JPH049502A - Drain water level controller of feed water heater - Google Patents

Drain water level controller of feed water heater

Info

Publication number
JPH049502A
JPH049502A JP11272090A JP11272090A JPH049502A JP H049502 A JPH049502 A JP H049502A JP 11272090 A JP11272090 A JP 11272090A JP 11272090 A JP11272090 A JP 11272090A JP H049502 A JPH049502 A JP H049502A
Authority
JP
Japan
Prior art keywords
feed water
water heater
pressure
drain
pressure feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11272090A
Other languages
Japanese (ja)
Other versions
JP2763178B2 (en
Inventor
Akira Takahashi
晃 高橋
Shiei Yagi
八木 子衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP2112720A priority Critical patent/JP2763178B2/en
Publication of JPH049502A publication Critical patent/JPH049502A/en
Application granted granted Critical
Publication of JP2763178B2 publication Critical patent/JP2763178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Non-Electrical Variables (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To carry out a stable operation of an electric power plant by mutually relating the conditions of drain water recovery to a low pressure feed water heater, first high pressure feed water heater, and deaerator and carrying out the most suitable and most favorable heat recovery by the process conditions. CONSTITUTION:A calculator 26 incorporates a calculation section 33 for the conditions of change-over and inputs the pressures of a first high pressure feed water heater 6, second high pressure feed water heater 7, and deaerator 1 by pressure sensors 27, 28, and 29, and at the same time comparison sections 34a and 34b compare and calculate the pressure differences between a second high pressure feed water heater 7 - deaerator 1 and those between the first high pressure feed water heater 6 - deaerator 1, and at the time of in-service for each feed water heater drain is recovered in the order of the second high pressure feed water heater, first high pressure feed water heater, low pressure feed water heater, and when load rises, drain is recovered in the order of the second high pressure feed water heater, deaerator and in the order of the first high pressure feed water heater, low pressure feed water heater, and further when the load rises, drain is recovered in the order of second high pressure feed water heater, first high pressure feed water, and deaerator.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、発電プラント等の熱交換器の給水加熱器ドレ
ン水位制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a feed water heater drain water level control device for a heat exchanger in a power generation plant or the like.

(従来の技術) 通常、発電プラントにおいては、タービンプラントの熱
効率を出来るだけ向上させるために、その熱交換器に複
数の給水加熱器がカスケード状に配設されている。
(Prior Art) Generally, in a power generation plant, a plurality of feed water heaters are arranged in a cascade in a heat exchanger in order to improve the thermal efficiency of a turbine plant as much as possible.

これらの給水加熱器では、蒸気タービン等からの抽気等
の蒸気をこれらに導入して、ボイラー等の蒸気発生装置
に供給される給水の予熱・昇温を行なっている。さらに
、給水加熱器内で給水と熱交換した蒸気は、凝縮しドレ
ンとなり、器内圧力の高い給水加熱器から順次器内圧力
の低い給水加熱器ヘカスケード方式によりドレンを流し
、復水系統等に回収するようになっている。すなわち、
発電プラント等が通常定格負荷時には、高圧系給水加熱
器からのドレンは高圧系最終段の給水加熱器より脱気器
に回収され、また、低圧系給水加熱器からのドレンはド
レンポンプにより復水系統に回収される。一方、発電プ
ラント等の負荷が低下して高圧系最終段の給水加熱器(
第1高圧給水加熱器)の器内圧力が低下し、これよりも
数10m高所に設置されている脱気器へのドレンの回収
が出来なくなると、低圧系給水加熱器ヘドレンが回収さ
れる。
These feed water heaters introduce steam such as extracted air from a steam turbine or the like to preheat and raise the temperature of the feed water to be supplied to a steam generator such as a boiler. Furthermore, the steam that has exchanged heat with the feed water in the feed water heater condenses and becomes drain, which is drained in a cascade system from the feed water heater with high internal pressure to the feed water heater with low internal pressure in order, and the condensate system etc. It is designed to be collected at That is,
When a power generation plant, etc. is under normal rated load, drain from the high-pressure feed water heater is collected by the deaerator from the final stage of the high-pressure feed water heater, and drain from the low-pressure feed water heater is condensed by the drain pump. recovered into the system. On the other hand, the load on power plants, etc. has decreased, and the feed water heater in the final stage of the high-pressure system (
When the internal pressure of the first high-pressure feed water heater (first high-pressure feed water heater) decreases and it becomes impossible to collect condensate to the deaerator installed several tens of meters higher than this, the low-pressure system feed water heater hedrain is recovered. .

