JPH049418A - Fluidized bed prereduction furnace - Google Patents

Fluidized bed prereduction furnace

Info

Publication number
JPH049418A
JPH049418A JP11024590A JP11024590A JPH049418A JP H049418 A JPH049418 A JP H049418A JP 11024590 A JP11024590 A JP 11024590A JP 11024590 A JP11024590 A JP 11024590A JP H049418 A JPH049418 A JP H049418A
Authority
JP
Japan
Prior art keywords
heat resistant
gas
resistant rods
reduction furnace
rods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11024590A
Other languages
Japanese (ja)
Inventor
Hajime Suzuki
一 鈴木
Takashi Ushijima
牛島 崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11024590A priority Critical patent/JPH049418A/en
Publication of JPH049418A publication Critical patent/JPH049418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To allow the stable prereduction of powdery ores even in a long-term operation by disposing heat resistant rods drivers which pull and insert heat resistant rods and high-frequency generators as a set to every set of the respective heat resistant rods and providing a gas diffusing device formed with the heat resistant rods in the form of a grid to the lower part of the above reduction furnace. CONSTITUTION:The gas diffusing device is formed of the grid disposed with >=1 steps of the heat resistant rods 12 made of heat resistant materials, an ultrasonic wave impressing horn 13 and an ultrasonic generator 14 as the device for impressing high-frequency oscillations to the respective heat resistant rods 12, and the driver 15 which can independently pull and insert the respective heat resistant rods 12. The above-mentioned dispersing device is installed in a gas introducing section 4 in the lower part of the fluidized bed reduction furnace 5 and the number of the heat resistant rods 12 to be inserted into the above mentioned introducing section 4 is adjusted by the above-mentioned driven 15 according to the amt. of the gases generated in the smelting reduction furnace 1 or the grain sizes of the ores to be treated. The ultrasonic oscillation of the above-mentioned generator 14 is transmitted via the above- mentioned horn 13 to the heat resistant rods 12 inserted in the introducing section 4. The sticking of the exhaust gas dusts and the ores in the sticking to the heat resistant rods 12 is prevented in this way and the stable prereduction of the powdery ores is executed even in the long-term continuous operation.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、石炭を還元剤及び熱源として粉状鉄鉱石を溶
融還元し溶銑を得る溶融還元製鉄法において、溶融還元
炉の排ガスを利用して粉状鉄鉱石の予熱、予備還元を行
うための予備還元炉の還元ガス分散器に関するものであ
る。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is a method for producing hot metal by melting and reducing powdered iron ore using coal as a reducing agent and heat source, which utilizes exhaust gas from a smelting reduction furnace. This invention relates to a reducing gas distributor for a pre-reducing furnace for preheating and pre-reducing powdered iron ore.

〈従来の技術〉 熔融還元プロセスにおいて溶融還元炉と連結して粉状鉄
鉱石の予熱、還元を行う還元炉を予m還元炉と称するが
、この予備還元炉に流動層を用いることが例えば特開平
1−149911号公報等に開示されている。溶融還元
炉への予備還元炉の連結は、熱源および還元剤である石
炭の利用効率の向上に多大な効果をもたらすこ々が知ら
れている。この様な熔融還元プロセスにおいて、予備還
元炉のガス導入部が具備すべき条件として次の点が挙げ
られる。
<Prior art> A reduction furnace that is connected to a smelting reduction furnace to preheat and reduce powdered iron ore in the smelting reduction process is called a pre-reduction furnace. It is disclosed in JP-A No. 1-149911 and the like. It is known that connecting a preliminary reduction furnace to a smelting reduction furnace has a great effect on improving the utilization efficiency of coal, which is a heat source and a reducing agent. In such a melt reduction process, the following points are listed as conditions that the gas introduction part of the preliminary reduction furnace must meet.

■ 所要の還元速度をもたらす反応温度を十分に維持で
きる、熱の供給が可能な高温ガスの導入が可能であるこ
と。
■ It is possible to introduce a hot gas capable of supplying heat to maintain the reaction temperature sufficient to provide the required reduction rate.

■ 粉状鉱石の均一で安定な流動化が確保できること。■ Ensuring uniform and stable fluidization of powdered ore.

■ 局所過熱などによる鉱石のスティンキングにより安
定流動が阻害されないこと。
■ Stable flow is not inhibited by ore stinking due to localized overheating, etc.

■ 流動化させるべき粉状鉱石が還元ガス導入部から落
下するいわゆる落鉱を生じさせないこと。
■ Avoid causing so-called ore drop, in which the powdered ore to be fluidized falls from the reducing gas introduction section.

■ 熔融還元炉からの排ガス中の微細ダストによりガス
分散器が目詰まりし、ガスの分散状態が悪化しないこと
■ The fine dust in the exhaust gas from the smelting reduction furnace will not clog the gas disperser and worsen the gas dispersion state.

■ 長時間の連続運転においてもガス分散器の性能が変
化しないこと。
■ The performance of the gas disperser does not change even during long-term continuous operation.

予備還元炉におけるガス利用率の向上すなわち鉱石還元
率の向上には、予備還元炉内の反応温度をより高温に保
つ必要がある。還元反応層である予備還元炉の温度は導
入される排ガス顕熱により維持されるため、予備還元炉
の下流に位置するガス導入部の温度は予備還元炉内の反
応温度よりもさらに高温となり、予備還元炉内の温度で
は粉状鉱石のスティッキングは発生しなくとも、ガス導
入部ではスティッキングする可能性が高い。
In order to improve the gas utilization rate in the pre-reduction furnace, that is, to improve the ore reduction rate, it is necessary to maintain the reaction temperature in the pre-reduction furnace at a higher temperature. The temperature of the pre-reduction furnace, which is the reduction reaction layer, is maintained by the sensible heat of the introduced exhaust gas, so the temperature of the gas introduction section located downstream of the pre-reduction furnace is higher than the reaction temperature inside the pre-reduction furnace. Even if powdered ore does not stick at the temperature inside the pre-reduction furnace, it is highly likely that it will stick at the gas introduction section.

また熔融還元炉より発生ずる排ガス中には多量の(1着
性ダストが含まれているため予備還元炉へのガス導入部
のガス分散器が目詰まりし昌く、還元ガスの均一な分散
は一層困難となる。さらに溶融還元炉の出銑滓時に予備
還元炉に導入すべき還元ガス量が減少するなど、還元ガ
ス量は変動しており一定ではない。これらの理由により
上記の■〜■の条件をすべて満足する操業を行うことは
l[常に困難なこととなる。
In addition, the exhaust gas generated from the smelting reduction furnace contains a large amount of sticky dust, which can clog the gas distributor at the gas introduction part to the preliminary reduction furnace, making it difficult to uniformly disperse the reducing gas. This becomes even more difficult.Furthermore, the amount of reducing gas that should be introduced into the pre-reducing furnace during tapping of the smelting reduction furnace decreases, and the amount of reducing gas fluctuates and is not constant.For these reasons, the above It is always difficult to carry out an operation that satisfies all of the following conditions.

上iホのように気体系流動層においてガス分散器は最も
重要な部分の一つであり、従来平板型、キャップ型、パ
イプ型、固定層を用いた物等種りのガス分散器が考案さ
れている。またガス分散器を使用せず、単孔のノズルか
ら層内にジェットを吹き込むコーン型と分類できる流動
層も開発され、コーン型の内、形成ジェットが層表面を
突き抜けているものを噴流層として区別している。
As mentioned above, the gas disperser is one of the most important parts in a gaseous fluidized bed, and various types of gas dispersers have been devised, including flat plate type, cap type, pipe type, and fixed bed type. has been done. In addition, a fluidized bed that can be classified as a cone type in which a jet is blown into the layer from a single-hole nozzle without using a gas disperser has been developed, and a cone type fluidized bed in which the formed jet penetrates the layer surface is called a spouted bed. It is differentiated.

ガス分散器を備える流動層を溶融還元プロセスの予熱、
予備還元炉と17で用いると、先ず熔融還元炉tJ[ガ
ス中に含まれるダストによってガス分散器が目詰まりし
て長時間の連続操業は不可能である。また、何らかの手
段により溶融還元炉排ガス中のダストを除去できたとし
ても、ガス分散器が予備還元炉中で最も高温となるため
む)状鉱石によるスティッキングが発生し、操業の継続
がやはり不=1能となる。いづれにせよガス分散器の孔
の目詰まりが生じた場合には操業を一旦停止して復旧す
る必要がある。
Preheating the fluidized bed melt reduction process, equipped with a gas disperser
When used in the preliminary reduction furnace 17, first the melt reduction furnace tJ [the gas distributor is clogged with dust contained in the gas, making continuous operation for a long time impossible. Furthermore, even if the dust in the flue gas of the smelting reduction furnace can be removed by some means, the gas disperser becomes the highest temperature in the pre-reduction furnace, and sticking occurs due to the ore, making it impossible to continue the operation. Becomes No.1. In any case, if the holes in the gas distributor become clogged, it is necessary to temporarily stop the operation and restore it.

またガス分散器を用いないコーン型の流動層を熔融還元
プロセスの予備還元炉中 には、排ガスダストや鉱石のスティッキングにより目詰
まりが生しることは無いが、熔融還元炉排ガス景の変動
により粉状鉱石が予備還元炉下方に落丁し2てしまうい
わゆる落鉱に対処することができないという欠点を持っ
ている。
In addition, in the pre-reduction furnace of the cone-shaped fluidized bed smelting reduction process that does not use a gas disperser, clogging does not occur due to exhaust gas dust or ore sticking, but due to fluctuations in the smelting reduction furnace exhaust gas landscape. It has the disadvantage that it cannot deal with so-called ore drop, in which powdered ore falls below the pre-reducing furnace.

そこで溶融還元プロセスの予備還元炉に設置するのに最
適なガス分散器として、特開昭59−104078号公
報にはガス分散器として耐熱性材料の複数の棒材を格子
状に組合わゼたインターナルにガス分散効果を付与し、
均一で安定した流動化反応を確保するとともに、多段化
類偵の効果により従来のガス分散器を用いたことによる
不利益を解消する技術が開示されているやこの技術によ
ればガス分散器の孔の目詰まりは無いもののコーン型流
動層と同様に落鉱に対応出来ない。また長時間運転の結
果格子状インターナルに鉱石がスティッキングした場合
には、ライザー内の鉱石流動状態が悪化するため操業を
停止して復旧する必要がある。
Therefore, as a gas disperser that is most suitable for installation in the preliminary reduction furnace of the smelting reduction process, JP-A-59-104078 discloses a gas disperser that combines a plurality of rods made of heat-resistant material in a lattice shape. Gives internal gas dispersion effect,
A technology has been disclosed that not only ensures a uniform and stable fluidization reaction, but also eliminates the disadvantages of using a conventional gas distributor through the effect of multi-stage distribution. Although the holes are not clogged, it cannot cope with falling ore like a cone-shaped fluidized bed. In addition, if ore sticks to the lattice-like internals as a result of long-term operation, the ore flow condition in the riser will deteriorate, and it will be necessary to stop the operation and restore it.

また特開昭59−107185号公報には分散器を組合
わせてガス分散効果を生し、かつ分散器の形状を特定し
分散器を回転して目詰まりを解消するとともに、還元ガ
ス量に応じて開口面積を調整し落鉱に対応する技術が開
示されている。しかしこの方法では分散棒間の目詰まり
を検知する方法が困難であるとともに、目詰まりを解消
するために分散器を回転させる時は流動が不安定な状態
となってしまう欠点がある。
In addition, Japanese Patent Application Laid-open No. 59-107185 discloses that a disperser is combined to produce a gas dispersion effect, and that the shape of the disperser is specified and the disperser is rotated to eliminate clogging, and that depending on the amount of reducing gas, A technique has been disclosed to deal with ore fall by adjusting the opening area. However, this method has the disadvantage that it is difficult to detect clogging between the dispersing rods, and that the flow becomes unstable when rotating the disperser to eliminate clogging.

〈発明が解決しようとする課題〉 上記のような溶融還元プロセスの予備還元炉のガス分配
器にとって大きな問題である分散板の目詰まりに対し、 ■ ライザー内の鉱石流動を停止するなど非定常状態を
生ずることなくこれを解消する。またはガス分配器に目
詰まりを発生させない。
<Problem to be solved by the invention> In response to clogging of the distribution plate, which is a major problem in the gas distributor of the pre-reduction furnace in the smelting reduction process as described above, ■ Unsteady state such as stopping ore flow in the riser. To solve this problem without causing it. Or prevent clogging of the gas distributor.

■ 還元ガス量の変動があっても落鉱を発生さ世ない。■ Even if there are fluctuations in the amount of reducing gas, there will be no occurrence of mine falls.

ことによって、本発明は、長時間の連続操業においても
安定した粉状鉱石の予備還元が行えるような流動層予備
還元炉を従供するためになされたものである。
Accordingly, the present invention has been made in order to provide a fluidized bed pre-reduction furnace that can stably pre-reduce powdered ore even during long-term continuous operation.

〈!!題を解決するための手段〉 発明者らは鋭意研究の結果以下の知見を得た。<! ! Means to solve the problem〉 The inventors obtained the following findings as a result of intensive research.

上述のガス分散器に備えるべき■、■の両条件を満足す
る方法としてガス導入部の径が一定の場合、開口部の面
積が還元ガス量に応じて可変であることが必要であり、
またガス分散器に目詰まりした場合の除去装置だけでな
く、目詰まり防止機構が必要であるとの結論に達し、そ
の知見にもとづいて本発明をなすに至った。
As a method of satisfying both conditions (1) and (2) that the gas distributor should have above, when the diameter of the gas introduction part is constant, it is necessary that the area of the opening part is variable according to the amount of reducing gas,
Furthermore, we have come to the conclusion that not only a device for removing clogging in the gas distributor but also a clogging prevention mechanism is necessary, and based on this knowledge, we have developed the present invention.

本発明は、高温の還元性ガスで流動層を形成し7て粉状
鉱石の還元処理を行う流動層予備還元炉の下部に、耐熱
材料からなる複数の耐熱棒を一段あるいは多段に配設し
た格子と、それぞれの耐熱棒に高周波振動を印加する高
周波発生装置と、それぞれの耐熱棒の抜き差しが単独に
行える駆動装置とからなるガス分散器を備えることを特
徴とする流動層予備還元炉である。
In the present invention, a plurality of heat-resistant rods made of a heat-resistant material are arranged in one or multiple stages at the bottom of a fluidized bed pre-reduction furnace that forms a fluidized bed with high-temperature reducing gas to reduce powdered ore. A fluidized bed pre-reduction furnace characterized by being equipped with a gas distributor consisting of a grid, a high-frequency generator that applies high-frequency vibrations to each heat-resistant rod, and a drive device that can independently insert and remove each heat-resistant rod. .

〈作用〉 ガス分散器の目詰まりには排ガスダストに起因するもの
と鉱石のスティッキングに起因するものとある。排ガス
中のダストによる目詰まりはガス分散器の孔径が小さい
程発生し易く、また鉱石のスティッキング現象は同じ粒
子であっても比表面積が大きい細粒はど生じ易く、また
不動粒子から発生する。細粒であっても絶えず粒子を動
かしていればスティッキングは発生しない。
<Effect> There are two types of gas distributor clogging: one is caused by exhaust gas dust and the other is caused by ore sticking. Clogging due to dust in the exhaust gas is more likely to occur as the pore size of the gas disperser becomes smaller, and the sticking phenomenon of ore is more likely to occur among fine particles with a large specific surface area, even if the particles are the same, and it also occurs from immobile particles. Even if the particles are fine, sticking will not occur if the particles are constantly moved.

ここで不動粒子を生じない方法としては、本発明に係る
ガス分散器の高周波振動が印加された耐熱棒により粒子
に絶えず振動を付加することが有効であり、さらにガス
分散器を介して付着性ダストやスティッキング状態にな
っている粒子に耐熱棒を介して振動が与えられるため、
振動の持つ加速度によりこれらを振り落とす効果もある
。また印加する振動としては外部へのガス漏れを防止す
る観点からは振幅が小さい方が望ましく、加速度の大き
い15に1仕以上のいわゆる超音波振動が適しているこ
とがわかった。またガス分散器への超音波振動の印加に
より気泡の生成が抑制されて結果的に還元ガスの分散が
促進される効果もある。
Here, as a method of not producing immobile particles, it is effective to constantly apply vibrations to the particles using a heat-resistant rod to which high-frequency vibrations of the gas disperser according to the present invention are applied, and furthermore, it is effective to apply vibrations to the particles through the gas disperser. Vibration is applied to dust and stuck particles through a heat-resistant rod, so
The acceleration of vibrations also has the effect of shaking them off. In addition, it is preferable that the vibration to be applied has a small amplitude from the viewpoint of preventing gas leakage to the outside, and it has been found that one or more so-called ultrasonic vibrations are suitable for 15, which has a large acceleration. Furthermore, the application of ultrasonic vibration to the gas disperser has the effect of suppressing the generation of bubbles and, as a result, promoting the dispersion of the reducing gas.

〈実施例〉 第4図に本発明装置を備えた熔融還元プロセスの概略を
示す。
<Example> FIG. 4 schematically shows a melt reduction process equipped with the apparatus of the present invention.

溶融還元炉1から発生する高温の還元性排ガスは排ガス
ダクト2の途中にある排ガスダスト除去用サイクロン3
を介して予備還元炉である流動層のガス導入部4からラ
イザー5に導かれる。循環経lll16の途中に設けら
れた鉱石供給ロアから予備還元炉に導かれた粉状鉱石は
循環経路6を通してライザー5に入り還元される。流動
化された鉱石はサイクロン8で還元ガスと分離され循環
経路6に戻る。一方、排ガスは排ガス管9から排ガス処
理装置10に送られる。予備還元された粉状鉱石はやは
り循環経N6の途中に設けられた鉱石排出口11から溶
融還元炉1に移送される。鉱石供給ロアと鉱石Ut出口
1.1は予備還元炉に供給したばかりの未還元鉱石を排
出しない様に注意すれば、サイクロンを除く予備還元炉
内のいずれの部位に設置してもその効果は回しであるわ 第1図は本発明である流動層予備還元炉のガス導入部4
の詳細図である。
The high-temperature reducing exhaust gas generated from the melting reduction furnace 1 is transferred to a cyclone 3 for removing exhaust gas dust located in the middle of the exhaust gas duct 2.
The gas is introduced into the riser 5 from the gas introduction section 4 of the fluidized bed, which is a preliminary reduction furnace. Powdered ore led to the preliminary reduction furnace from the ore supply lower provided in the middle of the circulation path 1116 enters the riser 5 through the circulation path 6 and is reduced. The fluidized ore is separated from the reducing gas by a cyclone 8 and returned to the circulation path 6. On the other hand, the exhaust gas is sent from the exhaust gas pipe 9 to the exhaust gas treatment device 10. The pre-reduced powdered ore is also transferred to the smelting reduction furnace 1 from the ore discharge port 11 provided in the middle of the circulation path N6. If care is taken not to discharge the unreduced ore that has just been supplied to the pre-reduction furnace from the ore supply lower and ore Ut outlet 1.1, the effect will be maintained even if it is installed anywhere in the pre-reduction furnace except for the cyclone. Figure 1 shows the gas introduction section 4 of the fluidized bed pre-reduction furnace according to the present invention.
FIG.

複数の耐熱l1j12を多段に格子状に組合わせた構造
であり、個々の耐熱棒には超音波印加ホーン13と超音
波発生装置14が接続されている。また耐熱棒12を抜
き差しするための駆動装置15も個々の耐熱棒に接続さ
れている。溶融還元炉1から発生する還元ガス量また処
理する鉱石の粒径によって、ガス導入部断面の投影開口
断面積を調整するため、ガス導入部4に差し入れる耐熱
棒12の本数は一定ではなく、耐熱棒の駆動装置15が
必要となるのである。
It has a structure in which a plurality of heat-resistant l1j12 are combined in a multistage lattice shape, and an ultrasonic wave application horn 13 and an ultrasonic generator 14 are connected to each heat-resistant rod. Further, a drive device 15 for inserting and removing the heat-resistant rods 12 is also connected to each heat-resistant rod. The number of heat-resistant rods 12 inserted into the gas introduction section 4 is not constant because the projected opening cross-sectional area of the gas introduction section is adjusted depending on the amount of reducing gas generated from the smelting reduction furnace 1 and the particle size of the ore to be processed. A drive device 15 for the heat-resistant rod is required.

ガス導入部4に入っている耐熱棒】2には超音波印加ホ
ーン13を介して超音波発生装置】4で発生した超音波
振動が伝達される。従って耐熱棒12−・の排ガスダス
トやスティッキングによる鉱石の付着は防止できるので
ある。この耐熱棒12は、ガス導入部4に装入されてい
る時は常時超音波印加されているため、ガス分散状態は
常に同じであり非定常な状態は佳しないのである6 耐熱棒12と超音波印加ホー713と超音波発生装置1
4を一組としてこれら全体を抜き差しできる耐熱棒駆動
装置15を各耐熱棒の組毎に配設しである。
Ultrasonic vibrations generated by the ultrasonic generator 4 are transmitted to the heat-resistant rod 2 contained in the gas introduction part 4 via an ultrasonic applying horn 13. Therefore, it is possible to prevent ore from adhering to the heat-resistant rods 12-- due to exhaust gas dust and sticking. When this heat-resistant rod 12 is inserted into the gas introduction part 4, ultrasonic waves are always applied to it, so the gas dispersion state is always the same and an unsteady state is not good.6 Heat-resistant rod 12 and ultrasonic waves Sound wave applying hoe 713 and ultrasonic generator 1
A heat-resistant rod drive device 15 is provided for each set of heat-resistant rods, which can insert and remove the entire set of heat-resistant rods.

第1図に示したような本発明に係るガス分散器を備えた
第4図のような溶融還元設備において第1表に示すよう
な粒度構成の南米産へマタイト系鉱石を還元処理し実施
例を説明する。ここで超音波印加条件を含めた処理条件
を第2表に示す。
Example 1 A hematite ore produced in South America having a particle size composition as shown in Table 1 was reduced in a melting and reduction equipment as shown in FIG. 4 equipped with a gas disperser according to the present invention as shown in FIG. 1. Explain. Here, the processing conditions including the ultrasonic application conditions are shown in Table 2.

方比較例として実施例と同じ装置、同じ鉱石を用いて耐
熱棒12に超音波振動を印加せずに還元処理を行い、ガ
ス分散器の目詰まり状態や鉱石還元率を比較した。
As a comparative example, reduction treatment was performed using the same apparatus and the same ore as in the example without applying ultrasonic vibration to the heat-resistant rod 12, and the clogging state of the gas disperser and the ore reduction rate were compared.

第3表に還元処理結果を示す。Table 3 shows the results of the reduction treatment.

第2図に付加振動数とガス分散器の目詰まりの関係を、
また第3図に付加振動数と鉱石還元率の関係を示す0分
散器に高周波振動を印加した場合の方が印加しない場合
に比較して分散器の目詰まりが軽微で、特に振動数が1
5kllz〜20kl)zの場合には全く目詰まりが認
められなかった。+を石還元率は、両者で大きな差は認
められないものの付加振動の振動数が10kllz以上
では高周波振動印加なしに比較して5%程度還元率が向
上する。
Figure 2 shows the relationship between the additional frequency and clogging of the gas distributor.
Figure 3 shows the relationship between the additional frequency and the ore reduction rate.When high-frequency vibrations are applied to the zero disperser, the clogging of the disperser is slighter than when high-frequency vibrations are not applied, especially when the frequency is 1.
No clogging was observed in the case of 5kllz to 20kl)z. Although there is no significant difference in the stone reduction rate between the two, when the frequency of the added vibration is 10 kllz or more, the reduction rate improves by about 5% compared to when high frequency vibration is not applied.

以上のようにガス分散器の目詰まりと鉱石還元率向上の
両面で、本発明による効果が明らかに認められた。
As described above, the effects of the present invention were clearly recognized in terms of both clogging of the gas disperser and improvement of the ore reduction rate.

第3表 〈発明の効果〉 本発明に係る流動層予備還元炉によると、ガス分散器の
目詰まりが著しく減少し長時間安定した粒状鉱石の予備
還元が行え、また還元率も向上した。
Table 3 <Effects of the Invention> According to the fluidized bed pre-reduction furnace according to the present invention, clogging of the gas disperser was significantly reduced, stable pre-reduction of granular ore could be performed for a long period of time, and the reduction rate was also improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係るガス導入部詳細図で(a)は側
断面図、(b)は(a)のX−X断面図、第2図は、ガ
ス分散器の目詰まりと付加振動の周波数との関係を示す
特性図、第3図は、鉱石還元率と付加振動の周波数との
関係を示す特性図、第4図は、本発明装置を備えた溶融
還元プロセスの概略系統図である。 1・・・溶融還元炉、   2・・・徘ガスダクト、3
・・・排ガスダスト除去用サイクロン、4・・・ガス導
入部、   5・・・予備還元炉、6・・・循環経路、
    7・・・鉱石供給口、8・・・鉱石捕集用サイ
クロン、 9・・・排ガス管、   IO・・・排ガス処理装置、
11・・・鉱石排出口、  12・・・耐熱棒、13・
・・超音波印加ホーン、 14・・・超音波発生装置、15・・・耐熱棒駆動装置
、16・・・流動層、    17・・・還元性ガス。
Fig. 1 is a detailed view of the gas introduction part according to the present invention, (a) is a side sectional view, (b) is a sectional view taken along the line X-X in (a), and Fig. 2 shows clogging and addition of the gas distributor. FIG. 3 is a characteristic diagram showing the relationship between the frequency of vibration and FIG. 3 is a characteristic diagram showing the relationship between the ore reduction rate and the frequency of additional vibration. FIG. 4 is a schematic diagram of the smelting reduction process equipped with the apparatus of the present invention. It is. 1... Melting reduction furnace, 2... Wandering gas duct, 3
...Cyclone for exhaust gas dust removal, 4...Gas introduction part, 5...Preliminary reduction furnace, 6...Circulation path,
7... Ore supply port, 8... Cyclone for ore collection, 9... Exhaust gas pipe, IO... Exhaust gas treatment device,
11... Ore discharge port, 12... Heat-resistant rod, 13.
...Ultrasonic application horn, 14... Ultrasonic generator, 15... Heat-resistant rod drive device, 16... Fluidized bed, 17... Reducing gas.

Claims (1)

【特許請求の範囲】[Claims] 高温の還元性ガスで流動層を形成して粉状鉱石の還元処
理を行う流動層予備還元炉の下部に、耐熱材料からなる
複数の耐熱棒を一段あるいは多段に配設した格子と、そ
れぞれの耐熱棒に高周波振動を印加する高周波発生装置
と、それぞれの耐熱棒の抜き差しが単独に行える駆動装
置とからなるガス分散器を備えることを特徴とする流動
層予備還元炉。
At the bottom of the fluidized bed pre-reduction furnace, which forms a fluidized bed with high-temperature reducing gas to reduce powdered ore, there is a grid in which a plurality of heat-resistant rods made of heat-resistant material are arranged in one or multiple stages, and each A fluidized bed pre-reducing furnace characterized by being equipped with a gas distributor comprising a high-frequency generator that applies high-frequency vibrations to heat-resistant rods, and a drive device that can independently insert and remove each heat-resistant rod.
JP11024590A 1990-04-27 1990-04-27 Fluidized bed prereduction furnace Pending JPH049418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11024590A JPH049418A (en) 1990-04-27 1990-04-27 Fluidized bed prereduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11024590A JPH049418A (en) 1990-04-27 1990-04-27 Fluidized bed prereduction furnace

Publications (1)

Publication Number Publication Date
JPH049418A true JPH049418A (en) 1992-01-14

Family

ID=14530793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11024590A Pending JPH049418A (en) 1990-04-27 1990-04-27 Fluidized bed prereduction furnace

Country Status (1)

Country Link
JP (1) JPH049418A (en)

Similar Documents

Publication Publication Date Title
EP0748391B1 (en) Fluidized bed type reduction apparatus for iron ore particles and its use for reducing iron ore particles
SK126397A3 (en) Device of three-stage fluidized bed furnace type for reducing fine iron ore
TW426745B (en) Method for treating particulate material in the fluidized bed method and vessel and plant for carrying out the method
JP2760659B2 (en) Apparatus for melting carbon-containing particles and method for melting the particles using the apparatus
JPH049418A (en) Fluidized bed prereduction furnace
JP2620793B2 (en) Preliminary reduction furnace for smelting reduction
JP2562172B2 (en) Iron ore fluidized bed reduction device
JP2895520B2 (en) Method and apparatus for supplying carbon material to smelting reduction furnace
JPS59176584A (en) Disperser for gas of fluidized bed spare reducing furnace
JPH04231410A (en) Operation of circulating fluidized-bed ore reducing furnace
JPH0613252Y2 (en) Fluidized bed preliminary reduction furnace
JPS59104410A (en) Fluidized bed type preliminary reducing furnace
KR100466632B1 (en) Method of charging metalliferous material into a smelting-gasification zone and plant therefor
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace
JPH09159371A (en) Outside particle circulating device for circulating fluidized bed reducing device
JPS62228870A (en) Out-of-core circulator for fluidized-bed spare reducing furnace
JPH01117132A (en) Transfer device for hot bulk material
JPH04110395U (en) Spouted bed granulation furnace
JPH04110408A (en) Smelting-reduction method and equipment for iron ore
JPH0324213A (en) Treatment of drop ore of preliminary reduction furnace
JPH10238957A (en) Circulating fluidized bed reducing equipment
JPH07188721A (en) Method for pre-reducing iron ore and pre-reduction furnace for executing its method
JPH046766B2 (en)
JPS59109770A (en) Method of operating fluidized-bed spare reducing furnace
JPH0314888B2 (en)