, so transfer errors such as penumbra blur and geometric errors are small.

(ロ)他のX線源と比較して光強度が大きく、高い生産
性が得られる。
(b) Compared to other X-ray sources, the light intensity is high and high productivity can be obtained.

(ハ)放射波長帯域幅がX線から可視光に至る広範囲に
わたっている為使用する光の波長選択の自由度が大きい
(c) Since the emission wavelength bandwidth extends over a wide range from X-rays to visible light, there is a high degree of freedom in selecting the wavelength of the light to be used.

(ニ)寿命が半永久的である。(d) Lifespan is semi-permanent.

(発明が解決しようとする問題点) サブミクロンパターンを対象とした超LSIの製造の際
には多くの場合lO〜20回程度の各種の露光プロセス
が行なわれる。しかしながら多くの場合全ての露光プロ
セスにおいてサブミクロンの精度を必要とする露光が必
要となってくるのではなく、サブミクロン露光を対象す
る露光プロセスはそのうちの一部分である。
(Problems to be Solved by the Invention) When manufacturing a VLSI for submicron patterns, various exposure processes are often performed for about 10 to 20 times. However, in many cases, not all exposure processes require exposure that requires submicron precision, but only a portion of the exposure process targets submicron exposure.

従ってサブミクロン露光を対象とした高精度の位置合わ
せ及び露光を全ての露光プロセスに適用するのは装置コ
ストや生産性の点から大変非効率的になってくる。
Therefore, applying high-precision alignment and exposure for submicron exposure to all exposure processes becomes extremely inefficient in terms of equipment cost and productivity.

これに対しては目的に応じてX線ステッパーと光ステッ
パーを併用することが考えられる。
For this purpose, it is conceivable to use an X-ray stepper and an optical stepper together depending on the purpose.

しかしながら光ステッパーにおいて現在多く用いられる
高圧水銀灯の寿命は約数100時間である。
However, the lifespan of high-pressure mercury lamps, which are currently widely used in optical steppers, is approximately several hundred hours.

この為高圧水銀灯を用いた露光装置においては寿命がき
たら高圧水銀灯を交換しなければならない、それにはそ
の都度露光作業を中断したり又はマスク面に照度ムラか
生し解像線幅か低下するのを防止する為に高圧水銀灯を
所定位置に高精度に配置する必要がある。
For this reason, in exposure equipment that uses a high-pressure mercury lamp, it is necessary to replace the high-pressure mercury lamp when it reaches the end of its life.This requires either stopping the exposure operation each time, or causing uneven illuminance on the mask surface and reducing the resolution line width. In order to prevent this, it is necessary to place the high-pressure mercury lamp in a predetermined position with high precision.

一般にこのような作業には多くの時間を要しスルーフッ
トか低下してくるといった問題点かあった。
Generally, such work requires a lot of time and has the problem of reducing the through foot.

本発明は光源手段として前述のSOR光源のみを用い、
又適切なる波長選択手段を用いることによりX線ステッ
パーと光ステッパーの双方を効率良く利用することかで
き生産性の優れた露光処理装置の提供を目的とする。
The present invention uses only the above-mentioned SOR light source as a light source means,
Another object of the present invention is to provide an exposure processing apparatus that can efficiently utilize both an X-ray stepper and an optical stepper by using an appropriate wavelength selection means and has excellent productivity.

(問題点を解決する為の手段) 本発明の露光処理装置は単一の光源手段から放射された
所定の波長帯域の光から波長の異なる複数の光を波長選
択手段により選択し、該選択された波長の異なる複数の
光を各々露光装置に導光するようにしたことを特徴とし
ている。
(Means for Solving the Problems) The exposure processing apparatus of the present invention uses a wavelength selection means to select a plurality of lights having different wavelengths from light in a predetermined wavelength band emitted from a single light source means, and The present invention is characterized in that a plurality of lights having different wavelengths are each guided to an exposure device.