このような給水加熱器では、熱交換系の熱交換率の低下
の防止および抽気管を介して蒸気タービンヘドレンが逆
流する、いわゆるウォータ・インダクション(wate
r 1nduction )を防止するために給水加熱
器内の水位を一定とする制御を行なっている。また、熱
交換系の熱交換率を向上させるために、高圧系給水加熱
器からのドレンを脱気器へ回収する配管を最終段の高圧
系給水加熱器だけでなく、他の高圧系給水加熱器にも接
続してドレンを回収する場合もある。さらに、これら給
水加熱器の加熱源として、主蒸気タービンからの油気の
ほかに、抽背型ボイラ給水ポンプタービン(BFP−T
と略称する)からの抽気と背気を用いる場合もある。
In such a feed water heater, so-called water induction (water induction), which prevents the heat exchange coefficient of the heat exchange system from decreasing and causes the steam turbine hedren to flow back through the bleed pipe, is used.
In order to prevent this, the water level in the feed water heater is controlled to be constant. In addition, in order to improve the heat exchange efficiency of the heat exchange system, the piping that collects condensate from the high-pressure feed water heater to the deaerator was installed not only in the final stage of the high-pressure feed water heater, but also in other high-pressure feed water heaters. In some cases, it may also be connected to a container to collect the drain. Furthermore, as a heating source for these feedwater heaters, in addition to the oil air from the main steam turbine, back-drawn boiler feedwater pump turbines (BFP-T
In some cases, bleed air and back air from (abbreviated as) are used.

ここで、従来の給水加熱器ドレン水位制御装置の制御方
式を第3図について説明する。
Here, a control method of a conventional feed water heater drain water level control device will be explained with reference to FIG.

まず、脱気器1に貯水されている給水は、給水ポンプ2
によって給水管3を通じ第1高圧給水加熱器6および第
2高圧給水加熱器7を経て予熱・昇温された後ボイラー
(図示せず)に送水される。
First, the water stored in the deaerator 1 is supplied to the water supply pump 2.
The water is preheated and heated through the water supply pipe 3 through the first high-pressure water heater 6 and the second high-pressure water heater 7, and then sent to a boiler (not shown).

高圧給水加熱器6,7には給水と熱交換しそれを予熱・
昇温させるために抽気蒸気管8,9から抽気蒸気が、ま
た、それらの前段に配置した高圧給水加熱器からドレン
管30.31によりドレンが供給されるようになってい
る。高圧給水加熱器6゜7で熱回収を終了したドレンは
、流量調節弁10゜11.12,13.14を経て、そ
れぞれ所定の機器へ排出される。すなわち、第2高圧給
水加熱器7からのドレンは、ドレン管31,31aと流
量調節弁13を経て脱気器1および流量調節弁14を経
て第1高圧給水加熱S6へそれぞれ排出され、また、高
圧給水加熱器6からのドレンは、ドレン管32,32a
と流ffi調節弁10を紅て脱気器1および低圧給水加
熱器4と復水器5へそれぞれ排出される。このように、
ドレンの排出先が複数ある場合、それぞれの振り分けは
次のようにする。
The high-pressure feed water heaters 6 and 7 exchange heat with the feed water to preheat and heat it.
In order to raise the temperature, bleed steam is supplied from bleed steam pipes 8 and 9, and drain from a high-pressure feed water heater placed upstream of these pipes is supplied through drain pipes 30 and 31. The condensate that has undergone heat recovery in the high-pressure feed water heater 6.7 is discharged to predetermined equipment via flow rate control valves 10.11.12 and 13.14, respectively. That is, the drain from the second high-pressure feed water heater 7 is discharged through the drain pipes 31, 31a and the flow rate control valve 13, through the deaerator 1 and the flow rate control valve 14, to the first high-pressure feed water heater S6, and, The drain from the high pressure water heater 6 is drain pipe 32, 32a.
The water is discharged through the flow ffi control valve 10 to the deaerator 1, low-pressure feed water heater 4, and condenser 5, respectively. in this way,
If there are multiple drainage destinations, distribute them as follows.

すなわち、第1高圧給水加熱器6では、これに付設され
た水位検出器15からの水位信号とそれぞれのドレン管
32.32g、32bに配設した水位調節計17.18
.19の目標設定値との偏差により振り分けを行う。ま
た、N2高圧給水加熱器7では、これに付設された水位
検出器16からの水位信号を受けて水位を317rJす
る水位調節計35の作動によりドレン管31.31aに
配設した流量調節弁13.14をストップf#q御し、
負荷条件により作動する電磁弁34または手動切替器に
より振り分けを行っている。つまり、第1高圧給水加熱
器6では、ドレンは、ます脱気器lに回収され、次いで
低圧給水加熱器4、復水器5の順に回収されるよう、そ
れぞれの水位設定値は、標準水位(NWL) 、NWL
+α、NWL十βとなり、かつ、それらの値はNWL<
NWL+α〈NWL+βのカスケード状になっている。
That is, in the first high-pressure feed water heater 6, the water level signal from the water level detector 15 attached thereto and the water level controllers 17, 18 disposed in the respective drain pipes 32.32g, 32b are detected.
.. Distribution is performed based on the deviation from the target set value of No. 19. In addition, in the N2 high-pressure feed water heater 7, the flow control valve 13 disposed in the drain pipe 31.31a is operated by the water level controller 35 which receives a water level signal from the water level detector 16 attached thereto and adjusts the water level to 317 rJ. .14 with stop f#q control,
Distribution is performed using a solenoid valve 34 or a manual switch that operates depending on load conditions. In other words, in the first high-pressure feed water heater 6, each water level setting value is set to the standard water level so that the condensate is first collected in the deaerator 1, then in the low-pressure feed water heater 4, and then in the condenser 5. (NWL), NWL
+α, NWL +β, and their values are NWL<
It is a cascade of NWL+α<NWL+β.

このため、高負荷時においては、ドレン系は、第1高圧
給水加熱器6よりも数10m高い位置に設置されている
脱気器1ヘドレンを排出するのに十分な圧力を有してい
る。そのため、標準水位(NWL)になるよう流1k1
8Wr弁1oの弁開度を調節してドレンを排出する。一
方、負荷が減少し、第1高圧給水加熱器6の圧力が低下
すると、脱気器1ヘドレンの回収が出来なくなり、その
ため第1高圧給水加熱器6内の水位が上昇しNWL+a
(>NWL)となる。そこで、水位調節計18を作動し
て流jl調節弁11の弁開度を調節し低圧給水加熱器4
ヘドレンを排出する。この場合、復水器5へは、通常、
ドレンを排出しない。M1高圧給水加熱器6内の水位に
大きなレベル変動(NWL+α以上)が生じた場合、そ
のバックアップとしてドレンを復水器5に排出する。
Therefore, under high load conditions, the drain system has sufficient pressure to discharge the head of the deaerator 1, which is installed several tens of meters higher than the first high-pressure feed water heater 6. Therefore, the flow rate is 1k1 to reach the standard water level (NWL).
Drain is discharged by adjusting the opening degree of the 8Wr valve 1o. On the other hand, when the load decreases and the pressure in the first high-pressure feed water heater 6 decreases, the deaerator 1 head can no longer be recovered, and the water level in the first high-pressure feed water heater 6 rises and NWL+a
(>NWL). Therefore, the water level controller 18 is operated to adjust the valve opening of the flow jl control valve 11 and the low pressure feed water heater 4 is activated.
Drain the hedren. In this case, the connection to the condenser 5 is usually
Do not drain the drain. When a large level fluctuation (more than NWL+α) occurs in the water level in the M1 high-pressure feedwater heater 6, drain is discharged to the condenser 5 as a backup.

また、第2高圧給水加熱器7では、上述した第1高圧給
水加熱器6から脱気器1へのドレン回収条件をヒートバ
ランスや実運転結果より負荷を把握、決定する(通常、
約50%負荷)。そして、この負荷をしきい値とし、こ
れを切替えのタイミングにして電磁弁34または手動切
替器により切替えを行っている。すなわち、高負荷時に
は、第1高圧給水加熱器6よりドレンを脱気器1へ回収
しているため、その水位調節計35の出力を切替器34
により流量調節弁14側へ切替え、第1高圧給水加熱器
6ヘドレンを回収する。その際、流量調節弁13は全閉
とする。一方、低負荷時には、この逆の動作を行う。
In addition, in the second high-pressure feed water heater 7, the conditions for drain recovery from the first high-pressure feed water heater 6 to the deaerator 1 are determined by understanding the load from the heat balance and actual operation results (usually,
(approximately 50% load). Then, this load is used as a threshold value, and this is used as the timing for switching, and switching is performed using the electromagnetic valve 34 or a manual switch. That is, during high load, since drain is recovered from the first high-pressure feed water heater 6 to the deaerator 1, the output of the water level controller 35 is switched to the switch 34.
The flow is switched to the flow control valve 14 side, and the first high-pressure feed water heater 6 head drain is recovered. At this time, the flow rate control valve 13 is fully closed. On the other hand, when the load is low, the reverse operation is performed.

ところで、このような給水・ドレン系統においては、ボ
イラー変圧運転およびBFP−Tの運転モードの変化に
より、給水の加熱源である抽気圧力が負荷に対し規定圧
力運転時よりも大きく低下することがある。このため、
第1高圧給水加熱器6からのドレンは、脱気器1へ回収
されずに、低圧給水加熱器4へ継続して回収される。
By the way, in such a water supply/drain system, due to boiler variable pressure operation and changes in the BFP-T operation mode, the extraction pressure, which is the heating source for the feed water, may drop significantly compared to when operating at the specified pressure for the load. . For this reason,
The drain from the first high-pressure feed water heater 6 is not recovered to the deaerator 1, but continues to be recovered to the low-pressure feed water heater 4.

しかしながら、第2高圧給水加熱器7よりも前段にある
第3および第4高圧給水加熱器(図示せず)は、その抽
気圧力が高いこと、および抽背型BFP−Tの抽背気を
使用していないこと等により、そのドレン量と圧力は、
規定圧力運転時とほぼ同等となっている。そして、ボイ
ラー変圧運転をし、かつ抽背気を用いている発電プラン
トでは、このような回収状態が負荷80%〜90%近く
になるまで継続する。このため、第2高圧給水加熱器7
からのドレンを電磁弁34または手動切替器により上述
したように50%負荷程度で切替えると、第2高圧給水
加熱器7からのドレンは、全量、第1高圧給水加熱器6
へ回収される。しかし、第1高圧給水加熱器6からのド
レンを脱気器1へ回収する圧力がないので低圧給水加熱
器4へ回収される。なお、通常、低圧給水加熱器系列は
、負荷50%以上では高圧系のドレンが流入しないよう
に設計されている。
However, the third and fourth high-pressure feedwater heaters (not shown) located before the second high-pressure feedwater heater 7 have high bleed air pressure and use the bleed back air of the back-bleed type BFP-T. Due to the fact that the drain amount and pressure are
This is almost the same as when operating at the specified pressure. In a power generation plant that operates a boiler at variable pressure and uses bleed back air, this recovery state continues until the load approaches 80% to 90%. For this reason, the second high pressure water heater 7
When the drain from the second high-pressure feed water heater 7 is switched at about 50% load as described above using the solenoid valve 34 or the manual switch, the entire amount of drain from the second high-pressure feed water heater 7 is transferred to the first high-pressure feed water heater 6.
will be collected. However, since there is no pressure to recover the drain from the first high pressure feed water heater 6 to the deaerator 1, the drain is recovered to the low pressure feed water heater 4. Note that the low-pressure feedwater heater series is normally designed so that high-pressure drain does not flow in when the load is 50% or more.

(発明が解決′しようとする課題) しかしながら、このような従来の給水加熱器ドレン水位
制御装置では、上述したように第2高圧給水加熱器のド
レン切替条件は、負荷や第1高圧給水加熱器〜脱気器間
の圧力差を予め求めておき、この値により切替えるよう
にしである。通常、この切替タイミングは50%〜75
%負荷であるが、ボイラー変圧運転やBFP@Tの運転
モード変化により80%〜90%負荷にずれこむことが
ある。
(Problem to be Solved by the Invention) However, in such a conventional feed water heater drain water level control device, as described above, the drain switching conditions for the second high pressure feed water heater are based on the load and the first high pressure feed water heater. - The pressure difference between the deaerators is determined in advance, and switching is performed based on this value. Normally, this switching timing is between 50% and 75%.
% load, but it may deviate to 80% to 90% load due to boiler voltage transformer operation or BFP@T operation mode changes.

このため、第2高圧給水加熱器からのドレンが第1高圧
給水加熱器へ切替った後も、この高圧給水加熱器から脱
気器ヘドレンを回収出来なくなり、その結果、全量のド
レンが低圧給水加熱器へ回収されることになる。しかし
ながら、上述したように低圧給水加熱器は、通常、50
%負荷(規定圧力ベース)以上では、高圧系給水加熱器
からのドレンが流入しないように設計されているため、
低圧給水加熱器および′1s1高圧給水加熱器からドレ
ン氷位の高、極高を告知する警報が頻発されることにな
る。このようなことは、発電プラントの運転上好ましく
ない。
For this reason, even after the drain from the second high-pressure feed water heater is switched to the first high-pressure feed water heater, the deaerator hedrum cannot be recovered from this high-pressure feed water heater, and as a result, the entire amount of drain is transferred to the low-pressure feed water heater. It will be collected into a heater. However, as mentioned above, low pressure feed water heaters typically
% load (based on the specified pressure), the design prevents drain from the high-pressure feed water heater from flowing in.
The low-pressure feedwater heater and the '1s1 high-pressure feedwater heater will frequently issue alarms to notify of high or extremely high drain ice levels. Such a situation is unfavorable in terms of operation of the power plant.

本発明は上記の点に鑑みてなされたもので、高圧給水加
熱器および脱気器の器内圧力を計測して、これら器内圧
力に基づいて両者間の器内圧力差を演算してドレンの回
収条件を算出し、第2高圧給水加熱器からのドレンを脱
気器または第1高圧給水加熱器に回収するかを判断する
給水加熱器のドレン水位制御装置を提供することを目的
としている。
The present invention has been made in view of the above points, and it measures the internal pressures of the high-pressure feed water heater and the deaerator, calculates the internal pressure difference between the two based on these internal pressures, and drains the water. An object of the present invention is to provide a drain water level control device for a feed water heater that calculates recovery conditions for a second high pressure feed water heater and determines whether to recover drain from a second high pressure feed water heater to a deaerator or a first high pressure feed water heater. .

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、第1高圧給水加熱器および第2高圧給水加熱
器から脱気器へのドレン配管を有し、かつ抽気および抽
背気を給水加熱源として用いる給水加熱器において、高
圧給水加熱器および脱気器の器内圧力を検出する手段と
、該器内圧力に基づいて第1高圧給水加熱器と脱気器間
の器内圧力差を演算し両者間のドレン回収条件を算出す
る手段と、該器内圧力に基づいて第2高圧給水加熱器と
脱気器間の器内圧力差を演算し両者間のドレン回収条件
を算出する手段と、算出した回収条件により第2高圧給
水加熱器からのドレンを脱気器または第1高圧給水加熱
器に回収するかを判断する手段と、を有することを特徴
とする給水加熱器ドレン水位制御装置に関する。
(Means for Solving the Problems) The present invention has drain piping from a first high-pressure feed water heater and a second high-pressure feed water heater to a deaerator, and uses bleed air and bleed back air as a feed water heating source. In the feed water heater, there is provided a means for detecting the internal pressures of the high pressure feed water heater and the deaerator, and a means for calculating the internal pressure difference between the first high pressure feed water heater and the deaerator based on the internal pressures of the first high pressure feed water heater and the deaerator. means for calculating the condensate recovery conditions between the second high-pressure feed water heater and the deaerator based on the vessel internal pressure, and calculating the condensate recovery conditions between the two; and means for determining whether drain from the second high-pressure feed water heater should be recovered to the deaerator or the first high-pressure feed water heater based on recovery conditions.

(作 用) 上記のように構成された給水加熱器ドレン水位制御装置
において、高圧給水加熱器および脱気器の器内圧力を常
時検出し、各高圧給水加熱器と脱気器の器内圧力差を演
算し、各給水加熱器のインサービス時には、第2高圧給
水加熱器→第1高圧給水加熱器−低圧給水加熱器の順に
ドレンを回収する。次にプラントの負荷が上昇した時に
は、第2高圧給水加熱器−脱気器と第1高圧給水加熱器
−低圧給水加熱器の順にドレンを回収する。さらにプラ
ントの負荷が上昇した時には、第2高圧給水加熱器−節
1高圧給水加熱器−説気器の順にドレンを回収する。
(Function) In the feed water heater drain water level control device configured as above, the internal pressure of the high pressure feed water heater and deaerator is constantly detected, and the internal pressure of each high pressure feed water heater and deaerator is detected. The difference is calculated, and when each feedwater heater is in service, drain is collected in the order of the second high-pressure feedwater heater -> the first high-pressure feedwater heater - the low-pressure feedwater heater. Next, when the load of the plant increases, drain is recovered in the order of the second high-pressure feedwater heater-deaerator and first high-pressure feedwater heater-low-pressure feedwater heater. Furthermore, when the load of the plant increases, drain is recovered in the order of the second high-pressure feedwater heater, the node 1 high-pressure feedwater heater, and the aerator.

(実施例) 以下本発明の給水加熱器ドレン水位制御装置の実施例を
第1図と第2図について説明する。なお、第3図に示し
た従来の給水加熱器ドレン水位制御装置と共通する部分
については、同一符号を付し、その説明をここでは省略
する。
(Embodiment) An embodiment of the feed water heater drain water level control device of the present invention will be described below with reference to FIGS. 1 and 2. Note that parts common to the conventional feed water heater drain water level control device shown in FIG. 3 are denoted by the same reference numerals, and the description thereof will be omitted here.

第1図に示す給水加熱器ドレン水位制御装置の系統図に
おいて、ボイラー等の蒸気発生装置(図示せず)に送ら
れる給水は、脱気器1の貯水部より給水ポンプ2により
給水管3、第1高圧給水加熱器6(最終段の高圧給水加
熱器)、第2高圧給水加熱器7(最終段の前段にある高
圧給水加熱器)、さらに、その前段にある第3および第
4高圧給水加熱器(図示せず)を経て予熱・昇温後、蒸
気発生装置へ送水される。また、各高圧給水加熱器、例
えば第1および第2高圧給水加熱器6゜7には、主ター
ビンまたはBFP−Tの抽背気の蒸気が抽気蒸気管8,
9から流入するとともに、前段の高圧給水加熱器からの
ドレンがドレン配管30.31により流入している。こ
れらの抽気蒸気とドレンとをエネルギー源として、高圧
給水加熱器で熱交換して給水を予熱・昇温する。
In the system diagram of the feed water heater drain water level control device shown in FIG. The first high-pressure feed water heater 6 (the high-pressure feed water heater in the final stage), the second high-pressure feed water heater 7 (the high-pressure feed water heater in the previous stage of the final stage), and the third and fourth high-pressure water supplies in the previous stage After being preheated and heated through a heater (not shown), the water is sent to a steam generator. In addition, steam from the bleed back air of the main turbine or BFP-T is supplied to each high pressure feed water heater, for example, the first and second high pressure feed water heaters 6.
At the same time, drain from the high-pressure feedwater heater in the previous stage flows in through drain pipes 30 and 31. Using these extracted steam and drain as energy sources, the high-pressure feed water heater exchanges heat to preheat and raise the temperature of the feed water.

一方、ドレン配管30,31,31a、3232a  
32bは、高圧給水加熱器、例えば第2および第1高圧
給水加熱器7,6、脱気器l、低圧給水加熱器4、復水
器5へ接続されて、それぞれドレンを排出する。また、
ドレン配管3131a、32.32a、32bには、第
1図に示すように、流量調節弁10,11.12,13
゜14が配設されている。これらの流量調節弁】011
.12,13.14は、脱気器1、低圧給水加熱器4、
復水器5、第1および第2高圧給水加熱器6,7にそれ
ぞれ付設されたPI(比例、積分)水位調節計17.1
8,19,20.21からの操作信号により作動する。
On the other hand, drain piping 30, 31, 31a, 3232a
32b is connected to a high-pressure feedwater heater, such as a second and first high-pressure feedwater heater 7, 6, a deaerator l, a low-pressure feedwater heater 4, and a condenser 5 to discharge condensate, respectively. Also,
As shown in FIG. 1, the drain piping 3131a, 32.
゜14 is arranged. These flow rate control valves】011
.. 12, 13. 14 are deaerator 1, low pressure feed water heater 4,
PI (proportional, integral) water level controllers 17.1 attached to the condenser 5, first and second high-pressure feed water heaters 6, 7, respectively
It is activated by operation signals from 8, 19, 20, and 21.

また、P1水位調節計17.18.19,20.21に
は、それらの目標水位設定値を別途配設された演算器2
6からの信号により切替える設定値切替器22.232
4.25が付設されている。この演算器26には、第1
高圧給水加熱器6、第2高圧給水加熱器7および脱気器
1の器内圧力がそれぞれに付設された圧力検出器27.
28.29により検出され、入力されるようになってい
る。また、e4算器26には、これらの器内圧力のほか
に、各高圧給水加熱器のドレーン・クーリングゾーンロ
ス、ドレン配管損失、流ffi調節弁取付は位置差等の
諸条件(諸損失)が予め入力されている。これらの人力
条件に基づいて、演算器26は、第2高圧給水加熱器〜
脱気器および第1高圧給水加熱器間のドレン回収条件を
演算する。
In addition, the P1 water level controllers 17, 18, 19, 20, 21 are provided with a separately installed computing unit 2 that calculates the target water level setting values.
Set value switcher 22.232 that switches depending on the signal from 6.
4.25 is attached. This arithmetic unit 26 includes a first
A pressure detector 27 attached to each of the high-pressure feed water heater 6, the second high-pressure feed water heater 7, and the deaerator 1 internal pressure.
28.29 is detected and input. In addition to these internal pressures, the e4 calculator 26 also records various conditions (losses) such as drain/cooling zone loss of each high-pressure feed water heater, drain piping loss, and difference in position of flow ffi control valve installation. has been entered in advance. Based on these human power conditions, the computing unit 26 calculates the
Calculate drain recovery conditions between the deaerator and the first high-pressure feedwater heater.

そして、このようにして構成された給水加熱器ドレン水
位制御装置においては、ボイラー変圧運転およびBFP
−Tの運転モードの相異により発生する給水加熱器の水
位の不安定を防止する演算は、次のような構成をもつ演
算器26により行うようになっている。すなわち、第2
図に示すように、演算器26には、切替条件演算部33
が内蔵されていて、前述したように、第1高圧給水加熱
器6、第2高圧給水加熱器7および脱気器1の器内圧力
が圧力検出器27,28.29により検出され、演算器
26へ入力されるとともに、ヒータドレンクーリングゾ
ーンロス、配管損失、流量調節介取付は位置差等の諸条
件(諸損失)が予め入力されている。そして、これらの
入力条件により、演算器26の比較部34a、34bが
第2高圧加熱給水器7〜脱気器1および第1高圧加熱給
水器6〜脱気器1間の圧力差を比較演算し、次の判断を
行う。条件設定 ■ 第2高圧給水加熱器器内圧力(P2)−諸損失(P
、)<脱気器器内圧力(P、) 、かつ、第1高圧給水
加熱器器内圧力(Pl)−諸損失(PI)<脱気器器内
圧力(P、)・・・条件Aとする。
In the feed water heater drain water level control device configured in this way, boiler variable pressure operation and BFP
Calculations for preventing instability of the water level in the feed water heater caused by differences in the operating modes of -T are performed by a computing unit 26 having the following configuration. That is, the second
As shown in the figure, the arithmetic unit 26 includes a switching condition arithmetic unit 33
As mentioned above, the internal pressures of the first high-pressure feed water heater 6, the second high-pressure feed water heater 7, and the deaerator 1 are detected by the pressure detectors 27, 28, and 29, and the arithmetic unit 26, various conditions (losses) such as heater drain cooling zone loss, piping loss, flow rate adjustment installation position difference, etc. are input in advance. Based on these input conditions, the comparators 34a and 34b of the calculator 26 compare and calculate the pressure difference between the second high-pressure heating water supply device 7 to deaerator 1 and the first high-pressure heating water supply device 6 to deaerator 1. and make the following judgments. Condition setting■ Second high pressure feed water heater internal pressure (P2) - Various losses (P
, )<pressure inside the deaerator (P,), and pressure inside the first high-pressure feed water heater (Pl) - various losses (PI)<pressure inside the deaerator (P,)...Condition A shall be.

■ P2−P、>Pd、かつ、 P、−P、<P、・・・条件Bとする。■ P2-P, > Pd, and P, -P, <P, . . . Condition B is set.

■ Pl−PII>P、・・・条件Cとする。■ Pl-PII>P, . . . Condition C is set.

これらの条件設定により、設定値切替器22゜23.2
4.25への設定値切替指令信号を切替条件演算部33
より出力する。また、これらの設定値切替器22.23
,24.25は、これらの切替指令信号により、その時
々のプロセス条件に見合った設定値をとるようになって
いる。
By setting these conditions, the setting value switch 22゜23.2
4. The setting value switching command signal to 25 is sent to the switching condition calculation unit 33.
Output from In addition, these set value switchers 22 and 23
, 24, and 25 are configured to take set values appropriate to the process conditions at the time by these switching command signals.

より具体的にこれらの切替条件を図示すると次のように
なる。
More specifically, these switching conditions are illustrated as follows.

本発明の実施例によると、これらの関係を考慮して、そ
れぞれのドレン回収条件を相互に関連づけ、その時々の
プロセス条件により最適・最良の熱回収を行うとともに
、各給水加熱器ドレン水位の高・極高を抑え安定した給
水加熱器ドレン水位制御を行うことが可能となる。
According to the embodiment of the present invention, by taking these relationships into consideration, each condensate recovery condition is correlated with the other, and the optimal and best heat recovery is performed depending on the process conditions at the time, and the drain water level of each feedwater heater is adjusted to a high level.・It is possible to control the feed water heater drain water level stably by suppressing extremely high levels.

すなわち、上記のように構成された給水加熱器ドレン水
位制御装置において、高圧給水加熱器および脱気器の器
内圧力を常時検出し、各高圧給水加熱器と脱気器の器内
圧力差を演算する。そして各給水加熱器のインサービス
時には、第2高圧給水加熱器−第1高圧給水加熱器−低
圧給水加熱器の順にドレンを回収する。次にプラントの
負荷が上昇した時には、第2高圧給水加熱器−脱気器と
第1高圧給水加熱器−低圧給水加熱器の順にドレンを回
収する。さらにプラントの負荷が上昇した時には、第2
高圧給水加熱器−節1高圧給水加熱器−説気器の順にド
レンを回収する。
That is, in the feedwater heater drain water level control device configured as described above, the internal pressures of the high-pressure feedwater heater and deaerator are constantly detected, and the internal pressure difference between each high-pressure feedwater heater and deaerator is detected. calculate. When each feedwater heater is in service, drain is collected in the order of the second high-pressure feedwater heater, first high-pressure feedwater heater, and low-pressure feedwater heater. Next, when the load of the plant increases, drain is recovered in the order of the second high-pressure feedwater heater-deaerator and first high-pressure feedwater heater-low-pressure feedwater heater. Furthermore, when the load on the plant increases, the second
Collect the drain in the order of high-pressure feed water heater - Section 1 high-pressure feed water heater - aerator.

また、本発明の給水加熱器ドレン水位制御装置の他の実
施例について説明する。
Further, other embodiments of the feed water heater drain water level control device of the present invention will be described.

他の実施例では、ドレン回収条件を演算する際、前述し
た実施例のドレン流量を予め入力するのに代えて、給水
加熱器、脱気器の器内圧力と流量調節弁の弁開度または
開度指令信号よりドレン流量を計算する。また、前述し
た実施例では、演算器に入力する圧力の検出を給水加熱
器、脱気器の器内圧力によっているが、タービンまたは
BFPφTの抽気圧力によってもよい。さらに、前述し
た実施例では、第1高圧給水加熱器の水位調節計の設定
値を可変としたが、第1高圧給水加熱器〜脱気器間のド
レン管32,32aに逆止弁を配設して該設定値を可変
とすることなく、一定値とじて同等の効果を得るように
する。この場合、各水位設定値は、水位調節計17では
、NWL、また、水位調節計18ではNWL十αの値と
なる。
In another embodiment, when calculating the drain recovery conditions, instead of inputting the drain flow rate in the above-mentioned embodiment in advance, Calculate the drain flow rate from the opening command signal. Further, in the above-described embodiment, the pressure input to the computing unit is detected based on the internal pressure of the feed water heater and the deaerator, but it may also be based on the extraction pressure of the turbine or BFPφT. Furthermore, in the embodiment described above, the set value of the water level controller of the first high-pressure feed water heater was made variable, but check valves were provided in the drain pipes 32, 32a between the first high-pressure feed water heater and the deaerator. Therefore, the same effect can be obtained by keeping the set value constant, without making the set value variable. In this case, each water level setting value is NWL in the water level controller 17, and NWL+α in the water level controller 18.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、低圧給水加熱器、第1高圧給水加熱器
および脱気器へのドレン回収条件を相互に関連づけ、そ
の時々のプロセス条件により最適・最良の熱回収を行う
ことができる。また、各給水加熱器ドレン水位の高・極
高を抑え安定したドレン水位制御を行うことができるの
で警報を頻発することなく極めて安定した発電プラント
の運転が可能となる。
According to the present invention, the conditions for drain recovery to the low-pressure feed water heater, the first high-pressure feed water heater, and the deaerator are correlated with each other, so that optimal and best heat recovery can be performed depending on the process conditions at the time. In addition, since the drain water level of each feed water heater can be suppressed from high or extremely high and stable drain water level control can be performed, extremely stable operation of the power generation plant is possible without frequent alarms.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の給水加熱器ドレン水位制御装置の実施
例の系統図、第2図はこのドレン水位制御装置に用いる
演算器の構成図、第3図は従来の給水加熱器ドレン水位
制御装置の系統図である。 1・・・脱気器、2・・・給水ポンプ、3・・・給水配
管、4・・・低圧給水加熱器、5・・・復水器、6,7
・・・高圧給水加熱器、 26・・・演算器、 30〜32・・・ドレン 配管。
Fig. 1 is a system diagram of an embodiment of the feed water heater drain water level control device of the present invention, Fig. 2 is a configuration diagram of a computing unit used in this drain water level control device, and Fig. 3 is a conventional feed water heater drain water level control system. It is a system diagram of a device. 1... Deaerator, 2... Water supply pump, 3... Water supply piping, 4... Low pressure feed water heater, 5... Condenser, 6, 7
...High pressure water heater, 26...Arithmetic unit, 30-32...Drain piping.

Claims (1)

【特許請求の範囲】 第1高圧給水加熱器および第2高圧給水加熱器から脱気
器へのドレン配管を有し、かつ抽気および抽背気を給水
加熱源として用いる給水加熱器において、 前記高圧給水加熱器および脱気器の器内圧力を検出する
手段と、 該器内圧力に基づいて前記第1高圧給水加熱器と脱気器
間の器内圧力差を演算し両者間のドレン回収条件を算出
する手段と、 該器内圧力に基づいて前記第2高圧給水加熱器と脱気器
間の器内圧力差を演算し両者間のドレン回収条件を算出
する手段と、 前記算出した回収条件により前記第2高圧給水加熱器か
らのドレンを前記脱気器または前記第1高圧給水加熱器
に回収するかを判断する手段と、を有することを特徴と
する給水加熱器ドレン水位制御装置。
[Scope of Claims] A feedwater heater having drain piping from a first high-pressure feedwater heater and a second high-pressure feedwater heater to a deaerator, and using bleed air and bleed back air as a feedwater heating source, the high pressure means for detecting the internal pressures of the feedwater heater and the deaerator; and a means for calculating the internal pressure difference between the first high-pressure feedwater heater and the deaerator based on the internal pressures, and determining drain recovery conditions between the two. means for calculating the internal pressure difference between the second high-pressure feed water heater and the deaerator based on the internal pressure of the vessel, and calculating drain recovery conditions between the two; and the calculated recovery conditions. and means for determining whether drain from the second high-pressure feed water heater should be recovered to the deaerator or the first high-pressure feed water heater.
JP2112720A 1990-04-27 1990-04-27 Feed water heater drain water level control device Expired - Fee Related JP2763178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2112720A JP2763178B2 (en) 1990-04-27 1990-04-27 Feed water heater drain water level control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2112720A JP2763178B2 (en) 1990-04-27 1990-04-27 Feed water heater drain water level control device

Publications (2)

Publication Number Publication Date
JPH049502A true JPH049502A (en) 1992-01-14
JP2763178B2 JP2763178B2 (en) 1998-06-11

Family

ID=14593838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2112720A Expired - Fee Related JP2763178B2 (en) 1990-04-27 1990-04-27 Feed water heater drain water level control device

Country Status (1)

Country Link
JP (1) JP2763178B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157854A (en) * 2010-01-29 2011-08-18 Chugoku Electric Power Co Inc:The Heat recovery device and heat recovery method for steam generator in power generation facility

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169107U (en) * 1980-05-15 1981-12-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169107U (en) * 1980-05-15 1981-12-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157854A (en) * 2010-01-29 2011-08-18 Chugoku Electric Power Co Inc:The Heat recovery device and heat recovery method for steam generator in power generation facility

Also Published As

Publication number Publication date
JP2763178B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
EP1148210B1 (en) Steam cooling apparatus for turbine
CN109520001A (en) A kind of heat supply network draining system
JP2758250B2 (en) Feed water heater drain water level control device
JPH049502A (en) Drain water level controller of feed water heater
JP2008267688A (en) Condenser vacuum control system and power plant equipped with the same
JP2799046B2 (en) Drain water level control device for feed water heater
JP2572404B2 (en) Control method and control device for mixed pressure turbine
JP3819161B2 (en) Feed water heater drain discharge device
JP2523153B2 (en) Feed water heater Drain water level control device
JPS6228362B2 (en)
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JP3340866B2 (en) Hot water system facilities in nuclear power plants
JPS6218803B2 (en)
JPS59110811A (en) Steam turbine plant
JPH09145004A (en) Emergency shutdown control of device pressurized fluidized bed boiler
JPH06129208A (en) Composite cycle plant
JPH07174304A (en) Water level controller for feed water heater
JPS6237206B2 (en)
JPH0126443B2 (en)
JPS6218832B2 (en)
JPH0337084B2 (en)
JPS6138763B2 (en)
JPS6225921B2 (en)
JPS6383802A (en) Process controller
JPH0549884B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees