JPH049594A - Radiation section of zigzag loop type small-sized heat pipe - Google Patents

Radiation section of zigzag loop type small-sized heat pipe

Info

Publication number
JPH049594A
JPH049594A JP11018190A JP11018190A JPH049594A JP H049594 A JPH049594 A JP H049594A JP 11018190 A JP11018190 A JP 11018190A JP 11018190 A JP11018190 A JP 11018190A JP H049594 A JPH049594 A JP H049594A
Authority
JP
Japan
Prior art keywords
heat
heat pipe
group
thin tube
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11018190A
Other languages
Japanese (ja)
Inventor
Hisateru Akachi
赤地 久輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP11018190A priority Critical patent/JPH049594A/en
Publication of JPH049594A publication Critical patent/JPH049594A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve radiation capacity by disposing a group of tubular spacers across a group of small-sized tubes of the radiation section of a zigzag loop type heat pipes having layouts of square or triangular pattern, said groups being in contact with each other. CONSTITUTION:Zigzag loop type small-sized heat pipes 1-1, 1-n are parallelly laid out on triangular or square patterns, in which a part of them constitutes a heat receiving section H and most of the remainder constitutes a radiation section. A group of small-sized heat pipes 2-1, 2-n, as a spacer group, is positioned across the heat pipes 1-1, 1-n in contact with each other. Heat transmitted from the section H raises the temperature of the pipes 1-1, 1-n and said heat is transferred to the pipes 2-1, 2-n through the contact area, and the temperature of the pipes 2-1, 2-n are equalized over the entire length thereof, in which the pipes 2-1, 2-n function as fins for the pipes 1-1, 1-n, resulting thereby in expanded radiation area. Consequently, heat on the downstream side is transferred to the pipes having high radiation efficiency on the upstream side, resulting in greatly improved radiation efficiency of the radiation section as a whole.

Description

【発明の詳細な説明】 イ66発明目的 〔産業上の利用分野〕 本発明はヒートパイプの構造に関するものであり、特に
蛇行ループ型細管ヒートパイプの放熱部の構造に関する
DETAILED DESCRIPTION OF THE INVENTION A66 Purpose of the Invention [Field of Industrial Application] The present invention relates to the structure of a heat pipe, and particularly to the structure of a heat dissipation section of a meandering loop type thin tube heat pipe.

〔従来の技術〕[Conventional technology]

蛇行ループ型細管ヒートパイプにおける並列細管群で形
成された放熱部は各細管の対流熱伝達率が大きいので一
般にはフィン群を装着することなく比較的良好な放熱能
力を発揮させることが出来る。然し要求される性能が高
い場合は放熱フィン群の装着を要望される場合が多い。
Since the heat dissipation section formed by the parallel capillary tubes in the meandering loop capillary heat pipe has a large convective heat transfer coefficient of each capillary, it is generally possible to exhibit a relatively good heat dissipation ability without installing a fin group. However, if the required performance is high, it is often required to install a group of radiation fins.

然し蛇行ループ型細管ヒートパイプのコンテナの並列細
管群で形成された放熱部は平板状フィン群の装着は不可
能に近いものであった。その理由は管があまりに細く、
あまりに多数本であること、及びターン部において作動
液の往復1対の細管が連結されてあること等によるもの
であった。その対策としては素管時に螺旋フィン付細管
を用いたり、素管時に針状又はリボン状フィンを形成し
ておく方法等がある。然しそれ等の場合には受熱部平面
を形成する部分やターン部を形成する部分等においてフ
ィンを除去する必要があり、それは極めて困難な作業で
あった。フィン除去作業を容易にするフィン構造とその
製造方法として本発明者は特願平1)62589号を提
案した。その構造は第6図例示の如く予め低融点金属の
メンキが施された長尺細管の外周に同様に低融点金属メ
ツキが施された金属細線12を横巻きしてフィンとして
形成されてある蛇行ループ型細管コンテナ1)からなる
ループ型細管ヒートパイプであって、ターン部1)−4
の曲げは極めて容易であり、受熱部1)−1等フィン不
要部におけるフィンの除去も容易であった。
However, it is nearly impossible to attach a flat fin group to the heat dissipation section formed by a group of parallel thin tubes of a serpentine loop type thin tube heat pipe container. The reason is that the tube is too thin.
This was due to the fact that there were too many pipes, and a pair of thin tubes for reciprocating hydraulic fluid were connected at the turn. As a countermeasure against this, there are methods such as using a thin tube with spiral fins at the time of the raw tube, and forming needle-like or ribbon-like fins at the time of the raw tube. However, in such cases, it is necessary to remove the fins at the portions forming the heat-receiving section plane, the turn portions, etc., which is an extremely difficult task. The present inventor proposed Japanese Patent Application No. 1)62589 as a fin structure and manufacturing method thereof that facilitates the fin removal work. As shown in FIG. 6, its structure is a meandering structure in which a thin metal wire 12, which has been plated with a low-melting metal, is laterally wound around the outer periphery of a long thin tube which has been plated with a low-melting metal in advance to form a fin. A loop-type capillary heat pipe consisting of a loop-type capillary container 1), the turn portion 1)-4
It was extremely easy to bend the fins, and it was also easy to remove the fins in areas where fins were not needed, such as the heat receiving part 1)-1.

該フィン構造は放熱部成形完了後加熱又は溶融低融点金
属内への一括浸漬により、細管コンテナと融着一体化せ
しめて完成するものであった。
The fin structure was completed by fusion-bonding the fin structure with the capillary container by heating or immersing it in molten low-melting point metal after completing the molding of the heat dissipation part.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

蛇行ループ型細管ヒートパイプの放熱部に設けられる従
来型のフィン構造は受熱部及びターン部等に相当する部
分でフィンを除去する必要があり、その作業は煩雑で困
難であった。その対策として提案された第6図例示の特
願平1−162589号に係るフィン構造はその問題点
の大部分を解決することは出来るが放熱面積拡大率は2
〜3倍程度であり平板型フィン群を装着した場合に比較
して放熱性能の改善は不充分であった。
In the conventional fin structure provided in the heat dissipation section of a meandering loop type thin tube heat pipe, it is necessary to remove the fins at portions corresponding to the heat receiving section, turn section, etc., and this work is complicated and difficult. As a countermeasure, the fin structure according to Japanese Patent Application No. 1-162589, shown in Figure 6, can solve most of the problems, but the heat dissipation area expansion rate is 2.
The improvement in heat dissipation performance was about ~3 times that of the case where a flat plate type fin group was installed, and the improvement in heat radiation performance was insufficient.

口0発明の構成 〔問題点解決の手段〕 本発明に係る問題点解決の手段の基本的な構成を第1図
に示しである。該図面は簡素化の為構成細管を総で線図
で示しである。蛇行ループ型細管ヒートパイプ1−i、
l−nの並列部の一部は受熱部(破線H)として構成さ
れ、残余の大部分は放熱部として構成されてある。放熱
部を構成する細管群は千鳥目配列又は碁盤目配列に整列
配置されてあり第1図においてはその第1列細管群を実
線で示しl−1としである。第2列以降の細管群は図面
簡略化の為破線l−nで一括して示しである。第1図例
示の放熱部は複数のループ型細管ヒートパイプで構成さ
れてあるが、単数のループ型細管ヒートパイプの細管群
を展開せしめ千鳥目配列又は碁盤目配列に構成してあっ
ても良い。千鳥目配列又は碁盤目配列の細管群の各細管
が一定の距離間隔を保持して配列状態を維持せしめ且つ
対流流体の通過を良好ならしめる為には各細管相互間に
適切なスーベーサを挿接し、固定する必要がある。第1
図では管状スペーサ群が細管群1〜1)−nに交叉して
挿接されてあり、該スペーサ群としては細管ヒートパイ
プ群2−1.2−nが適用されてあることが本発明の特
徴である。図においては第1列細管群1−1と第2列細
管群の間に挿接されてある細管ヒートパイプ群2−1と
して実線で示され、第2列〜第n列の間に挿接されてあ
る細管ヒートパイプ群は一括して破線2−nとして示し
である。これ等スペーサ群の固定は蛇行ループ型ヒート
パイプ細管群1−1.l−nの弾性による加圧挟持の場
合もあるが熱伝導性接着手段による接着が望ましい。図
において矢印Wは対流の流れ方向を示しであるが、この
流れ方向は細管群の形成する平面に対し直交流である場
合もあれば、平行流である場合もある。
Structure of the Invention [Means for Solving the Problems] The basic structure of the means for solving the problems according to the present invention is shown in FIG. The drawing shows all the constituting capillaries in diagram form for the sake of simplicity. Meandering loop type thin tube heat pipe 1-i,
A portion of the l-n parallel portion is configured as a heat receiving portion (broken line H), and most of the remaining portion is configured as a heat radiating portion. The thin tube groups constituting the heat dissipation section are arranged in a staggered or grid pattern, and in FIG. 1, the first row of thin tube groups is indicated by a solid line and is designated as 1-1. The groups of thin tubes from the second row onwards are collectively indicated by broken lines l-n for the sake of simplification of the drawing. Although the heat dissipation section illustrated in FIG. 1 is composed of a plurality of loop-type thin tube heat pipes, a group of thin tubes of a single loop-type thin tube heat pipe may be expanded and configured in a staggered arrangement or a checkerboard arrangement. . In order to maintain the arrangement of the tubes in a group of tubes arranged in a staggered or grid pattern at a constant distance and to ensure good passage of convective fluid, an appropriate soother is inserted between each tube. , needs to be fixed. 1st
In the figure, the tubular spacer group is inserted and inserted across the thin tube groups 1 to 1)-n, and the thin tube heat pipe group 2-1.2-n is applied as the spacer group. It is a characteristic. In the figure, a solid line indicates a group of capillary heat pipes 2-1 inserted between the first row of capillary tubes 1-1 and the second row of capillary tubes, and a group of capillary heat pipes inserted and connected between the second to nth rows. The thin tube heat pipe group shown in FIG. 1 is collectively shown as a broken line 2-n. These spacer groups are fixed in the meandering loop heat pipe thin tube group 1-1. Adhesion using thermally conductive adhesion means is preferable, although pressure clamping may be performed using ln elasticity. In the figure, arrow W indicates the flow direction of convection, and this flow direction may be perpendicular to the plane formed by the group of thin tubes, or parallel to the plane formed by the group of thin tubes.

〔作 用〕[For production]

上述の如く構成された蛇行ループ型細管ヒートパイプの
放熱部におけるスペーサである細管ヒートパイプ2−1
.2−nは次の如き作用を発揮スる。
A thin tube heat pipe 2-1 which is a spacer in the heat dissipation part of the meandering loop type thin tube heat pipe configured as described above.
.. 2-n exhibits the following effects.

a、受熱部Hから輸送される熱量は放熱部細管群1−1
.1−nの温度を上昇せしめ、スペーサである細管ヒー
トパイプ群2−1.2−nに接触部群を介して移送され
る。細管ヒートパイプ群21.2−nは夫々の均熱化作
用により夫々の全長に亙り同一温度となる。細管ヒート
パイプ群21.2−nは蛇行ループ型細管ヒートパイプ
の細管群1−1.l−nのフィン群として放熱面積を拡
大せしめるが、常に全長に亙り同一温度を保持する均熱
化作用は放熱中と髄も維持されるので細管ヒートパイプ
群2−1.2−nのフィン群のフィン効率は100%と
なり、放熱部の放熱効率を大幅に上昇せしめる。
a. The amount of heat transported from the heat receiving section H is the heat dissipating section thin tube group 1-1.
.. The temperature of heat pipe 1-n is increased, and the heat pipe is transferred to a group of thin tube heat pipes 2-1.2-n, which are spacers, via a group of contact parts. The thin tube heat pipe group 21.2-n has the same temperature over its entire length due to the heat equalization effect of each. The thin tube heat pipe group 21.2-n is the thin tube group 1-1. of the meandering loop type thin tube heat pipe. Although the heat dissipation area is expanded as the fin group of l-n, the heat equalization effect that always maintains the same temperature over the entire length is maintained during heat dissipation, so the fins of the thin tube heat pipe group 2-1.2-n The fin efficiency of the group is 100%, greatly increasing the heat dissipation efficiency of the heat dissipation section.

b、細管群の多管式放熱部は対流放熱に際し対流流体は
各列を通過する毎に熱吸収により温度上昇せしめられる
。即ちこの様な放熱部番こおいては列数が多い捏上流側
細管は放熱効率が低下し、下流側に至る程細管温度は高
温となる。然し本発明に係る放熱部は細管ヒートパイプ
群2−1. 2−nの均熱化作用により、下流側の熱量
を放熱効率の良好な上流側列の細管群に移送して放熱さ
せるから放熱部全体の放熱効率を大幅に改善せしめる。
b. When the multi-tube heat dissipation section of the thin tube group performs convective heat dissipation, the temperature of the convective fluid is increased by heat absorption every time it passes through each row. That is, in such a heat radiation part number, the heat radiation efficiency of the thin tubes on the upstream side where the number of rows is large decreases, and the temperature of the thin tubes becomes higher toward the downstream side. However, the heat dissipation section according to the present invention is the thin tube heat pipe group 2-1. Due to the heat equalization effect of 2-n, the amount of heat on the downstream side is transferred to the group of thin tubes in the upstream row, which has good heat radiation efficiency, and is radiated, thereby greatly improving the heat radiation efficiency of the entire heat radiating section.

〔実施例〕〔Example〕

第1実施例 該実施例は第1図の放熱部基本構造におけるスペーサで
ある細管ヒートパイプ群2−1.2−nに代わり蛇行ル
ープ型細管ヒートパイプ3−13−nを使用しであるこ
とを特徴としている。該細管ヒートパイプ3−1.3−
nは同一平面上で所定のピッチで蛇行を繰返し並列細管
群を形成して、蛇行ループ型細管ヒートパイプの細管群
1).1−nの形成する平面の間に挿接されてスペーサ
となっている。多数の細管ヒートパイプ2−1.2−n
に代わり各1条のループであるから製作費の大幅削減が
可能となり、挿接作業時間も大幅に縮少させることが出
来る。
First Embodiment In this embodiment, a serpentine loop type thin tube heat pipe 3-13-n is used instead of the thin tube heat pipe group 2-1. It is characterized by The thin tube heat pipe 3-1.3-
n repeats meandering at a predetermined pitch on the same plane to form a group of parallel capillary tubes to form a group of capillary tubes in a meandering loop type capillary heat pipe 1). A spacer is inserted between the planes formed by 1-n. Multiple tube heat pipes 2-1.2-n
Instead, each loop is made of one thread, which makes it possible to significantly reduce the manufacturing cost and the time required for insertion and joining work.

第2実施例 第3図、第4図及び第5図は夫々本実施例の側面図、正
面図及び平面図である。これ等の図には第3実施例につ
いても併示されてある。
Second Embodiment FIGS. 3, 4, and 5 are a side view, a front view, and a plan view, respectively, of this embodiment. The third embodiment is also shown in these figures.

ループ型細管ヒートパイプの放熱部細管群1).1−2
.l−nは受熱部から推進されて来た高温作動液を放熱
冷却せしめて低温作動液として受熱部に還流せしめる。
Heat dissipation section of loop type capillary heat pipe capillary tube group 1). 1-2
.. l-n heat-radiates and cools the high-temperature working fluid propelled from the heat-receiving section, and returns the high-temperature working fluid to the heat-receiving section as a low-temperature working fluid.

従って該細管群は第3図に例示の如く夫々のターン部を
境として高温細管1−1−H,1−2−H,1−n−H
と低温細管1−1−C,1−2−C,1−n−Cに分け
て考えることが出来る。これらの内部を循環する作動液
は2相流体であるから高温である程気相すンチ、低温で
ある程液相リッチとなる。又気相リンチ部の飽和蒸気圧
と液相リッチ部の飽和蒸気圧の圧力差は作動液の推進力
となっている。更に管内流体の圧力損失は液相リッチ部
分の方が気相リンチ部分に対し、気相の容積に逆比例し
て大きくなる。
Therefore, as illustrated in FIG.
It can be considered separately into low-temperature capillary tubes 1-1-C, 1-2-C, and 1-n-C. Since the working fluid circulating inside these is a two-phase fluid, the higher the temperature, the richer the gas phase, and the lower the temperature, the richer the liquid phase. Further, the pressure difference between the saturated vapor pressure in the gas phase lynch section and the saturated vapor pressure in the liquid phase rich section serves as a driving force for the working fluid. Further, the pressure loss of the fluid in the pipe is larger in the liquid phase rich portion than in the gas phase lynch portion in inverse proportion to the volume of the gas phase.

従って基本構造(第1図)や第1実施例(第2図)の如
く、スペーサである細管ピー1−バイフ2−12−nお
よび3−1.3−n等が無作為に配置されてある場合に
は高温細管と低温細管の間で熱交換作用が発生する部分
が多数発生し、多数の高温細管内において液相リッチ部
が発生する。この様な場合放熱部全体としての綜合的な
放熱効率には変化はないが、受熱部における受熱量が少
なく、作動液推進力が小さい場合や、放熱部長さが長い
場合、には作動液循環が困難となる場合がある。
Therefore, as in the basic structure (Fig. 1) and the first embodiment (Fig. 2), the spacers such as the thin tubes P1-Byph 2-12-n and 3-1.3-n are arranged randomly. In some cases, there are many parts where heat exchange occurs between the high-temperature capillary and the low-temperature capillary, and liquid phase-rich parts occur within the many high-temperature capillaries. In such cases, there is no change in the overall heat dissipation efficiency of the heat dissipation section as a whole, but if the amount of heat received in the heat receiving section is small, the hydraulic fluid driving force is small, or the heat dissipation section is long, the hydraulic fluid circulation may be difficult.

換言すればループ内の一部に適冷部分が発生することに
より、蛇行ループ型細管ヒートパイプとしての感度が悪
くなる場合がある。第2実施例はこの様な状態の発生を
防止する。第3図、第4図及び第5図において高温細管
1−1−Hと高温細管1−2−Hとのスペーサである細
管ヒートパイプ2−1.2−2及び低温細管1−1−C
と低温細管1−2−Cとのスペーサである細管ヒートパ
イプ2−6.2−nとは夫々にそれ等を挟持している細
管1−1−8.1−2−H及び1−1−C12−Cとろ
う接され一体化されてある。然し高温細管1−2−Hと
低温細管1−1−Cとの間Qスペーサである細管ヒート
パイプ2−3.2−4.2−5は高温細管1−2−Hか
低温細管1−1−Cの何れか一方の細管とはろう接一体
化されてあるが他方の細管とは熱的に絶縁されてあるこ
とを特徴としている。図においては低温細管1−1−C
と細管ヒートパイプ13.2−4.25の間には断熱材
4 1. 4−2. 4−nが介在配置されてある。4
1.42.4−nは断熱材の挟持に限定されるものでは
なく、非熱伝導性の接着材で連結されてあっても良い。
In other words, the generation of a moderately cooled portion in a portion of the loop may deteriorate the sensitivity of the meandering loop thin tube heat pipe. The second embodiment prevents such a situation from occurring. In FIGS. 3, 4, and 5, a capillary heat pipe 2-1.2-2 and a low-temperature capillary 1-1-C are spacers between the high-temperature capillary 1-1-H and the high-temperature capillary 1-2-H.
The thin tube heat pipe 2-6.2-n, which is a spacer between the low-temperature thin tube 1-2-C and the thin tube 1-1-8.1-2-H and 1-1 that sandwich them, respectively. -C12-C and are integrated by soldering. However, the capillary heat pipe 2-3.2-4.2-5, which is a Q spacer between the high-temperature capillary 1-2-H and the low-temperature capillary 1-1-C, is either the high-temperature capillary 1-2-H or the low-temperature capillary 1-. It is characterized in that it is integrated with one of the thin tubes 1-C by soldering, but is thermally insulated from the other thin tube. In the figure, low temperature capillary 1-1-C
There is a heat insulating material 4 between the heat pipe 13.2-4.25 and the capillary heat pipe 13.2-4.25. 4-2. 4-n is interposed. 4
1.42.4-n is not limited to sandwiching a heat insulating material, but may be connected using a non-thermal conductive adhesive.

又場合によってはスペーサである綿量ヒートパイプ2−
3゜2−4.2−5は熱伝導性の悪い材質からなる管状
体、柱状体と置換されてあっても良い。
Also, in some cases, the cotton heat pipe 2- which is a spacer
3°2-4.2-5 may be replaced with a tubular body or columnar body made of a material with poor thermal conductivity.

この様に構成された第2実施例に係る放熱部ムこおいて
は高温細管群とそのスペーサ群は可能な限り高温に保持
され、低温細管群とそのスペーサ群は可能な限り低温に
保持されて、部分的適冷が発生することなく、受放熱部
間の温度差が小さくても、受熱部に対する加熱温度が低
くても良好な放熱効率を発揮させることが出来る。
In the heat dissipation section according to the second embodiment configured in this way, the high temperature tube group and its spacer group are kept as high as possible, and the low temperature tube group and its spacer group are kept as low as possible. Therefore, even if the temperature difference between the heat receiving and radiating parts is small and the heating temperature for the heat receiving part is low, good heat radiating efficiency can be exhibited without causing partial cooling.

第3実施例 第3図、第4図及び第5図に併示しである第3実施例は
蛇行ループ型細管ヒートパイプの並列細管群1−1. 
1−2. 1−3. 1−n及びそれ等のスペーサであ
る細管ヒートパイプ群2−1.22.2−3.2−nの
何れか一方のみが又はそれ等の双方が共に楕円断面形か
直方形断面形の何れかの形状に形成されてあり、それ等
相互のろう接部は可能な躍り大きな接触面積となる様組
合わセられであることを特徴としている。これにより細
管群1−]、、  1−2. 1−nと細管ヒートパイ
プ群2−1. 2−2. 2−nとの間の伝熱が良好と
なり、スペーサである細管ヒートパイプ群21.2−2
.2−nの作用が効果的に発揮される。
Third Embodiment A third embodiment shown in FIGS. 3, 4, and 5 is a parallel capillary group 1-1 of a meandering loop capillary heat pipe.
1-2. 1-3. 1-n and the group of thin tube heat pipes 2-1.22.2-3.2-n which are their spacers, or both of them have either an elliptical cross section or a rectangular cross section. They are formed in this shape and are characterized in that their mutually soldered parts are combined to provide the largest possible contact area. As a result, tubule group 1-], 1-2. 1-n and thin tube heat pipe group 2-1. 2-2. 2-n becomes good, and the thin tube heat pipe group 21.2-2 which is a spacer
.. The effect of 2-n is effectively exhibited.

ハ1発明の効果 本発明に係る蛇行ループ形細管ヒートパイプの放熱部は
スペーサである細管ヒートパイプの挿着と云う簡易な手
段によって容易にフィン群装着と同様に良好な放熱能力
を与えられると共に、細管ヒートパイプ群の均熱化作用
により、多段多列であっても性能低下の少ない放熱部を
構成することが出来る。
C1 Effects of the Invention The heat dissipation portion of the meandering loop-shaped thin tube heat pipe according to the present invention can easily be provided with good heat dissipation ability as well as by attaching a group of fins by the simple means of inserting a thin tube heat pipe as a spacer. Due to the heat equalization effect of the group of thin tube heat pipes, it is possible to construct a heat dissipation section with little performance deterioration even if the heat pipes are arranged in multiple stages and in multiple rows.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る蛇行ループ型組間ヒートパイプの
放熱部の基本構造を示す略図である。 第2図は本発明の第1実施例の構造を示す略図である。 第3図は本発明の第2実施例及び第3実施例の側面図、 第4図は本発明の第2実施例及び第3実施例の正面図、 第5図は本発明の第2実施例及び第3実施例の平面図、 第6図は蛇行ループ型細管ヒートパイプの放熱部の従来
例の構造を示す略図である。 1−1.1−2.1−n・・・蛇行ループ型細管ヒート
パイプの細管群、2−1.2〜2.・・・2−〇・・・
細管ヒートパイプ群、3−1.3−n・・・蛇行ループ
型細管ヒートパイプの細管群、1〜1−H91−2−H
・・・高温細管、1−1−C,1−2−C・・・低温細
管、4−1.4−2.・・・4〜n・・・断熱材、1)
・・・低融点金属メンキループ型細管コンテナ、12・
・・低融点金属メツキ金属細線。 第 図 (1時、衣糧右JAル) 第 図 (章2に3宝厭沖ザ・1ill ) 第 図 (不2算3乍施督・冒囮12) /−3 (3−n ゝ1 わ 第 図 (高+’y順列) 嬉 図 (’j’+ 2’ V、3 f Wイー・l Y Ml
)第 図 <s(h例のル走)
FIG. 1 is a schematic diagram showing the basic structure of a heat dissipation section of a meandering loop type inter-assembly heat pipe according to the present invention. FIG. 2 is a schematic diagram showing the structure of a first embodiment of the present invention. FIG. 3 is a side view of the second and third embodiments of the present invention, FIG. 4 is a front view of the second and third embodiments of the present invention, and FIG. 5 is a side view of the second and third embodiments of the present invention. FIG. 6 is a schematic diagram showing the structure of a conventional example of a heat dissipation part of a meandering loop type thin tube heat pipe. 1-1.1-2.1-n...Thin tube group of meandering loop type thin tube heat pipe, 2-1.2 to 2. ...2-〇...
Thin tube heat pipe group, 3-1.3-n... Thin tube group of meandering loop type thin tube heat pipe, 1 to 1-H91-2-H
...High temperature capillary, 1-1-C, 1-2-C...Low temperature capillary, 4-1.4-2. ...4~n...Insulating material, 1)
...Low melting point metal Menki loop type thin tube container, 12.
...Low melting point metal plated metal wire. Figure (1 o'clock, food and clothing right JAru) Figure (Chapter 2 to 3 Treasure offing the 1ill) Figure (Non 2 counting 3 乍 Administrative and decoy 12) /-3 (3-n ゝ1 Wa diagram (high + 'y permutation) Happy diagram ('j' + 2' V, 3 f W E・l Y Ml
) chart < s (h example le run)

Claims (4)

【特許請求の範囲】[Claims] (1)長尺のループ型細管ヒートパイプの細管コンテナ
が所定の長さ毎にターンを繰返して並列細管群が形成さ
れ、その長さの一部が整列されて受熱部として構成され
てあり、残余の部分の所定部分が多段多列の千鳥目配列
又は碁盤目配列の多管式放熱部として構成されてある蛇
行ループ型細管ヒートパイプの放熱部であって、細管群
の千鳥目配列又は碁盤目配列における段列の構成は細管
群に交差して細管間に挿接された管状スペーサ群により
各細管間の距離間隔が決定されて構成されてあり、且つ
該管状スペーサ群の大部分は細管ヒートパイプであるこ
とを特徴とするもの。
(1) A thin tube container of a long loop-type thin tube heat pipe repeats turns every predetermined length to form a group of parallel thin tubes, and a part of the length is aligned to form a heat receiving part, A heat radiating section of a meandering loop type thin tube heat pipe in which a predetermined portion of the remaining portion is configured as a multi-tube type heat radiating section in a multi-stage, multi-row staggered arrangement or a checkerboard arrangement, wherein the group of thin tubes is arranged in a staggered arrangement or a checkerboard arrangement. The structure of the rows in the grid arrangement is such that the distance between each tube is determined by a group of tubular spacers inserted between the tubes so as to intersect with the group of tubes, and most of the group of tubular spacers are arranged between the tubes. A device characterized by being a heat pipe.
(2)蛇行ループ型細管ヒートパイプの放熱部は、主た
る蛇行ループ型細管ヒートパイプの放熱部に所定の数の
副たる蛇行ループ型細管ヒートパイプが交叉挿接されて
構成されてある複合構造の放熱部であって、主たる蛇行
ループ型細管ヒートパイプの放熱部を構成する細管群は
千鳥目配列又は碁盤目配列に整列されてあり、その段列
の距離間隔を決定する管状スペーサ群としては、その大
部分は副たる蛇行ループ型細管ヒートパイプの細管群の
並列部分が用いられてあり、副たる蛇行ループ型細管ヒ
ートパイプは主たるループ型細管ヒートパイプとの接触
部を受熱部とし、残余の部分を放熱部としていることを
特徴とする特許請求の範囲第1項に記載の蛇行ループ型
細管ヒートパイプの放熱部。
(2) The heat dissipation part of the meandering loop type capillary heat pipe has a composite structure in which a predetermined number of sub meandering loop type capillary heat pipes are cross-connected to the heat dissipation part of the main meandering loop type capillary heat pipe. The group of thin tubes constituting the heat radiating section of the main serpentine loop type thin tube heat pipe is arranged in a staggered arrangement or a grid arrangement, and the tubular spacer group that determines the distance between the rows is as follows: Most of the heat pipes use the parallel parts of a group of thin tubes in the secondary serpentine loop type thin tube heat pipe. The heat dissipation section of the meandering loop-type thin tube heat pipe according to claim 1, wherein the heat dissipation section is a heat dissipation section.
(3)スペーサである細管ヒートパイプの各々と蛇行ル
ープ型細管ヒートパイプの並列細管の各々とが相互に交
差する接触部における高温側並列細管と高温側並列細管
との間に挟持されてあるスペーサ細管ヒートパイプ及び
低温側並列細管と低温側並列細管との間に挟持されてあ
るスペーサ細管ヒートパイプはそれ等を挟持している並
列細管とろう接により一体化されてあり、高温側並列細
管と低温側並列細管との間に挟持されてあるスペーサ細
管ヒートパイプはそれ等を挟持している並列細管の何れ
か一方との間を熱的に絶縁されてあることを特徴とする
特許請求の範囲第1項に記載の蛇行ループ型細管ヒート
パイプの放熱部。
(3) A spacer sandwiched between the high temperature side parallel tubes and the high temperature side parallel tubes at the contact area where each of the thin tube heat pipes serving as a spacer and each of the parallel thin tubes of the meandering loop type thin tube heat pipe intersect with each other. The thin tube heat pipe and spacer sandwiched between the low temperature side parallel tube and the low temperature side parallel tube are integrated by soldering with the parallel thin tube sandwiching them, and are integrated with the high temperature side parallel tube. Claims characterized in that the spacer thin tube heat pipe sandwiched between the parallel thin tubes on the low temperature side is thermally insulated from either one of the parallel thin tubes sandwiching them. A heat dissipation part of the meandering loop type capillary heat pipe according to item 1.
(4)蛇行ループ型細管ヒートパイプの細管コンテナと
スペーサである細管ヒートパイプの細管コンテナとはそ
れ等の一方又は双方が楕円断面形か直方形断面形の何れ
かの断面形状に成形されてあり、それ等の相互ろう接部
は可能な限り大きな接触面積となる様組合わせられてあ
ることを特徴とする特許請求の範囲第1項に記載の蛇行
ループ型細管ヒートパイプの放熱部。
(4) One or both of the thin tube container of the serpentine loop type thin tube heat pipe and the thin tube container of the thin tube heat pipe that is a spacer is formed into a cross-sectional shape of either an elliptical cross section or a rectangular cross section. , the heat dissipation section of the meandering loop type capillary heat pipe according to claim 1, characterized in that their mutually soldered portions are combined so as to have as large a contact area as possible.
JP11018190A 1990-04-27 1990-04-27 Radiation section of zigzag loop type small-sized heat pipe Pending JPH049594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11018190A JPH049594A (en) 1990-04-27 1990-04-27 Radiation section of zigzag loop type small-sized heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11018190A JPH049594A (en) 1990-04-27 1990-04-27 Radiation section of zigzag loop type small-sized heat pipe

Publications (1)

Publication Number Publication Date
JPH049594A true JPH049594A (en) 1992-01-14

Family

ID=14529102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11018190A Pending JPH049594A (en) 1990-04-27 1990-04-27 Radiation section of zigzag loop type small-sized heat pipe

Country Status (1)

Country Link
JP (1) JPH049594A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0830554A1 (en) * 1995-06-07 1998-03-25 Heat Pipe Technology, Inc. Serpentine heat pipe and dehumidification application in air conditioning systems
US11471028B2 (en) 2009-06-18 2022-10-18 Endochoice, Inc. Circuit board assembly of a multiple viewing elements endoscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0830554A1 (en) * 1995-06-07 1998-03-25 Heat Pipe Technology, Inc. Serpentine heat pipe and dehumidification application in air conditioning systems
EP0830554A4 (en) * 1995-06-07 1999-06-09 Heat Pipe Technology Inc Serpentine heat pipe and dehumidification application in air conditioning systems
US11471028B2 (en) 2009-06-18 2022-10-18 Endochoice, Inc. Circuit board assembly of a multiple viewing elements endoscope

Similar Documents

Publication Publication Date Title
JPS60128166U (en) Heat exchanger with wrapped fins
US20160209132A1 (en) Self-regulating heat exchanger
JPH0539335Y2 (en)
JPH049594A (en) Radiation section of zigzag loop type small-sized heat pipe
JP2007505282A (en) Heat exchanger
JPS63220091A (en) Coil type passage for heat exchanger and heat exchanging coil unit employing said passage
JPH0545023A (en) Heat exchanger
JPS59206128A (en) Production of plate-finned heat exchanger
JP4184110B2 (en) Finned tube heat exchanger
JPS62152147A (en) Radiator for semiconductor element
JPH0140697B2 (en)
CN105890399A (en) Heat exchanger
CA1239927A (en) High heat transfer means for flat tube and fin heat exchangers
JPH073168Y2 (en) Heat exchanger
JPH03169482A (en) Manufacture of heat exchanger
JPS6133432Y2 (en)
JPS58182093A (en) Corrugated fin type heat exchanger core
JPS62117352A (en) Cooler of power semiconductor element
JPH0480597A (en) Cross fin tube type heat exchanger
JP2003302190A (en) Corrugated fin type heat exchanger
JPS61235695A (en) Heat transfer fin device for heat exchanger
JPS63251794A (en) Finned heat exchanger
JPS63254396A (en) Finned heat exchanger
JPH0244192A (en) Fin tube type heat exchanger
RU57882U1 (en) HEAT EXCHANGER (OPTIONS)