この他本発明では所定の波長帯域の光を放射する単一の
光源手段と該光源手段から放射された光から■いに波長
の異なる光を選択して露光光として便用するようにした
複数の露光装置とを備えたことを特徴としている。
In addition, the present invention includes a single light source that emits light in a predetermined wavelength band, and a plurality of lights that have different wavelengths selected from the light emitted from the light source and used as exposure light. It is characterized by being equipped with an exposure device.

又前記単一の光源手段としてシンクロトロン放射光源を
用い、前記波長の異なる複数の光を前記シンクロトロン
放射光源の1つ又は複数のポートから取り出した光を空
間的光束分割素子又は波長分割素子を介して得ているこ
とを特徴としでいる。
Further, a synchrotron radiation light source is used as the single light source means, and the plurality of lights having different wavelengths are extracted from one or more ports of the synchrotron radiation light source and a spatial beam splitting element or a wavelength splitting element is used. It is characterized by the fact that it is obtained through

(実施例) 第1図は本発明の第1実施例の要部概略図である。(Example) FIG. 1 is a schematic diagram of main parts of a first embodiment of the present invention.

同図において1は光源手段であり、シンクロトロン放射
光を行う光源(以下rsOR光ORと称する。)より成
り、X線から可視光に至る広い波長帯域の鋭い指光性を
有した白色の光(以下rsOR光Jと称する。)を放射
している。
In the figure, reference numeral 1 denotes a light source means, which consists of a light source that emits synchrotron radiation light (hereinafter referred to as rsOR light OR), which emits white light with sharp optical properties in a wide wavelength range from X-rays to visible light. (hereinafter referred to as rsOR light J).

第4図は本実施例のSOR光源1から放射されるSOR
光の波長分布の一例の説明図である。第4図において横
軸は光の波長を対数座標で示している。縦軸は単位ハン
ト幅、単位時間、単位立体角当りの光子数を対数座標で
示している。第4図に示すように波長10人付近にピー
クを持ち、短波長側は急速に低下しているが長波長側は
可視光領域の先まで緩やかに低下している。
Figure 4 shows the SOR emitted from the SOR light source 1 of this embodiment.
FIG. 2 is an explanatory diagram of an example of wavelength distribution of light. In FIG. 4, the horizontal axis indicates the wavelength of light in logarithmic coordinates. The vertical axis shows the unit hunt width, unit time, and number of photons per unit solid angle in logarithmic coordinates. As shown in FIG. 4, it has a peak around wavelength 10, and decreases rapidly on the short wavelength side, but gradually decreases on the long wavelength side until beyond the visible light region.

第1図に戻り28〜2dは各々ポートでありSOR光源
から放射されるSOR光の取り出し口となっており、通
常SOR光源1台当り10〜20個設けられている。第
1図では簡単の為に4個のみを示している。SOR光は
各ポートから電子回転軌道に沿って取り出されている。
Returning to FIG. 1, 28 to 2d are ports, which serve as outlets for the SOR light emitted from the SOR light source, and usually 10 to 20 ports are provided per SOR light source. In FIG. 1, only four are shown for simplicity. The SOR light is extracted from each port along the electron rotation trajectory.

3a(3b)はポート2a (2b)から取り出された
SOR光である。尚SOR光はどのポートから取り出さ
れても同一の波長分布を有している。
3a (3b) is the SOR light taken out from port 2a (2b). Note that the SOR light has the same wavelength distribution no matter which port it is extracted from.

11は波長選択手段としてのBe(ベリリウム)膜であ
り、X線ステッパー用に適したスペクトル幅のX線を通
過させている。
Reference numeral 11 denotes a Be (beryllium) film as a wavelength selection means, which allows X-rays with a spectrum width suitable for an X-ray stepper to pass through.

本実施例ではX線領域の光損失が最小となる材料より成
っている。光損失が大きいとX線ステッパーに供給され
るX線量が少なくなると共に熱損失が大きくなり膜の寿
命が低下してくる為である。尚Be膜11はSOR光源
】を高真空に維持する機能も合わせ持っている。
In this embodiment, it is made of a material that minimizes optical loss in the X-ray region. This is because if the optical loss is large, the amount of X-rays supplied to the X-ray stepper will be reduced and the heat loss will be large, resulting in a shortened lifespan of the film. The Be film 11 also has the function of maintaining the SOR light source in a high vacuum.

12はX線ステッパーでありSOR光源光源らのSOR
光のうちBe1ijを通過したX線を露光光として用い
て、例えば特開昭6]−114529号公報で提案され
ているようにしてマスク面上の回路パターンをウェハ面
上に転写しく燐付け)でいる。
12 is an X-ray stepper, which is an SOR light source.
Using the X-rays that have passed through Be1ij as exposure light, the circuit pattern on the mask surface is transferred and phosphorized onto the wafer surface as proposed in, for example, Japanese Patent Application Laid-Open No. 6-114529). I'm here.

21は波長選択手段としての光学フィルターであり光ス
テッパーに適した光、例えばg線(tl長え=436n
m)の光のみを通過させている0本実施例ではg線の光
の損失が最小となり、他の波長の光を遮断する材料が用
いられている。
Reference numeral 21 is an optical filter as a wavelength selection means, which uses light suitable for an optical stepper, such as g-line (tl length = 436n).
In this embodiment, which allows only the light of wavelength m) to pass through, the loss of light of the g-line is minimized, and a material that blocks light of other wavelengths is used.

22は光ステッパーであり、SOR光源】からのSOR
光のうち光学フィルター21を通過した光(g線)を露
光光として用いて例えば特開平2−100311号公報
で提案されているようにしてマスク面上の回路パターン
をウェハ面上へ転写している。
22 is an optical stepper, and the SOR from the SOR light source is
The circuit pattern on the mask surface is transferred onto the wafer surface using the light (g-line) that has passed through the optical filter 21 as exposure light, as proposed in, for example, Japanese Patent Application Laid-Open No. 2-100311. There is.

本実施例ではSOROR光源具−ト2aより取り出され
たSOR光3aのうちBe1illを通過したX線はX
線ステッパー12に供給される。又ポート2bより取り
出されたSOR光3bのうち光学フィルター21を通過
したX線とは波長の異なる光(g線)は光ステツパ−2
2に供給される。
In this embodiment, among the SOR light 3a extracted from the SOROR light source tool 2a, the X-rays that have passed through Beill are
The line stepper 12 is supplied with the line. Also, out of the SOR light 3b taken out from the port 2b, the light (g-line) having a different wavelength from the X-ray that has passed through the optical filter 21 is sent to the optical stepper 2.
2.

このように本実施例では単一のSOROR光源具なるポ
ート(2a、2b)から放射されたSOR光から波長選
択手段(11,21)により各々のステッパー(露光装
置)に最゛適の波長の光を取り出して露光光として使用
するようにして露光処理装置を構成している。
In this way, in this embodiment, the wavelength selection means (11, 21) selects the optimal wavelength for each stepper (exposure device) from the SOR light emitted from the ports (2a, 2b), which is a single SOROR light source device. The exposure processing apparatus is configured to extract light and use it as exposure light.

この為本実施例の光ステツパ−22では従来より使われ
ていた高圧水銀灯は不要となり、それに伴う保守、調整
が不要となる等の特長を有している。
Therefore, the optical stepper 22 of this embodiment does not require the high-pressure mercury lamp that has been used in the past, and has the advantage of eliminating the need for associated maintenance and adjustment.

尚本実施例によればg線(436nm)近傍のSOR光
の強度は第4図に示すようにX線ステッパ=12に使わ
れる波長領域の強度の約1/2である。Xステッパー1
2及び光ステツパ−22に適合するレジスト感度を勘案
すると露光時間には大差はない。
According to this embodiment, the intensity of the SOR light near the g-line (436 nm) is about 1/2 of the intensity in the wavelength region used for the X-ray stepper=12, as shown in FIG. X stepper 1
2 and the resist sensitivity suitable for the optical stepper 22, there is not much difference in exposure time.

本実施例ては波長選択手段(11,21)を各々ステッ
パーと独立に設けたか、波長選択手段は各ステッパー内
部に一体化して設けるようにしても良い。
In this embodiment, the wavelength selection means (11, 21) are provided independently from each stepper, or the wavelength selection means may be provided integrally inside each stepper.

#12図は本発明の第2実施例の要部概略図である。第
2図において第1図て示した要素と同一要素には同符番
な付している。
Figure #12 is a schematic diagram of the main part of the second embodiment of the present invention. In FIG. 2, the same elements as those shown in FIG. 1 are given the same reference numerals.

本実施例てはSOR光#i1の1つのポート2aより取
り出したSOR光3を中央部に光通過性の穴部を設けた
反射鏡より成る空間的光束分割素子23により透過光3
aと反射光3bの2つの光に分割している。
In this embodiment, the SOR light 3 taken out from one port 2a of the SOR light #i1 is transmitted through a spatial light beam splitting element 23 consisting of a reflecting mirror with a light-transmitting hole in the center.
It is divided into two lights: a and reflected light 3b.

このうち透過光3aをBe1lllを介して所定のX線
を通過させX線ステッパー12に導光している。又反射
光3bを集光レンズ24て集光した後、光学フィルター
21を介して所定の光(例えばg線の光)のみを通過さ
せて光ステツパ−22に導光している。
Of these, the transmitted light 3a passes a predetermined X-ray through Bellll and is guided to the X-ray stepper 12. Further, after the reflected light 3b is condensed by a condenser lens 24, only a predetermined light (for example, g-line light) is passed through an optical filter 21 and guided to an optical stepper 22.

本実施例ではこのように1つのSOROR光源具つのポ
ート2aからのSOR光を空間的光束分割素子23を利
用して空間的に2つの光に分割して各々のステッパー(
露光装置)に最適の波長分布の光を供給して、ポート数
に制限がある場合のSOR光源からのSOR光の有効利
用を図っている。
In this embodiment, the SOR light from one port 2a of one SOROR light source is spatially split into two lights using the spatial beam splitting element 23, and each stepper (
By supplying light with an optimal wavelength distribution to an exposure device (exposure device), the SOR light from the SOR light source is effectively used when the number of ports is limited.

第3図は本発明の第3実施例の要部概略図である。第3
図において第1図で示した要素と同一要素には同符番を
付している。
FIG. 3 is a schematic diagram of main parts of a third embodiment of the present invention. Third
In the figure, the same elements as those shown in FIG. 1 are given the same reference numerals.

本実施例ではSOROR光源具つのポート2aより取り
出したSOR光をX線ステッパーに使用される短波長側
のX線領域の光を透過させ、光ステッパーに使用される
長波長側の波長領域の光を反射させるような分光特性を
有した波長分割素子25により透過光3aと反射光3b
の2つの光に分割している。
In this embodiment, the SOR light taken out from the port 2a of the SOROR light source transmits light in the X-ray region on the short wavelength side used in the X-ray stepper, and light in the wavelength region on the long wavelength side used in the optical stepper. The transmitted light 3a and the reflected light 3b are separated by the wavelength division element 25 having spectral characteristics such as to reflect the transmitted light 3a and the reflected light 3b.
It is divided into two lights.

このうち波長分割素子25を透過した透過光3aをBe
[llを介して所定のX線を通過させX線ステッパー1
2に導光している。又波長分割素子25で反射した反射
光3bを光学フィルター21を介して所定の光(例えば
g線の光)のみを通過させて光ステツパ−22に導光し
ている。
Of these, the transmitted light 3a that has passed through the wavelength division element 25 is Be
X-ray stepper 1 passes a predetermined X-ray through
The light is guided to 2. Further, the reflected light 3b reflected by the wavelength division element 25 is guided to the optical stepper 22 through an optical filter 21, allowing only a predetermined light (for example, g-line light) to pass therethrough.

本実施例においては波長分割素子25とBe1i11を
一体化して構成しても良い。
In this embodiment, the wavelength division element 25 and Be1i11 may be integrated.

Be1illにUv光領域を反射するようなコーテイン
グ膜を施せば装置全体が小型化される。特に波長分割素
子25としてBe基板にg線光のみを反射するようなコ
ーテイング膜を施して構成すれば光学フィルター21が
省略出来、該波長分割素子25に3つの機能を持たせる
ことが出来、装置全体をより小型化及び簡素化すること
ができる。
If a coating film that reflects the UV light region is applied to Beill, the entire device can be miniaturized. In particular, if the wavelength division element 25 is configured by coating a Be substrate with a coating film that reflects only the g-ray light, the optical filter 21 can be omitted, and the wavelength division element 25 can have three functions. The whole can be made smaller and simpler.

尚以上の各実施例において単一の光源手段としては所定
の波長帯域の光を放射する光源であればSOR光源に限
らずX線領域と可視領域の光を放射する光源であればど
のような光源を用いても良い。
In each of the above embodiments, the single light source means is not limited to an SOR light source as long as it emits light in a predetermined wavelength band, but any light source that emits light in the X-ray region and visible region can be used. A light source may also be used.

(発明の効果) 本発明によればSOR光源等の単一の光源手段より放射
された所定の波長帯域の光から波長選択手段により各々
のステッパーに使用される最適な波長の光を選択し導光
することにより、例えばX線ステッパーと光ステッパー
の双方において効率的な露光処理が出来る露光処理装置
を達成することができる。
(Effects of the Invention) According to the present invention, the wavelength selection means selects and guides light of the optimum wavelength to be used for each stepper from light in a predetermined wavelength band emitted from a single light source means such as an SOR light source. By using light, it is possible to achieve an exposure processing apparatus that can perform efficient exposure processing in both an X-ray stepper and an optical stepper, for example.

特に光ステッパーとして従来より使用されていた高圧水
銀灯が不要となる為、光源位置の調整や保守点検時間が
不要となる点の利点を有した露光処理装置を達成するこ
とができる。
In particular, since the high-pressure mercury lamp conventionally used as an optical stepper is no longer required, it is possible to achieve an exposure processing apparatus that has the advantage of eliminating the need for adjustment of the light source position and maintenance/inspection time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1、第2、第3図は各々本発明の第1、第2、第3実
施例の要部概略図、第4図はSOR光源の発光分光特性
の説明図、第5閏は従来の光ステッパーの要部概略図で
ある。 図中1はSOR光源、2a〜2dは各々ホト、3はSO
R光、3aはX線、3bはg線の光、11はBe1li
i、12 ハX wAスフ ツバ−121は光学フィル
ター、22は光ステツパ−,23は空間的光束分割素T
、24は集光レンズ、波長分割素子、である。
1, 2, and 3 are schematic diagrams of the main parts of the first, second, and third embodiments of the present invention, respectively. FIG. 4 is an explanatory diagram of the emission spectral characteristics of the SOR light source. FIG. 2 is a schematic diagram of main parts of an optical stepper. In the figure, 1 is an SOR light source, 2a to 2d are photo sources, and 3 is an SO light source.
R light, 3a is X-ray, 3b is G-line light, 11 is Be1li
i, 12 CX wA block 121 is an optical filter, 22 is an optical stepper, 23 is a spatial beam splitting element T
, 24 are a condensing lens and a wavelength division element.

Claims (6)

【特許請求の範囲】[Claims] (1)単一の光源手段から放射された所定の波長帯域の
光から波長の異なる複数の光を波長選択手段により選択
し、該選択された波長の異なる複数の光を各々露光装置
に導光するようにしたことを特徴とする露光処理装置。
(1) A wavelength selection means selects a plurality of lights with different wavelengths from light in a predetermined wavelength band emitted from a single light source means, and guides each of the selected lights with different wavelengths to an exposure device. An exposure processing apparatus characterized in that:
(2)所定の波長帯域の光を放射する単一の光源手段と
該光源手段から放射された光から互いに波長の異なる光
を選択して露光光として使用するようにした複数の露光
装置とを備えたことを特徴とする露光処理装置。
(2) A single light source means that emits light in a predetermined wavelength band and a plurality of exposure devices that select light of different wavelengths from the light emitted from the light source means and use them as exposure light. An exposure processing apparatus characterized by comprising:
(3)前記単一の光源手段としてシンクロトロン放射光
源を用いたことを特徴とする請求項1又は2記載の露光
処理装置。
(3) The exposure processing apparatus according to claim 1 or 2, wherein a synchrotron radiation light source is used as the single light source means.
(4)前記波長の異なる複数の光を前記シンクロトロン
放射光源の異なるポートから各々取り出した後、前記波
長選択手段を介して選択していることを特徴とする請求
項3記載の露光処理装置。
(4) The exposure processing apparatus according to claim 3, wherein the plurality of lights having different wavelengths are extracted from different ports of the synchrotron radiation light source and then selected through the wavelength selection means.
(5)前記波長の異なる複数の光を前記シンクロトロン
放射光源の1つのポートから取り出した光を空間的光束
分割素子又は波長分割素子を介して得ていることを特徴
とする請求項3記載の露光処理装置。
(5) The plurality of lights having different wavelengths are extracted from one port of the synchrotron radiation light source and are obtained through a spatial beam splitting element or a wavelength splitting element. Exposure processing equipment.
(6)前記複数の露光装置のうち1つはX線を利用した
露光装置であることを特徴とする請求項1又は2記載の
露光処理装置。
(6) The exposure processing apparatus according to claim 1 or 2, wherein one of the plurality of exposure devices is an exposure device that uses X-rays.
JP2206409A 1990-08-03 1990-08-03 Exposure processing equipment Expired - Fee Related JP2697264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2206409A JP2697264B2 (en) 1990-08-03 1990-08-03 Exposure processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2206409A JP2697264B2 (en) 1990-08-03 1990-08-03 Exposure processing equipment

Publications (2)

Publication Number Publication Date
JPH0496214A true JPH0496214A (en) 1992-03-27
JP2697264B2 JP2697264B2 (en) 1998-01-14

Family

ID=16522889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2206409A Expired - Fee Related JP2697264B2 (en) 1990-08-03 1990-08-03 Exposure processing equipment

Country Status (1)

Country Link
JP (1) JP2697264B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535250A (en) * 1994-07-09 1996-07-09 Jenoptik Technologie Gmbh Device for manipulating a synchrotron beam bundle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535250A (en) * 1994-07-09 1996-07-09 Jenoptik Technologie Gmbh Device for manipulating a synchrotron beam bundle

Also Published As

Publication number Publication date
JP2697264B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
JP3259657B2 (en) Projection exposure apparatus and device manufacturing method using the same
TWI632343B (en) Topography measurement system, radiation source for use in the same and lithographic apparatus
US4853756A (en) Projection exposure apparatus
JPH04369209A (en) Illumination apparatus for exposure use
US20120262690A1 (en) Illumination system, lithographic apparatus and illumination method
TWI257533B (en) Lithographic projection apparatus with collector including concave and convex mirrors
JP2001284240A (en) Illuminating optical system, projection exposure system equipped therewith, method of manufacturing device by use of projection exposure system
JP4552428B2 (en) Illumination optical apparatus, projection exposure apparatus, exposure method, and device manufacturing method
JPH032284B2 (en)
US8916314B2 (en) Reduced lens heating methods, apparatus, and systems
JP2009158971A (en) Device manufacturing method, lithography device, and device manufactured thereby
JPH11317349A (en) Projection aligner and method for manufacturing device using the same
US6897944B2 (en) Illumination optical system, exposure method and apparatus using the same
JP2005340847A (en) Lithographic apparatus and device manufacturing method
JP2001244194A (en) Abbe arm correction system used in lithography system
JP4999827B2 (en) Lithographic apparatus
JP3392034B2 (en) Illumination device and projection exposure apparatus using the same
JP3507459B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
JPH0496214A (en) Exposure treatment device
JP2003232901A (en) Optical device, illuminator and exposure device
JPH06204123A (en) Illuminator and projection aligner using the same
US5548625A (en) Method for parallel multiple field processing in X-ray lithography
JP2009267403A (en) Illumination system and lithographic method
JP3376043B2 (en) Illumination device and projection exposure apparatus using the same
JP7446069B2 (en) Exposure equipment and article manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees