JPH049384B2 - - Google Patents

Info

Publication number
JPH049384B2
JPH049384B2 JP58095171A JP9517183A JPH049384B2 JP H049384 B2 JPH049384 B2 JP H049384B2 JP 58095171 A JP58095171 A JP 58095171A JP 9517183 A JP9517183 A JP 9517183A JP H049384 B2 JPH049384 B2 JP H049384B2
Authority
JP
Japan
Prior art keywords
layer
active layer
active
layers
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58095171A
Other languages
Japanese (ja)
Other versions
JPS59219954A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58095171A priority Critical patent/JPS59219954A/en
Publication of JPS59219954A publication Critical patent/JPS59219954A/en
Publication of JPH049384B2 publication Critical patent/JPH049384B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に係る。さらに
詳しくは、トランジスタ等の機能素子およびこれ
らを接続する導電線(以下配線と呼ぶ)等が集積
化された能動層が複数層積層され、それぞれ異な
る能動層に集積化された機能素子や回路が互いに
有機的に結線された多層の半導体装置の製造方法
に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device. More specifically, a plurality of active layers are stacked in which functional elements such as transistors and conductive wires (hereinafter referred to as wiring) that connect them are integrated, and the functional elements and circuits integrated in different active layers are stacked. The present invention relates to a method of manufacturing a multilayer semiconductor device that is organically connected to each other.

第1図に多層の半導体装置の構成例を示す。同
図において、10は半導体あるいは絶縁体などの
支持基板、11は該支持基板10上に形成された
第1層の能動層、21,31,41,51,6
1,71はそれぞれ第2層,第3層,第4層,…
…第(n−2)層,第(n−1)層,第n層の能
動層、12は多層の半導体装置1が実装されるパ
ツケージの基板、13はボンデイングパツド、1
4はボンデイングワイアである。次に同図を用い
て、従来から知られている多層の半導体装置の製
造順序を簡単に説明する。
FIG. 1 shows an example of the structure of a multilayer semiconductor device. In the figure, 10 is a supporting substrate such as a semiconductor or an insulator, 11 is a first active layer formed on the supporting substrate 10, and 21, 31, 41, 51, 6
1 and 71 are the second layer, third layer, fourth layer,...
...the (n-2)th layer, the (n-1)th layer, the nth active layer, 12 the substrate of the package on which the multilayer semiconductor device 1 is mounted, 13 the bonding pad, 1
4 is a bonding wire. Next, the manufacturing sequence of a conventionally known multilayer semiconductor device will be briefly explained using the same figure.

まず半導体などの支持基板10の表面に周知の
集積回路作成プロセスを用い、トランジスタなど
の機能素子や配線かれ成る第1層の能動層11を
作成する。この時、次に作成される第2層の能動
層21との結合のためのプロセスも施される。次
に、第1層の能動層11上に絶縁膜、半導体膜等
を順次形成する。なお該半導体膜として、レーザ
ーアニールあるいは電子ビームアニールなどによ
りポリシリコンを結晶化して得られるシリコン単
結晶膜が最も代表的な例である。次に該半導体膜
を用いて、トランジスタ等の機能素子を集積化し
た後、これらを結線して第2層の能動層21とす
る。この場合、必要に応じ、第1層の能動層11
と第2層の能動層21にそれぞれ形成された機能
素子や回路を互いに結合するとともに、次に作ら
れる第3層の能動層31中の回路素子との結合の
ためのプロセスも施される。以下、第2層の能動
層21を作成したプロセスと同様なプロセスを用
い、第3層,第4層,…第(n−2)層,第(n
−1)層,第n層の能動層31,41,…51,
61,71を順次作成し、多層の半導体装置1を
形成する。
First, a first active layer 11 consisting of functional elements such as transistors and wiring is formed on the surface of a supporting substrate 10 made of semiconductor or the like using a well-known integrated circuit forming process. At this time, a process for bonding with the second layer active layer 21 to be created next is also performed. Next, an insulating film, a semiconductor film, etc. are sequentially formed on the first active layer 11. The most typical example of the semiconductor film is a silicon single crystal film obtained by crystallizing polysilicon by laser annealing or electron beam annealing. Next, functional elements such as transistors are integrated using the semiconductor film, and then these are connected to form the second active layer 21. In this case, if necessary, the first active layer 11
In addition to coupling the functional elements and circuits formed in the active layer 21 of the second layer and the active layer 21 with each other, a process for coupling with the circuit elements in the active layer 31 of the third layer to be formed next is also performed. Hereinafter, using a process similar to the process for creating the second layer active layer 21, the third layer, fourth layer, ... (n-2)th layer, (n-th layer), etc.
-1) layer, n-th active layer 31, 41,...51,
61 and 71 are sequentially created to form a multilayer semiconductor device 1.

このようにして製造された半導体装置は平面的
な広がりの他に上下方向に立体的な広がりがある
から、周知の平面的な広がりだけの集積回路に比
べ、集積密度,機能,信号処理能力等がすぐれて
いる。しかし、各能動層を作成するための全ての
プロセスを一層毎に順次施し、次に積みあげてゆ
くために、能動層の層数が増加するにしたがつ
て、デバイス作成に要する時間(TAT)が増大
し、反対に歩留りが低下する、等極めて重大な問
題が生ずる。
Semiconductor devices manufactured in this way have not only a two-dimensional expansion but also a three-dimensional expansion in the vertical direction, so compared to well-known integrated circuits that only have a two-dimensional expansion, the semiconductor devices have higher integration density, functionality, signal processing ability, etc. is excellent. However, since all the processes for creating each active layer are performed layer by layer and then stacked up, as the number of active layers increases, the time required to create the device (TAT) increases. This results in extremely serious problems such as increased yield and decreased yield.

本発明はこれらの欠点を解決する半導体装置の
製造方法を提供するものである。
The present invention provides a method for manufacturing a semiconductor device that solves these drawbacks.

本発明によれば、トランジスタ等の回路素子お
よびこれらを相互に接続する導電線が集積化され
た能動層が複数層積層され、かつ各能動層の回路
素子が層間で相互に機械的に結合された複数層の
半導体装置を形成する半導体装置の製造方法であ
つて、半導体あるいは絶縁体等から成る支持基板
をn枚(nは2以上の整数)準備し、各支持基板
の表面にそれぞれ少なくとも一層の能動層(以下
第1層,第2層,…第n層の能動層と称する)を
形成し、第2層,第3層,…第n層の能動層中に
形成された目合せパターンの位置に対応する部分
の支持基板を能動層と反対の側より除去し、次に
第1層の能動層の表面と第2層の能動層の表面を
対向させ、両能動層を前記目合せパターンを用い
て互いに位置を整合した後、両能動層の表面に設
けられた接続部を互いに密着させるとともに、両
者を結合し、ひきつづき第2層の能動層の下の支
持基板を除去して第2層の能動層の裏面を露出さ
せ、次に、露出した第2層の能動層の裏面と第3
層の能動層の表面を対向させ、両能動層を目合せ
パターンを用いて互いに位置を整合した後、第2
層の能動層の裏面に設けられた接続部と第3層の
能動層の表面に設けられた接続部を互いに密着さ
せるとともに、両者を結合し、ひきつづき第3層
の能動層の支持基板を除去して第3層の能動層の
裏面を露出させた後、第4層,第5層,…第n層
の能動層に対しても、第3層の能動層に対して施
した前記工程を繰り返して行うことを特徴とする
半導体装置の製造方法が得られる。
According to the present invention, a plurality of active layers in which circuit elements such as transistors and conductive wires interconnecting these are integrated are laminated, and the circuit elements of each active layer are mechanically coupled to each other between the layers. A semiconductor device manufacturing method for forming a multi-layered semiconductor device, in which n supporting substrates (n is an integer of 2 or more) made of semiconductors, insulators, etc. are prepared, and at least one layer is formed on the surface of each supporting substrate. active layers (hereinafter referred to as first layer, second layer, ... nth active layer), and alignment patterns formed in the second layer, third layer, ... nth active layer. Remove the supporting substrate from the side opposite to the active layer in a portion corresponding to the position, then make the surface of the first active layer face the surface of the second active layer, and align both active layers as described above. After aligning the positions with each other using a pattern, the connecting portions provided on the surfaces of both active layers are brought into close contact with each other, and both are bonded. Subsequently, the support substrate under the second active layer is removed to form a second active layer. The back surfaces of the two active layers are exposed, and then the exposed back surfaces of the second active layer and the third layer are exposed.
After the surfaces of the active layers of the layers are opposed and both active layers are aligned with each other using an alignment pattern, a second
The connection portion provided on the back surface of the active layer of the layer and the connection portion provided on the surface of the third layer active layer are brought into close contact with each other, and both are bonded, and the support substrate of the third layer active layer is subsequently removed. After exposing the back surface of the third active layer, the fourth, fifth, ... n-th active layers are also subjected to the same process as the third active layer. A method for manufacturing a semiconductor device is obtained, which is characterized in that the process is repeated.

更に本発明によればトランジスタ等の回路素子
およびこれらを相互に接続する導電線が集積化さ
れた能動層が複数層積層され、かつ各能動層の回
路素子が層間で相互に機械的に結合された複数層
の半導体装置を形成する半導体装置の製造方法で
あつて、半導体あるいは絶縁体等から成る支持基
板をn枚(nは2以上の整数)準備し、各支持基
板の表面にそれぞれ少なくとも一層の能動層(以
下第1層,第2層,…第n層の能動層と称する)
を形成し、第2層,第3層……第n層の能動層中
に形成された目合せパターンの位置に対応する部
分の支持基板を能動層と反対の側より除去し、次
に第1層の能動層の表面と第2層の能動層の表面
を対向させ、両能動層を前記目合せパターンを用
いて互いに位置を整合した後、両能動層の表面に
設けられた接続部を互いに密着させるとともに、
両者を結合し、ひきつづき第2層の能動層の支持
基板を除去して第2層の能動層の裏面を露出さ
せ、次に、露出した第2層の能動層の裏面と第3
層の能動層の表面を対向させ、両能動層を目合せ
パターンを用いて互いに位置を整合した後、第2
層の能動層の裏面に設けられた接続部と第3層の
能動層の表面に設けられた接続部を互いに密着さ
せるとともに、両者を結合し、ひきつづき第3層
の能動層の支持基板を除去して第3層の能動層の
裏面を露出させた後、第4層,第5層,…第n層
の能動層に対しても、第3層の能動層に対して施
した前記工程を繰り返して行うことによつて形成
されるn層の積層物を並行して複数個作成し、次
にこの複数個の積層することを特徴とする半導体
装置の製造方法が得られる。
Further, according to the present invention, a plurality of active layers in which circuit elements such as transistors and conductive wires interconnecting these are integrated are laminated, and the circuit elements of each active layer are mechanically coupled to each other between the layers. A semiconductor device manufacturing method for forming a multi-layered semiconductor device, in which n supporting substrates (n is an integer of 2 or more) made of semiconductors, insulators, etc. are prepared, and at least one layer is formed on the surface of each supporting substrate. active layer (hereinafter referred to as the first layer, second layer, ... n-th active layer)
The second layer, the third layer...the supporting substrate in the portion corresponding to the position of the alignment pattern formed in the nth active layer is removed from the side opposite to the active layer. After the surface of the first active layer is opposed to the surface of the second active layer, and the positions of both active layers are aligned with each other using the alignment pattern, the connecting portions provided on the surfaces of both active layers are connected. While keeping them in close contact with each other,
After bonding the two, the supporting substrate of the second active layer is removed to expose the back surface of the second active layer, and then the exposed back surface of the second active layer and the third layer are bonded together.
After the surfaces of the active layers of the layers are opposed and both active layers are aligned with each other using an alignment pattern, a second
The connection portion provided on the back surface of the active layer of the layer and the connection portion provided on the surface of the third layer active layer are brought into close contact with each other, and both are bonded, and the support substrate of the third layer active layer is subsequently removed. After exposing the back surface of the third active layer, the fourth, fifth, ... n-th active layers are also subjected to the same process as the third active layer. A method for manufacturing a semiconductor device is obtained, which is characterized in that a plurality of n-layer laminates are formed in parallel by repeated steps, and then the plurality of laminates are laminated.

以下図面を用いて本発明を詳細に説明する。第
2図,第3図,第4図はそれぞれ半導体あるいは
絶縁体などの支持基板上に形成された第1層,第
2層,第n層の能動層を示している。なおここで
はこれらの能動層が、シリコン等の半導体を支持
基板とし、この上に二酸化シリコン等の絶縁膜お
よびポリシリコン膜を順次堆積し、次に該ポリシ
リコンをレーザアニールあるいは電子ビームアニ
ール等で再結晶化して得られるシリコンの単結晶
膜、即ち、SOI(Silicon on Intulator)を用いて
作成された例である。
The present invention will be explained in detail below using the drawings. FIGS. 2, 3, and 4 respectively show first, second, and nth active layers formed on a supporting substrate such as a semiconductor or an insulator. Note that these active layers are formed by using a semiconductor such as silicon as a support substrate, on which an insulating film such as silicon dioxide and a polysilicon film are sequentially deposited, and then the polysilicon is subjected to laser annealing or electron beam annealing. This is an example created using a silicon single crystal film obtained by recrystallization, that is, SOI (Silicon on Intulator).

第2図において、101は気相成長(CVD)
法等により、シリコン等の支持基板10上に堆積
された二酸化シリコン等の絶縁膜である。10
4,105,106は電界効果トランジスタ(以
後FETと呼ぶ)のドレイン領域,ソース領域,
チヤネル領域で、絶縁膜101上に形成された上
記のシリコン膜を用い、周知のプロセスで形成さ
れる。107は該FETのゲート、102は該ゲ
ート作成後、CVD法等により堆積された二酸化
シリコン等の絶縁膜である。108はドレイン領
域104,ソース領域105上の該絶縁膜102
に穴を開口した後、スパツタ法等により堆積さ
れ、次に写真食刻技術などでパターニングされた
アルミニユーム等の金属配線である。109は第
1層と第2層の能動層を整合させるための目合せ
パターンで、ここでは一例として、金属配線10
8と同一材料で、同時に形成される場合を示して
いる。103は該金属配線108,目合せパター
ン109を形成した後、CVD法等で堆積される
二酸化シリコン等の絶縁膜である。110は絶縁
膜103は開口して作られる穴に理め込まれたア
ルミニユーム等の金属の垂直配線である。112
は該垂直配線上に設けられる金などの金属バンプ
で、該金属バンプを介して、第1層の能動層中の
回路素子と他の能動層中の回路素子が互いに結合
される。113は絶縁性と熱伝導性の両者が優れ
た人工ダイアモンド等の透明な放熱材料で、能動
層から発生する熱量が大きい場合など、必要に応
じて形成される。なお第1層の能動層11は、第
2図より明らかなように、101,102,10
3,104,105,106,107,108,
109,110,112,113などの要素から
構成される。
In Figure 2, 101 is vapor phase growth (CVD)
This is an insulating film made of silicon dioxide or the like deposited on a support substrate 10 of silicon or the like by a method or the like. 10
4, 105, 106 are the drain and source regions of field effect transistors (hereinafter referred to as FETs),
The channel region is formed using the above-mentioned silicon film formed on the insulating film 101 by a well-known process. 107 is the gate of the FET, and 102 is an insulating film of silicon dioxide or the like deposited by CVD or the like after the gate is formed. 108 is the insulating film 102 on the drain region 104 and source region 105.
This is a metal wiring made of aluminum or the like, which is deposited by a sputtering method or the like after opening a hole in the material, and then patterned by a photolithography method or the like. 109 is an alignment pattern for aligning the first and second active layers; here, as an example, the metal wiring 10
8 is made of the same material and formed at the same time. Reference numeral 103 is an insulating film made of silicon dioxide or the like that is deposited by CVD or the like after forming the metal wiring 108 and alignment pattern 109. Reference numeral 110 denotes a vertical wiring made of metal such as aluminum and inserted into a hole formed by opening the insulating film 103. 112
are metal bumps such as gold provided on the vertical wiring, and the circuit elements in the first active layer and the circuit elements in the other active layers are coupled to each other via the metal bumps. Reference numeral 113 is a transparent heat dissipating material such as artificial diamond that has both excellent insulation properties and thermal conductivity, and is formed as necessary when the amount of heat generated from the active layer is large. Note that the first active layer 11 has layers 101, 102, and 10, as is clear from FIG.
3,104,105,106,107,108,
It is composed of elements such as 109, 110, 112, and 113.

第3図において20はシリコン等の支持基板、
21は第2層の能動層である。該第2層の能動層
21は二酸化シリコン等の絶縁膜、201,20
2,203,FETのドレイン領域204、ソー
ス領域205,チヤネル領域206、ゲート20
7,アルミニユーム等の金属配線208,目合せ
パターン209,アルミニユーム等の金属で形成
された金属バンプ側の垂直配線210および支持
基板側の垂直配線211,金などの金属バンプ2
12,人工ダイアモンド等の放熱材料213等か
ら構成される。なおこれらの構成要素の作成プロ
セスは第1層の能動層のそれらとほぼ同様であ
る。但し、該第2層の能動層21を第1層の能動
層11上に積層する前に、目合せパターン209
に対応する部分の支持基板を一部除去し、第3図
に示すように、開口部分214を設けるプロセス
が加わる。この開口プロセスは、例えばKOH等
の溶液を用い異方性の選択エツチングを行なうこ
とにより容易に行うことができる。こうしてシリ
コン等の不透明な支持基板を一部分除去すること
により、二酸化シリコン等の透明な絶縁膜20
1,202,203中に形成された目合せパター
ン209を支持基板側から見通すことが可能とな
る。従つて、第2層の能動層21を能動層側を上
に第1層の能動層10上に重ねた場合において
も、該目合せパターン209を、二酸化シリコン
等の透明な絶縁膜101,102,103中に形
成された目合せパターン109に整合することが
できる。なお説明は省くが、第3層,第4層,
…,第(n−1)層の能動層31,41,…,6
1についても、上記第2層の能動層と全く同じプ
ロセスを用いて形成される。
In FIG. 3, 20 is a support substrate made of silicon or the like;
21 is a second active layer. The second active layer 21 is an insulating film 201, 20 made of silicon dioxide or the like.
2, 203, FET drain region 204, source region 205, channel region 206, gate 20
7. Metal wiring 208 made of aluminum or the like, alignment pattern 209, vertical wiring 210 on the metal bump side made of metal such as aluminum and vertical wiring 211 on the support substrate side, metal bump 2 made of gold or the like
12, is composed of a heat dissipating material 213 such as artificial diamond. The manufacturing process for these components is almost the same as that for the first active layer. However, before laminating the second active layer 21 on the first active layer 11, the alignment pattern 209 is
A process is added in which a portion of the support substrate corresponding to the area is removed and an opening portion 214 is provided as shown in FIG. This opening process can be easily performed, for example, by performing anisotropic selective etching using a solution such as KOH. By removing a portion of the opaque supporting substrate such as silicon in this way, a transparent insulating film 20 such as silicon dioxide is formed.
It becomes possible to see through the alignment pattern 209 formed in 1, 202, 203 from the support substrate side. Therefore, even when the second layer active layer 21 is stacked on the first layer active layer 10 with the active layer side facing up, the alignment pattern 209 can be formed using transparent insulating films 101 and 102 such as silicon dioxide. , 103 can be matched to the alignment pattern 109 formed therein. Although the explanation is omitted, the third layer, the fourth layer,
..., (n-1)th active layer 31, 41, ..., 6
1 is also formed using exactly the same process as the second active layer.

第4図において70はシリコン等の支持基板、
71は第n層の能動層である。該第n層の能動層
71は二酸化シリコン等の絶縁膜701,70
2,703,FETのドレイン領域704、ソー
ス領域705,チヤネル領域706,ゲート電極
707,アルミニユーム等の金属配線708(部
分的にボンデイングパツドとして用いることも可
能である),目合せパターン709,アルミニユ
ーム等の金属で形成された垂直配線710,金な
どの金属バンプ712,人工ダイアモンド等の放
熱材料713等から構成される。なおこれらの構
成要素の作成プロセスは第1層,第2層の能動層
のそれらとほぼ同様である。又該能動層を積層す
る前に、第2層の能動層と同様に、目合せパター
ン709に対応する部分の支持基板を除去し、開
口部714を設けておく。これと同時に、ボンデ
イングパツドに対応する部分の支持基板も除去
し、開口部715を設ける。
In FIG. 4, 70 is a support substrate made of silicon or the like;
71 is an n-th active layer. The n-th active layer 71 is made of insulating films 701 and 70 made of silicon dioxide or the like.
2,703, FET drain region 704, source region 705, channel region 706, gate electrode 707, metal wiring 708 such as aluminum (can be partially used as a bonding pad), alignment pattern 709, aluminum It is composed of vertical wiring 710 made of metal such as, metal bumps 712 made of gold or the like, heat dissipation material 713 such as artificial diamond, and the like. The manufacturing process for these components is almost the same as that for the first and second active layers. Also, before laminating the active layer, similarly to the second active layer, the portion of the support substrate corresponding to the alignment pattern 709 is removed to form an opening 714. At the same time, a portion of the support substrate corresponding to the bonding pad is also removed to provide an opening 715.

以上積層される各能動層について説明した。次
に第5図から第7図を用いて、これらの能動層の
積層方法を工程順に説明する。なお同図におい
て、第1図から第4図に示した要素と同一の要素
は、第1図から第4図で用いた番号と同一の番号
が用いてある。
The active layers laminated above have been explained. Next, a method for laminating these active layers will be explained in order of steps with reference to FIGS. 5 to 7. In this figure, elements that are the same as those shown in FIGS. 1 to 4 are designated by the same numbers as used in FIGS. 1 to 4.

まず、第5図に示すように、第1層の能動層1
1が形成されている支持基板10をステージ15
に設置する。該ステージ15はヒーター等の加熱
装置16を具備し、又支持基板10を所定の位置
に固定するための周知の吸着機能も備えている。
一方、支持基板20上に形成された第2層の能動
層21を能動層側を下向きに、第1層の能動層と
対向させ、可動装置17に固定する。なお該可動
装置17は周知の吸着機能、周知の目合せ機能お
よび該支持基板20と第2層の能動層21に圧力
を加える機能等が具備されている。次に該可動装
置17を前後,左右に移動しながら、支持基板に
開口した穴214を介して、第2層の能動層21
中に設けられた目合せパターン209を第1層の
能動層11中に設けた目合せパターン109と許
容誤差範囲内で一致させることにより、第1層お
よび第2層の能動層を互いに整合する。
First, as shown in FIG.
1 is formed on a stage 15.
to be installed. The stage 15 is equipped with a heating device 16 such as a heater, and also has a well-known suction function for fixing the support substrate 10 in a predetermined position.
On the other hand, the second active layer 21 formed on the support substrate 20 is fixed to the movable device 17 with the active layer side facing downward and facing the first active layer. The movable device 17 is equipped with a well-known adsorption function, a well-known alignment function, a function of applying pressure to the support substrate 20 and the second active layer 21, and the like. Next, while moving the movable device 17 back and forth, left and right, the second active layer 21 is inserted through the hole 214 opened in the support substrate.
The first and second active layers are aligned with each other by matching the alignment pattern 209 provided therein with the alignment pattern 109 provided in the first active layer 11 within a tolerance range. .

目合せが完了したら、第6図に示すように、該
可動装置17を下方へ平行移動させ、第1層の能
動層11に設けられた金属バンプ(例えば、第2
図の112)と第2層の能動層21に設けられた
金属バンプ(例えば、第3図の212)を互いに
密着させる。この時、あらかじめ加熱装置16に
より、これらの金属バンプは、例えば300ないし
400度Cに加熱しておく。これと同時に、該可動
装置17を制御して、矢印18の方向へ、例え
ば、50Kg/mm2程度の圧力を加えることによりこれ
らの金属バンプは互いに拡散溶接され、2層の半
導体装置が完成する。
When the alignment is completed, the movable device 17 is translated downward as shown in FIG.
112) in the figure and the metal bump provided on the second active layer 21 (for example, 212 in FIG. 3) are brought into close contact with each other. At this time, these metal bumps are heated in advance by the heating device 16 to a temperature of, for example, 300 or more.
Heat to 400 degrees C. At the same time, by controlling the movable device 17 and applying a pressure of, for example, about 50 kg/mm 2 in the direction of the arrow 18, these metal bumps are diffusion welded to each other, completing a two-layer semiconductor device. .

金属バンプ間の接続が完了したら、該ステージ
15および該可動装置17から2層の半導体装置
を取り出し、次に支持基板21を除去する。この
支持基板20を除去する方法の一例を、第3図を
用いて説明する。まずアルカリ系あるいはアンモ
ニア系の溶液を用いポーリツシングなどの方法
で、破線215の部分まで、即ち、支持基板の表
面に近い部分20aを除去する。次に、例えば、
HNO3,HFおよびCH3COOHの混合液を用いて、
残りの支持基板20bを除去する。この時、絶縁
膜201および201aがこのエッチングを止め
るストツパーの働きをする。なお該混合液を用い
て支持基板20aと20bを一度に除去すること
もできる。次に垂直配線211を露出するため
に、絶縁膜201aをフツ酸と水の混合液などを
用いて除去する。この時露出した絶縁膜201の
表面も一部エツチングされる。
After the connection between the metal bumps is completed, the two-layer semiconductor device is taken out from the stage 15 and the movable device 17, and then the support substrate 21 is removed. An example of a method for removing this support substrate 20 will be explained using FIG. 3. First, by a method such as polishing using an alkaline or ammonia-based solution, up to the portion indicated by the broken line 215, that is, the portion 20a close to the surface of the support substrate is removed. Then, for example,
Using a mixture of HNO 3 , HF and CH 3 COOH,
The remaining support substrate 20b is removed. At this time, the insulating films 201 and 201a function as a stopper to stop this etching. Note that the supporting substrates 20a and 20b can also be removed at once using the mixed solution. Next, in order to expose the vertical wiring 211, the insulating film 201a is removed using a mixed solution of hydrofluoric acid and water. At this time, a portion of the exposed surface of the insulating film 201 is also etched.

支持基板20の除去が終了したら、次に、第3
層の能動層の積層ステップに移る。これを第7図
に示す。この場合も、第5図,第6図を用いて説
明した第2層の能動層の積層プロセスおよび支持
基板の除去プロセスと同様な方法で行なわれる。
以下、第3層から第n層の能動層に対しても同様
である。
After the removal of the support substrate 20 is completed, the third
Moving on to the step of laminating the active layer of the layer. This is shown in FIG. In this case as well, the process is similar to the process of laminating the second active layer and the process of removing the supporting substrate described using FIGS. 5 and 6.
The same applies to the third to nth active layers.

最後に第n層の能動層の絶縁膜(第4図の71
6)を写真食刻技術を用いて除去し、開口するこ
とによりボンデイングパツド(金属配線708の
一部分)を露出させて、n層の半導体装置が形成
される。第8図に上記製造方法によつて作成した
3層の半導体装置の構造例を示す。この場合第1
層,第2層および第3層の能動層はそれぞれ第2
図,第3図および第4図に対応する。
Finally, the insulating film of the n-th active layer (71 in Figure 4)
6) is removed using photolithography and an opening is opened to expose the bonding pad (a portion of the metal wiring 708), thereby forming an n-layer semiconductor device. FIG. 8 shows an example of the structure of a three-layer semiconductor device manufactured by the above manufacturing method. In this case the first
The active layers of the second layer and the third layer are respectively
3 and 4, respectively.

以上、多層の半導体装置の製造方法、すなわ
ち、積層方法を詳細に説明しました。本発明によ
れば、第1層,第2層,…第n層の能動層の作成
および第2層から第n層の能動層からの支持基板
の除去が平行して同時に行なわれるから、従来か
らよく知られた多層の半導体装置の作成に要する
時間に比べ、本発明による多層の半導体装置の作
成に要する時間は極めて短縮化される。さらにシ
リコンやガリウム砒素など異なる材質の半導体を
用いた能動層あるいはFETやバイポーラトラン
ジスタなど異なる製造工程により形成された能動
層などを自由に積層できるので、多機能化と、機
能の最適化ができる上、設計の自由度もひろが
る。又あらかじめ回路等のテストを行なつて故障
のない能動層を選択してからこれらを積層できる
から、歩留りが極めて高い半導体装置の実現がで
きる。したがつて、生産性が極めて向上する。又
透明な絶縁膜中に設けられた目合せパターンは、
不透明な支持基板を除去した後では、自由に可視
できるので、従来の方法で層間の目合せ整合が容
易に行なえる。このため、裏面目合せ装置など、
大規模な装置を必要としない、等の長所がある。
Above, we have explained in detail the method for manufacturing multilayer semiconductor devices, that is, the stacking method. According to the present invention, the creation of the first, second, ... n-th active layers and the removal of the supporting substrate from the second to n-th active layers are performed in parallel and at the same time. The time required to create a multilayer semiconductor device according to the present invention is extremely shortened compared to the time required to create a multilayer semiconductor device well known from the present invention. Furthermore, active layers made of semiconductors made of different materials such as silicon and gallium arsenide, or active layers formed using different manufacturing processes such as FETs and bipolar transistors can be laminated freely, allowing for multifunctionality and optimization of functions. , the degree of freedom in design increases. Furthermore, since active layers with no failures can be selected by testing circuits and the like in advance and then stacking them, it is possible to realize semiconductor devices with extremely high yields. Therefore, productivity is greatly improved. In addition, the alignment pattern provided in the transparent insulating film is
After removal of the opaque support substrate, it is freely visible and alignment alignment between the layers can be easily accomplished using conventional methods. For this reason, back alignment devices, etc.
It has advantages such as not requiring large-scale equipment.

なお本発明の半導体装置の製造方法において、
能動層を積層したり、支持基板を除去したりする
場合、能動層,支持基板,透明基板等のサイズは
制限されない。又上記説明で使用した材料の種類
(半導体材料,絶縁材料,金属材料,放熱材料,
接着材料,エツチング溶液,等)、製造条件(温
度,圧力,膜厚,等)、あるいは個別製造方法
(エツチング,ポーリシング,拡散溶接,等)等
は一例であつて、本発明の効果が発揮されるなら
ば、上記々載事項に限定されることはない。上記
説明ではSOIを用いて形成された能動層を例に説
明したが、これに限定されることはなく、広く一
般の材料例えば能動層が半導体基板表面に形成さ
れている場合や、半導体基板上のエピタキシヤル
半導体膜に形成されている場合や、SOSのSi膜に
形成されている場合も適用される。さらに上記説
明でもいた簡単な回路構成も、一例であつて、こ
れに限定されることはない。
Note that in the method for manufacturing a semiconductor device of the present invention,
When laminating an active layer or removing a supporting substrate, there are no restrictions on the sizes of the active layer, supporting substrate, transparent substrate, etc. Also, the types of materials used in the above explanation (semiconductor materials, insulating materials, metal materials, heat dissipation materials,
Adhesive materials, etching solutions, etc.), manufacturing conditions (temperature, pressure, film thickness, etc.), or individual manufacturing methods (etching, polishing, diffusion welding, etc.) are just examples, and the effects of the present invention may not be achieved. If so, it is not limited to the matters listed above. In the above explanation, the active layer formed using SOI was explained as an example, but the explanation is not limited to this, and there are cases where the active layer is formed on the surface of a semiconductor substrate, or when the active layer is formed on the surface of a semiconductor substrate. This also applies when it is formed on an epitaxial semiconductor film or on an SOS Si film. Furthermore, the simple circuit configuration described above is also an example, and the present invention is not limited thereto.

また前記実施例では支持基板上に能動層が1層
しか形成されていないものを最初にn枚用意した
が、これに限る必要はなく、レーザアニール,電
子ビームアニール等の本発明とは別の方法によつ
て能動層があらかじめ複数層形成されているもの
を最初に用意してもよい。
In addition, in the above embodiment, n sheets were initially prepared in which only one active layer was formed on the support substrate, but it is not necessary to be limited to this. Alternatively, a plurality of active layers may be formed in advance using a method.

また前記実施例では3層以上の能動層を積層す
る場合を示したが、2層の場合でも当然本発明は
適用できる。
Furthermore, although the above embodiments have shown the case where three or more active layers are laminated, the present invention can of course be applied to the case where there are two active layers.

また前記実施例では能動層を1層ずつn層積層
して得たn層の積層物を、完成された半導体装置
としたが、この認識にとらわれる必要はない。つ
まり本発明においてこのn層の積層物上に更に
(n+1)層,(n+2)層,…と積層してもよ
い。
Further, in the embodiment described above, the n-layer laminate obtained by laminating n active layers one by one was used as a completed semiconductor device, but there is no need to be limited by this understanding. That is, in the present invention, (n+1) layers, (n+2) layers, etc. may be further laminated on this n-layer laminate.

またn層の積層物を複数個並行して作つてお
き、最後にこれらを前記実施例と同様にして積層
してもよい。また逆にn層の積層物を完成された
半導体装置とみなしたとき、例えばn/3層の積
層物を3つ並行して製造し、最後にこの3つを積
層してn層の半導体装置を完成してもよい。
Alternatively, a plurality of n-layer laminates may be made in parallel, and finally they may be laminated in the same manner as in the previous embodiment. Conversely, when considering an n-layer laminate as a completed semiconductor device, for example, three n/3-layer laminates are manufactured in parallel, and finally these three are laminated to form an n-layer semiconductor device. may be completed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はn層の半導体装置の概略断面図、第2
図,第3図,第4図はそれぞれ一例としてSOIを
用いた第1層,第2層,第n層の能動層および支
持基板の概略断面図、第5図から第7図は本発明
の製造方法を説明するために、その工程順に、多
層の半導体装置の構造を示した概略断面図、第8
図は本発明による製造方法によつて得られた3層
の半導体装置の概略断面図である。第1図から第
8図において、1は多層の半導体装置、10,2
0,30,70は支持基板、11,21,31,
41,51,61は第1層,第2層,第3層,第
4層,第(n−2)層,第(n−1)層の能動
層、71は第n層あるいは第3層の能動層、12
はパツケージの基板、13はボンデイングパツ
ド、14はボンデイングワイア、15はステー
ジ、16は加熱装置、17は可動装置、18は加
圧の方向である。第2図から第8図において、1
01,102,103,201,202,20
3,701,702,703は絶縁膜、104,
204,704はドレイン領域、105,20
5,705はソース領域、106,206,70
6はチヤネル領域、107,207,707はゲ
ート、108,208,308は金属配線、10
9,209,309,709は目合せパターン、
110,210,211,710は垂直配線、1
12,212,712は金属バンプ、113,2
13,713は放熱材料、714は目合せパター
ンを可視する穴、716はパツドのスルーホール
である。
Figure 1 is a schematic cross-sectional view of an n-layer semiconductor device;
3 and 4 are schematic cross-sectional views of the first, second, and nth active layers and support substrate using SOI as an example, and FIGS. 5 to 7 are schematic cross-sectional views of the active layer and support substrate of the present invention In order to explain the manufacturing method, a schematic cross-sectional view showing the structure of a multilayer semiconductor device, No. 8 is shown in the order of the steps.
The figure is a schematic cross-sectional view of a three-layer semiconductor device obtained by the manufacturing method according to the present invention. 1 to 8, 1 is a multilayer semiconductor device, 10, 2
0, 30, 70 are supporting substrates, 11, 21, 31,
41, 51, 61 are active layers of the first layer, second layer, third layer, fourth layer, (n-2) layer, and (n-1) layer, and 71 is the n-th layer or the third layer. active layer, 12
13 is a substrate of the package, 13 is a bonding pad, 14 is a bonding wire, 15 is a stage, 16 is a heating device, 17 is a movable device, and 18 is a direction of pressurization. In Figures 2 to 8, 1
01, 102, 103, 201, 202, 20
3,701,702,703 are insulating films, 104,
204, 704 is a drain region, 105, 20
5,705 is the source area, 106,206,70
6 is a channel region, 107, 207, 707 is a gate, 108, 208, 308 is a metal wiring, 10
9,209,309,709 are alignment patterns,
110, 210, 211, 710 are vertical wiring, 1
12,212,712 is a metal bump, 113,2
13, 713 is a heat dissipating material, 714 is a hole through which the alignment pattern can be seen, and 716 is a through hole in the pad.

Claims (1)

【特許請求の範囲】 1 トランジスタ等の回路素子およびこれらを相
互に接続する導電線が集積化された能動層が複数
層積層され、かつ各能動層の回路素子が層間で相
互に有機的に結合された複数層の半導体装置を形
成する半導体装置の製造方法であつて、半導体あ
るいは絶縁体等から成る支持基板をn枚(nは2
以上の整数)準備し、各支持基板の表面にそれぞ
れ少なくとも一層の能動層(以下第1層,第2
層,…第n層の能動層と称する)を形成し、第2
層,第3層……第n層の能動層中に形成された目
合せパターンの位置に対応する部分の支持基板を
能動層と反対の側より除去し、次に第1層の能動
層の表面と第2層の能動層の表面を対向させ、両
能動層を前記目合せパターンを用いて互いに位置
を整合した後、両能動層の表面に設けられた接続
部を互いに密着させるとともに、両者を結合し、
ひきつづき第2層の能動層の支持基板を除去して
第2層の能動層の裏面を露出させ、次に、露出し
た第2層の能動層の裏面と第3層の能動層の表面
を対向させ、両能動層を目合せパターンを用いて
互いに位置を整合した後、第2層の能動層の裏面
に設けられた接続部と第3層の能動層の表面に設
けられた接続部を互いに密着させるとともに、両
者を結合し、ひきつづき第3層の能動層の支持基
板を除去して第3層の能動層の裏面を露出させた
後、第4層,第5層,…第n層の能動層に対して
も、第3層の能動層に対して施した前記工程を繰
り返して行うことを特徴とする半導体装置の製造
方法。 2 トランジスタ等の回路素子およびこれらを相
互に接続する導電線が集積化された能動層が複数
層積層され、かつ各能動層の回路素子が層間で相
互に有機的に結合された複数層の半導体装置を形
成する半導体装置の製造方法であつて、半導体あ
るいは絶縁体等から成る支持基板をn枚(nは2
以上の整数)準備し、各支持基板の表面にそれぞ
れ少なくとも一層の能動層(以下第1層,第2
層,…第n層の能動層と称する)を形成し、第2
層,第3層,…第n層の能動層中に形成された目
合せパターンの位置に対応する部分の支持基板を
能動層と反対の側より除去し、次に第1層の能動
層の表面と第2層の能動層の表面を対向させ、両
能動層を前記目合せパターンを用いて互いに位置
を整合した後、両能動層の表面に設けられた接続
部を互いに密着させるとともに、両者を結合し、
ひきつづき第2層の能動層の支持基板を除去して
第2層の能動層の裏面を露出させ、次に、露出し
た第2層の能動層の裏面と第3層の能動層の表面
を対向させ、両能動層を目合せパターンを用いて
互いに位置を整合した後、第2層の能動層の裏面
に設けられた接続部と第3層の能動層の表面に設
けられた接続部を互いに密着させるとともに、両
者を結合し、ひきつづき第3層の能動層の支持基
板を除去して第3層の能動層の裏面を露出させた
後、第4層,第5層,…第n層の能動層に対して
も、第3層の能動層に対して施した前記工程を繰
り返して行うことによつて形成されるn層の積層
物を並行して複数個作成し、次にこの複数個の積
層物を積層することを特徴とする半導体装置の製
造方法。
[Claims] 1. A plurality of active layers in which circuit elements such as transistors and conductive wires interconnecting these are integrated, and the circuit elements of each active layer are organically coupled to each other between the layers. A method for manufacturing a semiconductor device in which a multi-layered semiconductor device is formed by forming n supporting substrates made of semiconductors, insulators, etc. (n is 2).
(an integer greater than or equal to
layer,...referred to as the nth active layer), and the second layer is formed.
Layer, third layer...A portion of the support substrate corresponding to the position of the alignment pattern formed in the n-th active layer is removed from the side opposite to the active layer, and then the first active layer is removed. After the surface and the surface of the second active layer are made to face each other, and the positions of both active layers are aligned with each other using the alignment pattern, the connecting portions provided on the surfaces of both active layers are brought into close contact with each other, and both Combine,
Subsequently, the supporting substrate of the second active layer is removed to expose the back surface of the second active layer, and then the exposed back surface of the second active layer and the surface of the third active layer are placed opposite each other. After aligning the positions of both active layers with each other using an alignment pattern, connect the connecting portions provided on the back surface of the second active layer and the connecting portions provided on the surface of the third active layer with each other. After bringing them into close contact and bonding them together, the support substrate of the third active layer is removed to expose the back surface of the third active layer, and then the fourth layer, fifth layer, . . . A method for manufacturing a semiconductor device, characterized in that the steps described above for the third layer active layer are repeated for the active layer as well. 2. A multi-layer semiconductor in which a plurality of active layers are stacked in which circuit elements such as transistors and conductive wires that interconnect these are integrated, and the circuit elements in each active layer are organically bonded to each other between the layers. A method for manufacturing a semiconductor device forming a device, in which n supporting substrates made of semiconductors, insulators, etc.
(an integer greater than or equal to
layer,...referred to as the nth active layer), and the second layer is formed.
layers, third layer, ... The supporting substrate of the portion corresponding to the position of the alignment pattern formed in the active layer of the n-th layer is removed from the side opposite to the active layer, and then the supporting substrate of the part of the active layer of the first layer is removed. After the surface and the surface of the second active layer are made to face each other, and the positions of both active layers are aligned with each other using the alignment pattern, the connecting portions provided on the surfaces of both active layers are brought into close contact with each other, and both Combine,
Subsequently, the supporting substrate of the second active layer is removed to expose the back surface of the second active layer, and then the exposed back surface of the second active layer and the surface of the third active layer are placed opposite each other. After aligning the positions of both active layers with each other using an alignment pattern, connect the connecting portions provided on the back side of the second active layer and the connecting portions provided on the surface of the third active layer with each other. After bringing them into close contact and bonding them together, the support substrate of the third active layer is removed to expose the back surface of the third active layer, and then the fourth layer, fifth layer, . . . For the active layer, a plurality of n-layer laminates are formed in parallel by repeating the steps described above for the third active layer, and then the plurality of n-layer laminates are formed in parallel. A method of manufacturing a semiconductor device, comprising stacking a laminate of.
JP58095171A 1983-05-30 1983-05-30 Manufacture of semiconductor device Granted JPS59219954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58095171A JPS59219954A (en) 1983-05-30 1983-05-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58095171A JPS59219954A (en) 1983-05-30 1983-05-30 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS59219954A JPS59219954A (en) 1984-12-11
JPH049384B2 true JPH049384B2 (en) 1992-02-20

Family

ID=14130304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58095171A Granted JPS59219954A (en) 1983-05-30 1983-05-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59219954A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247373A (en) 2003-02-12 2004-09-02 Semiconductor Energy Lab Co Ltd Semiconductor device
JP6019599B2 (en) * 2011-03-31 2016-11-02 ソニー株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JPS59219954A (en) 1984-12-11

Similar Documents

Publication Publication Date Title
US5087585A (en) Method of stacking semiconductor substrates for fabrication of three-dimensional integrated circuit
JP3895595B2 (en) Method for vertically integrating electrical components by back contact
JP3694021B2 (en) Manufacturing method of semiconductor device
KR100347656B1 (en) Process for producing a three-dimensional-circuit
KR100510112B1 (en) Multistack 3-dimensional high density semiconductor device and method for fabrication
JPH07506936A (en) Three-dimensional integrated circuit and its manufacturing method
JP2001015683A (en) Transfer method of ultra-thin substrate and manufacture of multilayer thin film device using the same
JPS63308386A (en) Semiconductor device and manufacture thereof
JPS6130059A (en) Manufacture of semiconductor device
KR950009977A (en) Multi-layered structure having a single crystal semiconductor film formed over an insulating film and a method of manufacturing the same
JPH08213549A (en) Manufacture of integrated circuit
JP2948018B2 (en) Semiconductor device and manufacturing method thereof
JP3770631B2 (en) Manufacturing method of semiconductor device
KR100253352B1 (en) Fabrication method of stackable semiconductor chip and stacked semiconductor chip moudle
JPH02199860A (en) High density semiconductor structure and its manufacture
JPH049384B2 (en)
JPS62272556A (en) Three-dimensional semiconductor integrated circuit device and manufacture thereof
JPH01133341A (en) Manufacture of semiconductor device and manufacturing equipment therefor
JP3048686B2 (en) Semiconductor device and manufacturing method thereof
JP2011146655A (en) Semiconductor device manufacturing method and laminated semiconductor device
JPH049383B2 (en)
JPS61174661A (en) Semiconductor integrated circuit device and manufacture thereof
JPH049385B2 (en)
JPH06120419A (en) Laminate type semiconductor integrated circuit
JP2597750B2 (en) Method for manufacturing semiconductor device