JPH0493815A - Optical isolator and semiconductor laser device integrated therewith - Google Patents

Optical isolator and semiconductor laser device integrated therewith

Info

Publication number
JPH0493815A
JPH0493815A JP20709690A JP20709690A JPH0493815A JP H0493815 A JPH0493815 A JP H0493815A JP 20709690 A JP20709690 A JP 20709690A JP 20709690 A JP20709690 A JP 20709690A JP H0493815 A JPH0493815 A JP H0493815A
Authority
JP
Japan
Prior art keywords
optical isolator
mode conversion
waveguide
light
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20709690A
Other languages
Japanese (ja)
Inventor
Hitoshi Oda
織田 仁
Masahiro Okuda
昌宏 奥田
Yasuo Tomita
康生 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20709690A priority Critical patent/JPH0493815A/en
Priority to EP91113047A priority patent/EP0470523B1/en
Priority to DE69130816T priority patent/DE69130816T2/en
Publication of JPH0493815A publication Critical patent/JPH0493815A/en
Priority to US07/939,427 priority patent/US5245465A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow the execution of 100% mode conversion even if th phase matching between modes is not executed by simultaneously applying an electric field and magnetic field to a waveguide to induce the mode conversion by an electro-optical effect and magneto-optical effect within the same region, thereby compensating the degradation in the mode conversion efficiency by phase mismatching. CONSTITUTION:This optical isolator is constituted of a GaAs substrate 31, a buffer layer 32, a lower clad layer 33, a core layer 34, an upper clad layer 35, a mesa structure 36, and electrodes 37, 38. The isolator has the waveguide consisting of a magnetic semiconductor, such as CdMnTe, and induces the mode conversion between the orthogonal modes of TE light, TM light, etc., by the electro-optical effect and magneto-optical effect within the same region by simultaneously impressing the electric field E and the magnetic field H to the waveguide. The degradation in the mode conversion efficiency by the phase mismatching is compensated. The 100% mode conversion is attained in this way even if the phase matching between the modes is not executed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光通信、光情報処理、光計測用機器などに使
用される半導体レーザ装置などに用いられて戻り光によ
る雑音を誘起しない様にする光アイソレータ、及びそれ
と集積された半導体レーザ装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is used in semiconductor laser devices used in optical communication, optical information processing, optical measurement equipment, etc., so as not to induce noise due to return light. The present invention relates to an optical isolator and a semiconductor laser device integrated therewith.

[従来の技術] 近年、情報の伝達の高速化、情報の記録の大容量化に伴
い、光フアイバ通信や光デイスクメモリの開発が進めら
れている。光通信システムには、1.3または1.5μ
mの波長を用いる幹線系の中長距離伝送システムと、0
.8μm帯を用しするLAN40−カルエリアネットワ
ーク)等の近距離伝送システムが存在する。いずれの場
合にも、半導体レーザかも出射された光をファイバ端面
に集光させファイバ中を導波させる。しかし、この際、
ファイバや他の光学部品の端面で反射した光は半導体レ
ーザの活性層に戻り、その結果、半導体レーザの発振が
不安定になりパワー変動及び波長変動が起こる。特に、
DBRレーザ(分布反射型レーザ)においては、単一モ
ードが多モードになる等の大きな影響がある。また、将
来の通信方式として注目されているフヒーレント光通信
では、光のON10 F Fを行なうことなく位相を変
化させるのみである為、特に戻り光の影響が大きい一方
、光デイスクメモリにおいては、光学部品からの反射光
に加えてディスク基板からの反射光が半導体レーザに戻
り、前述の不安定性や雑音を誘起する。
[Background Art] In recent years, optical fiber communications and optical disk memories have been developed as the speed of information transmission increases and the capacity of information recording increases. For optical communication systems, 1.3 or 1.5μ
Trunk medium and long-distance transmission systems using wavelengths of m and
.. There are short-distance transmission systems such as LAN40 (Cal Area Network) that use the 8 μm band. In either case, the light emitted from the semiconductor laser is focused on the fiber end face and guided through the fiber. However, at this time,
Light reflected from the end face of a fiber or other optical component returns to the active layer of the semiconductor laser, resulting in unstable oscillation of the semiconductor laser and power fluctuations and wavelength fluctuations. especially,
DBR lasers (distributed reflection lasers) have major effects such as a single mode becoming multimode. In addition, coherent optical communication, which is attracting attention as a future communication method, only changes the phase of light without performing ON10 F F, so the influence of return light is particularly large. In addition to the reflected light from the components, the reflected light from the disk substrate returns to the semiconductor laser, inducing the aforementioned instability and noise.

こうした雑音の発生は、光通信では伝送信号のエラーレ
ートを増大させ、光デイスクメモリでは再生信号の劣化
を惹起する。
The generation of such noise increases the error rate of transmission signals in optical communications, and causes deterioration of reproduced signals in optical disk memories.

以上の如き半導体レーザへの戻り光を取り除(唯一の素
子が光アイソレータである。光アイソレータは非可逆す
なわち非相反的な透過特性を有するもので、戻り光を完
全に遮断して半導体レーザの活性層に再入射するのを防
ぐ。この光アイソレータには現在次のような2つの問題
点がある。
Eliminate the returning light to the semiconductor laser as described above (the only element is an optical isolator. An optical isolator has irreversible or non-reciprocal transmission characteristics, and completely blocks the returning light to prevent the semiconductor laser from returning). This optical isolator prevents the light from entering the active layer again.This optical isolator currently has the following two problems.

1つは波長域の問題である。One problem is the wavelength range.

第4図に示す様に、現在実用化されているものは、ファ
ラデー回転素子としてYIGの如き磁性ガーネット単結
晶41を用いている。ガーネットの吸収端はおよそ1μ
mの波長のところにあり、幹線系の光通信に用いる波長
域(1,3または15μm)に対しては透明であるが、
近距離光通信または光デイスクメモリに用いる波長域(
0゜8μm帯)の光に対してはガーネットの吸収が太き
(なってしまう。従って、この0.8μm帯の波長域で
は、1/4波長板と偏光ビームスプリッタを組み合わせ
た簡易型光アイソレータが用いられているに過ぎない。
As shown in FIG. 4, the device currently in practical use uses a magnetic garnet single crystal 41 such as YIG as a Faraday rotation element. The absorption edge of garnet is approximately 1μ
It is located at a wavelength of m, and is transparent to the wavelength range (1, 3 or 15 μm) used for trunk optical communications, but
Wavelength range used for short-distance optical communication or optical disk memory (
Garnet's absorption is thick for light in the 0.8 μm band. Therefore, in this 0.8 μm wavelength range, a simple optical isolator that combines a quarter-wave plate and a polarizing beam splitter is used. is only used.

この簡易型のアイソレータで得られるアイソレーション
比は、最大でも20dB程度に過ぎない。また、戻り光
の偏光面が変化してしまうとアイソレーション比は更に
小さくなる。光磁気ディスクの様にディスクからの反射
ないし透過光の偏光面の回転(カー回転角またはファラ
デー回転角)を信号として検出しようとするシステムに
は、簡易型のものは当然ながら使うことができない。
The isolation ratio obtained with this simple isolator is only about 20 dB at maximum. Moreover, if the polarization plane of the returned light changes, the isolation ratio will further decrease. Naturally, the simple type cannot be used in a system that attempts to detect as a signal the rotation of the polarization plane (Kerr rotation angle or Faraday rotation angle) of light reflected or transmitted from a disk, such as a magneto-optical disk.

もう1つの問題点は他の光素子との集積化が難しいこと
である。
Another problem is that it is difficult to integrate with other optical devices.

光電子集積回路(OEIC)又は光集積回路(01C)
はデバイスの高速化、高効率化の為に開発が進められて
いて、半導体レーザを代表とする光素子はGaAsやI
nP等の化合物半導体基板の上に作製される。よって、
その為にも、光アイソレータを化合物半導体基板上に集
積化することが望まれている。ここにおいて、磁性ガー
ネット膜は液相エピタキシ法もしくはスパッタ法によっ
て成長させることができるが、GaAsやInP基板と
は格子定数や熱膨張係数が異なる為、良質の磁性ガーネ
ット膜をこうした基板上にエピタキシャル成長させるこ
とができない。従って、ファラデー材料として磁性ガー
ネット膜を使う限り、光アイソレータを他の光素子と集
積化することは困難と考えられる。
Optoelectronic integrated circuit (OEIC) or optical integrated circuit (01C)
Development is progressing to increase the speed and efficiency of devices, and optical devices such as semiconductor lasers are made of GaAs and I
It is manufactured on a compound semiconductor substrate such as nP. Therefore,
For this reason, it is desired to integrate an optical isolator on a compound semiconductor substrate. Here, the magnetic garnet film can be grown by liquid phase epitaxy or sputtering, but since the lattice constant and coefficient of thermal expansion are different from GaAs and InP substrates, a high quality magnetic garnet film is epitaxially grown on such substrates. I can't. Therefore, as long as a magnetic garnet film is used as a Faraday material, it is considered difficult to integrate an optical isolator with other optical elements.

以上述べたことから、光アイソレータの課題として、短
波長域(0,8μm帯)で動作し且つ他の光デバイスと
集積可能なものを実現することが挙げられる。
From the above, one of the challenges for optical isolators is to realize an optical isolator that operates in a short wavelength range (0.8 μm band) and can be integrated with other optical devices.

この課題を解決する為に、本発明者らは磁性半導体をフ
ァラデー材料とした集積型光アイソレタを先の出願で提
案している。それを第5図に示す。磁性半導体であるC
 d M n T eはII−Vl族化合物半導体であ
るCdTeのCd位置をMnで置換したもので、可視域
で透明であり且つ大きなファラデー回転角を持つことが
知られている。また、CdTe膜はGaAs基板51に
MBEやMOCVD法によって良質の膜を成長させるこ
とができ、第5図の如<DBRレーザ50と同一基板5
1上に、光アイソレータ部のCdTe膜であるバッファ
層52、クラッド層53、導波路層54、クラッド層5
5を作製可能である。この様に磁性半導体CdMnTe
を用いた集積型アイソレータは上記の問題点を解決する
ものであるが、以下に示す様な問題点も存在する。
In order to solve this problem, the present inventors proposed in a previous application an integrated optical isolator using a magnetic semiconductor as a Faraday material. This is shown in Figure 5. C, which is a magnetic semiconductor
dMnTe is a compound semiconductor of the II-Vl group, CdTe, in which the Cd position is replaced with Mn, and is known to be transparent in the visible range and to have a large Faraday rotation angle. Furthermore, a high quality CdTe film can be grown on a GaAs substrate 51 by MBE or MOCVD, and as shown in FIG.
1, a buffer layer 52 which is a CdTe film of the optical isolator section, a cladding layer 53, a waveguide layer 54, and a cladding layer 5
5 can be produced. In this way, the magnetic semiconductor CdMnTe
Although the integrated isolator using the above solves the above problems, it also has the following problems.

[発明が解決しようとする課題] 第5図の如き導波型光アイソレータを実現する為には、
TE波とTM波との位相整合が必要である。第6図は位
相整合の取り方を示す。第6図(a)の様にレーザ光を
2方向に膜中で導波させると、第6図(b)の様に有限
の膜厚り。では、形状複屈折の為にTE波に対する屈折
率nア、はTM波に対する屈折率nT、lよりも大きく
なる。TE波とTM波との伝搬定数差をΔBとすると、
ΔB=2rt/ん・(nT−nyll)+ + * +
 (1)となり、TE波からTM波へのモード変換効率
Rは、 R=θF′/(θF′+(Δβ/2) 2)sin” 
 [(θF′+(ΔB/2)” ) ”” ff]と与
えられる。ここでθ、は単位長さあたりのファラデー回
転角、!は導波距離である。1記より分かる様に、モー
ド変換効率(導波路によりモードがいわば量子化される
ので、伝搬光の偏光面の回転はモード変換効率で示され
る)を太き(する為には△β=0すなわちn 7 F=
 n 7vなる条件が必要となる。(2)式の導出は、
導波路の電磁界方程式を解いて電磁界を1゛Eモードと
TMモードの線形結合で求め、導波距離2のところでの
光電力の比を、モード結合方程式を介して求める。
[Problems to be solved by the invention] In order to realize a waveguide type optical isolator as shown in FIG.
Phase matching between the TE wave and the TM wave is required. FIG. 6 shows how to achieve phase matching. When laser light is guided in two directions in a film as shown in FIG. 6(a), the film has a finite thickness as shown in FIG. 6(b). Then, due to shape birefringence, the refractive index nA for TE waves is larger than the refractive index nT,l for TM waves. If the propagation constant difference between TE wave and TM wave is ΔB, then
ΔB=2rt/n・(nT-nyll)+ + * +
(1), and the mode conversion efficiency R from TE wave to TM wave is R=θF'/(θF'+(Δβ/2) 2) sin"
It is given as [(θF′+(ΔB/2)”) “”ff]. Here, θ is the Faraday rotation angle per unit length, and ! is the waveguide distance. As can be seen from Section 1, the mode In order to increase the conversion efficiency (the mode is quantized by the waveguide, the rotation of the polarization plane of the propagating light is indicated by the mode conversion efficiency), △β=0, that is, n 7 F=
A condition of n 7v is required. The derivation of equation (2) is
The electromagnetic field equation of the waveguide is solved to find the electromagnetic field as a linear combination of 1'E mode and TM mode, and the ratio of optical power at a waveguide distance of 2 is found via the mode coupling equation.

この為、第6図(C)に示す様に、膜面垂直方向(y軸
)に何らかの手段で異方性を持たせて、成る膜厚(t−
to )でn 72 = n TMを実現させようとい
う努力が行なわれている。ガーネット膜の場合には、基
板と膜(導波路)との格子定数差を利用した歪誘導複屈
折や、膜成長時の温度や組成を制御して成長話導複屈折
をつけようという試みがなされている。また、伝搬定数
差を補償する為に、光の導波方向に沿ってグレーティン
グをつけることも試みられている。
For this reason, as shown in FIG. 6(C), the film thickness (t-
Efforts are being made to realize n 72 = n TM in In the case of garnet films, attempts have been made to create strain-induced birefringence using the lattice constant difference between the substrate and the film (waveguide), and to create growth-induced birefringence by controlling the temperature and composition during film growth. being done. Furthermore, in order to compensate for the difference in propagation constant, attempts have been made to attach a grating along the optical waveguide direction.

しかしながら、上記の方法は成膜条件やプロセス条件の
厳密な制置を必要とし、−度作製してしまうと調整がで
きないという問題点を有し、現実性に乏しい。
However, the above method requires strict control of film forming conditions and process conditions, and has the problem that adjustments cannot be made once the film is fabricated, making it impractical.

そこで、本発明の目的は、上記の課題に鑑み、モード間
の位相整合をさせなくても100%のモード変換を達成
させることが可能な構成を有する光アイソレータ及びこ
れと集積化された半導体レーザ装置を提供することにあ
る。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an optical isolator having a configuration capable of achieving 100% mode conversion without phase matching between modes, and a semiconductor laser integrated therewith. The goal is to provide equipment.

[課題を解決する為の手段] 上記目的を達成する本発明による光アイソレタでは、C
d M n T eなとの磁性半導体から成る導波路を
有し、導波路に電界と磁界を同時にかけて電気光学効果
と磁気光学効果によるTE光と1M光などの直交するモ
ード間のモード変換を同一領域内で起こさせ、それによ
り位相不整合によるモード変換効率の低下を補償してい
る。
[Means for solving the problem] In the optical isolator according to the present invention that achieves the above object, C
It has a waveguide made of a magnetic semiconductor such as dMnTe, and allows mode conversion between orthogonal modes such as TE light and 1M light by applying an electric field and a magnetic field to the waveguide at the same time. They are caused to occur in the same region, thereby compensating for the decrease in mode conversion efficiency due to phase mismatch.

また、本発明による半導体レーザ装置は、上記の如き光
アイソレータと半導体レーザ部とが同一基板上に集積さ
れて構成されている。
Further, the semiconductor laser device according to the present invention is configured such that the optical isolator and the semiconductor laser section as described above are integrated on the same substrate.

以下に、第1図に沿って本発明の詳細な説明する。導波
路1を形成する磁性半導体(CdMnTeなどFe、M
nを含むII−Vl族化合物半導体など)は磁気光学効
果と電気光学効果の両方を合わせ持つ材料である。第1
図に示すように、電界Eが閃曲鉛鉱構造における[1.
10]方向、磁界Hが[110]方向に同時に印加され
た場合を考える(C,d〜T n T e N 1はG
aAs (001)基板に形成されている)。座標系を
第1図のように取り、x、y、z軸方向の屈折率を夫々
ntv、 rlrE、nとする。
The present invention will be described in detail below with reference to FIG. A magnetic semiconductor (Fe, Mn such as CdMnTe) forming the waveguide 1
II-Vl group compound semiconductors containing n) are materials that have both magneto-optic and electro-optic effects. 1st
As shown in the figure, the electric field E in the sphalerite structure [1.
Consider the case where the magnetic field H is simultaneously applied in the [10] direction and the [110] direction (C, d~T n T e N 1 is G
aAs (001) substrate). A coordinate system is set as shown in FIG. 1, and the refractive indices in the x, y, and z axis directions are ntv, rlrE, and n, respectively.

TE波、もしくはTM波という呼び方は導波路(スラブ
型で無限と看做しつる程、横方向に伸びているもの)の
場合のみ正しいが、ここでは近似的にX軸方向に偏光し
た平面波をTM波、y軸に偏光した平面波をTE波と呼
ぶことにし、TE波とT M波との間のモード結合を考
えることにする。Cd M n T eの様な閃亜鉛鉱
型の立方晶系では屈折率は等方的であるが、薄膜にする
と形状複屈折性が生じnlとnTEとは異なることにな
る。
The term TE wave or TM wave is correct only in the case of a waveguide (slab-type one that extends horizontally so far that it can be considered infinite), but here it is a plane wave approximately polarized in the X-axis direction. We will call the plane wave polarized along the y-axis the TM wave and the TE wave, and consider the mode coupling between the TE wave and the TM wave. In a zincblende cubic crystal system such as CdMnTe, the refractive index is isotropic, but when made into a thin film, shape birefringence occurs and nl and nTE differ.

このときの誘電率テンソルεは真空の誘電率をε。とす
ると次の如く与えられるに こでΔnは電界Eによる屈折率変化で1位相の進み角θ
1や電気光学係数T4rを用いてΔn = n ’  
r 41 E / 2 =え/2π・θ1・・・・ (
4) と与えられる。また、Gは磁気光学効果の大きさを表わ
す量でありファラデー回転角度θ2やヴエルデ定数Vと
の間に次の関係がある。
The permittivity tensor ε at this time is the permittivity of vacuum ε. Then, Δn is the refractive index change due to the electric field E, and the leading angle θ of one phase is given as follows.
1 and the electro-optic coefficient T4r, Δn = n'
r 41 E/2 = E/2π・θ1... (
4) is given as Further, G is a quantity representing the magnitude of the magneto-optic effect, and has the following relationship with the Faraday rotation angle θ2 and the Weerde constant V.

G = i−n / π・θF:えn/π・vH・・・
・ (5) (3)式の誘電率テンソルを用いて、TM波〔複素振幅
をATII(Z)とする)とTE波(同じくATE(Z
)とする)との間のモード結合方程式をここで八〇は(
11式で与えられるところのTE波とT M波の間の伝
搬定数差であり2Sは次式で与えられる。
G = i-n / π・θF: n/π・vH...
・(5) Using the dielectric constant tensor in equation (3), we can calculate the TM wave (complex amplitude is ATII(Z)) and the TE wave (also ATE(Z)).
) and ), where 80 is (
2S, which is the propagation constant difference between the TE wave and the TM wave given by Equation 11, is given by the following equation.

S= ((Δ73/2)2+θF′十〇、2)  l/
2・・・・ (8) 第1図に示す様に、Cd M n T e導波路1にT
E波が入射したとき(ATE (o)=i及びAT、、
(] =O)、(6)式と(7)式は夫々法の様にここ
において、丁度45度偏波面が回転する条件(モード変
換動¥Rが50%になる)はArE(z)=Aア、(Z
)・・・・(11)となるので、これから(9)式と(
10)式の実部と虚部が等しいという条件が出てきて次
の様になる。
S= ((Δ73/2)2+θF'〇, 2) l/
2... (8) As shown in FIG.
When the E wave is incident (ATE (o) = i and AT,
(] = O), Equations (6) and (7) are each used here as a law, and the condition for the polarization plane to rotate by exactly 45 degrees (mode conversion motion ¥R becomes 50%) is ArE(z) =Aa, (Z
)...(11), so from now on, equation (9) and (
10) The condition that the real part and the imaginary part of the equation are equal appears as follows.

これより、(12)式の条ぐ〒が満たされるならば位相
整合の条1午)Δβ=0)が満たされなくとも、直線偏
光の光が、これから45度傾いた直線偏光の光に変換さ
れることが分かる。
From this, if the condition 〒 in equation (12) is satisfied, even if the phase matching condition Δβ=0) is not satisfied, linearly polarized light will be converted to linearly polarized light tilted by 45 degrees. I know it will happen.

第2図は位相整合条件が満たされた時と(12)式が満
たされた時との偏光面の回転の様子を、ポアンカレ球を
用いて比較したものである0位相型合している場合(Δ
β:0)には常に直線偏光の状態で偏波面の角度のみが
変化する(■の経路)。これに対して(12)式の条件
の場合は、0度と45度の直線偏光以外のところでは楕
円偏光となっていることが分かる(■の経路)以上の様
に、本発明では、磁界Hと共に適当な電界Eを印加する
ことで位相整合(Δβ=0)をとらなくとも、45度、
偏波面を回転させることができ、導波路の成長やプロセ
スでの厳密な制御を必要としなくなる。
Figure 2 shows a comparison of the rotation of the plane of polarization when the phase matching condition is satisfied and when equation (12) is satisfied using the Poincaré sphere. (Δ
β: 0), the light is always linearly polarized and only the angle of the polarization plane changes (path ■). On the other hand, in the case of the condition of equation (12), it can be seen that the light is elliptically polarized at locations other than the linearly polarized light at 0 degrees and 45 degrees (the path of ■). By applying an appropriate electric field E together with H, 45 degrees, even without phase matching (Δβ=0).
The plane of polarization can be rotated, eliminating the need for waveguide growth and strict control of the process.

このことを(9)式、< 10 )式、lIA式との閘
係で辿べれば、電界Eを印加することでΔr+≠0すな
わちθ6≠0((4)式参照)となり、9)式は虚部を
持つことになる。従って、(11式が成立するハに、4
1(’))式の虚部がゼロである必要かなくなりΔB≠
0でも(11)式の成立条件が存在することになる。
If this can be traced in relation to equation (9), equation (< 10), and equation IIA, then by applying the electric field E, Δr+≠0, that is, θ6≠0 (see equation (4)), and 9) The expression will have an imaginary part. Therefore, (for C for which equation 11 holds true, 4
The imaginary part of equation 1(') does not need to be zero, and ΔB≠
Even if it is 0, the condition for formula (11) to hold exists.

〔実施例] 第3図は本発明の夫lit!!例の斜視図である。同図
において、半絶縁性GaAs (001)基板31上に
MBE法によってCd T e、のバッファ層32を成
長させる。適当な成長条件を選ぶと基板1と同じ面方位
の膜32が成長する。その上に、2種類のMn組成を有
するC d M n T e膜33.34.35を用い
て導渡路構造を作製する。コア部34のM n wA成
を上下クラッド部33.35のそれより小さ(する( 
y < x )ことにより、コア部34の屈折率をクラ
ッド部33.35のそれより大きくして光を閉じ込める
構造とする。
[Example] Figure 3 shows the husband lit! of the present invention. ! FIG. 3 is a perspective view of an example. In the figure, a buffer layer 32 of CdTe is grown on a semi-insulating GaAs (001) substrate 31 by the MBE method. By selecting appropriate growth conditions, a film 32 having the same plane orientation as the substrate 1 is grown. Thereon, a conductive path structure is fabricated using C d M n Te films 33, 34, and 35 having two types of Mn compositions. The M n wA composition of the core portion 34 is smaller than that of the upper and lower cladding portions 33.35.
y < x), the refractive index of the core portion 34 is made larger than that of the cladding portion 33.35, thereby creating a structure that confines light.

次に、上部クラッド部35をエツチングによりメサ構造
36とし、チャネル導、皮路を形F屯する。
Next, the upper cladding part 35 is etched to form a mesa structure 36, and channels and skin paths are formed in an F shape.

このときメサの長平方向をEllOE軸とし、そl]に
←直なfi向をBzoH軸とする。続いて、メサの両側
に電極CI rt/Au)37.38を看けることによ
り、[zoi軸方向に電界Eを印加することかできる様
になる。
At this time, the elongated direction of the mesa is taken as the EllOE axis, and the fi direction that is perpendicular to the mesa is taken as the BzoH axis. Subsequently, by seeing the electrodes CI rt/Au) 37, 38 on both sides of the mesa, it becomes possible to apply an electric field E in the zoi axis direction.

以玉の構成にδいて、更に磁場F(をチャネル36の<
波方向すなオ)もEIIOT軸方向に印加すると、外t
AE、Hと2#波路の結晶軸との関係は第1図と同じに
なる。
In addition, the magnetic field F (<
If the wave direction (snao) is also applied in the EIIOT axis direction, the external t
The relationship between AE, H and the crystal axis of the 2# wavepath is the same as in FIG.

従って、上mE<’、2)式を満足させるような電界C
E)、磁界1)、伝搬距離(I2)  ((12)式の
2に相当する)、伝搬定数差(Δβ)の組み合わせを求
めることができれば、第3図に示す様に、y軸方向に偏
光したTE光が入射して、45度傾いた直線偏光となっ
て出て(るので、集積型アイソレータが実現できること
になる。
Therefore, the electric field C that satisfies the above mE<', Equation 2)
E), magnetic field 1), propagation distance (I2) (corresponding to 2 in equation (12)), and propagation constant difference (Δβ) can be found, as shown in Figure 3, in the y-axis direction. Since polarized TE light enters and exits as linearly polarized light tilted at 45 degrees, an integrated isolator can be realized.

集積の態様は第5図と同棟なものである。The manner of accumulation is the same as in the building shown in Figure 5.

伝搬定数差△βを1orad/cm、伝搬距離βをLm
mとすると、(12)式を解いてファラデー回転角(θ
1)及び電気光学効果による位相の進み角(OF)は次
の様になる。
Propagation constant difference △β is 1 orad/cm, propagation distance β is Lm
m, then solve Equation (12) to find the Faraday rotation angle (θ
1) and the phase advance angle (OF) due to the electro-optic effect as follows.

θc =5rad/cm=286’ /cmθF :4
−7rad/cm二269°/ c m15)式より、
CdMnTeのヴエルデ定3■を0 、 1 度/ C
m  Oeとすると、必要とされる一1場Hの大きさは
トr−θF / vから求められて約27kOeとなり
、永久磁石で十分印加できる値となる。また、(4)式
から、光の波長(え)を0.8μm、屈折率(n)を2
.84、電気光学係数rr4+)を4.5x 10−1
0cm/Vとすると、必要な電界強度EはE:えθ6/
πn″r4から求められて1 、2 X 10’ V/
 cmとなる。
θc = 5 rad/cm = 286'/cm θF: 4
-7 rad/cm2269°/cm From the formula (15),
Welde constant 3 of CdMnTe is 0, 1 degree/C
m Oe, the required magnitude of the field H is approximately 27 kOe obtained from the torque r-θF/v, which is a value that can be sufficiently applied with a permanent magnet. Also, from equation (4), the wavelength (e) of the light is 0.8 μm, and the refractive index (n) is 2
.. 84, electro-optic coefficient rr4+) 4.5x 10-1
Assuming 0 cm/V, the required electric field strength E is E: θ6/
Obtained from πn″r4, 1,2 x 10' V/
cm.

第3図における2つの電極37.38間距離を3μmと
すると、必要とされる電圧は3.6Vでよ<、TTL 
(transistor−transistor  1
ogic)レベルの回路で十分であることが分かる。
If the distance between the two electrodes 37 and 38 in Fig. 3 is 3 μm, the required voltage is 3.6 V.
(transistor-transistor 1
It can be seen that a logic level circuit is sufficient.

上の見積もりから、磁場H=3kOe、@圧4■程度を
印加するだけで、1mmの導波距離の集積型アイソレー
タが実現されることが示されたF発明の効果コ トじ上述べた桟に、本発明によれば、磁性半導体の専凛
路において電気光?Aノ果と磁気光♀効果によるモー 
ド変喚を起こきせるので、従来の光アイソし・−夕にと
しべて2位相整合をとることな(電界と磁界との組み合
わせを適当に這ぶことにより(伝搬定数iとΔBは構造
から決まっている)1位相遅れを生じることな(45度
偏波面を回転させることが出来る光アイソレータが実現
される。
From the above estimation, it was shown that an integrated isolator with a waveguide distance of 1 mm can be realized by simply applying a magnetic field H = 3 kOe and a pressure of about 4 mm. , According to the present invention, electro-optic ? Mo by fruit of A and magnetic light ♀ effect
Therefore, conventional optical isolators should not be used for two-phase matching (by appropriately selecting the combination of electric and magnetic fields (propagation constants i and ΔB can be determined from the structure). An optical isolator that can rotate the plane of polarization by 45 degrees without causing a 1 phase delay (predetermined) is realized.

また、上記磁性半導体の導波路は、成膜条件やプロセス
条件の@密な制御を必要とせずに作製でき、更には半導
体レーザと集積化することも容易である。
Further, the magnetic semiconductor waveguide described above can be manufactured without requiring close control of film formation conditions or process conditions, and furthermore, it can be easily integrated with a semiconductor laser.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する為の図、第2図はモー
ド変換の様子を、本発明と従来例を比較して、説明する
為のポアンカレ球を示す図、第3図は本発明の実施例を
示す図、第4図は従来例を示す図、第5区は本発明者に
よる先の提案例を示す図、第6図は伝搬定数差を無(す
従来の方法を説明する為の図である。 1−− Cd M n T e ”A波路、3l−Ga
As(001)基板、32・・−バ・777層、33−
・下部クラッド層、34・・−コア層、35・・−上部
クラッド層。 36・・・メサ構造、37.38・・−電極出廓人:キ
ャノン株式会社
Fig. 1 is a diagram for explaining the present invention in detail, Fig. 2 is a diagram showing a Poincaré sphere for explaining mode conversion by comparing the present invention and a conventional example, and Fig. 3 is a diagram of the present invention. Figure 4 is a diagram showing an example of the invention, Figure 4 is a diagram showing a conventional example, Section 5 is a diagram showing an example of a previous proposal by the present inventor, and Figure 6 is a diagram explaining a conventional method for eliminating the difference in propagation constants. This is a diagram for 1--Cd M n T e "A wave path, 3l-Ga
As(001) substrate, 32...777 layers, 33-
- Lower cladding layer, 34...-core layer, 35...-upper cladding layer. 36...Mesa structure, 37.38...-Electrode supplier: Canon Co., Ltd.

Claims (1)

【特許請求の範囲】 1、磁性半導体から成る導波路を有し、該導波路に電界
と磁場を同時にかけて電気光学効果と磁気光学効果によ
るモード変換を同一領域内に起こさせ、それにより位相
不整合によるモード変換効率の低下を補償していること
を特徴とする光アイソレータ。 2、上記電界は閃亜鉛鉱構造における[110]方向に
印加する請求項1記載の光アイソレータ。 3、前記磁性半導体はCdMnTeである請求項1記載
の光アイソレータ。 4、上記モード変換はTE光とTM光との間で行なわれ
る請求項1記載の光アイソレータ。 5、上記電界と磁界は直交する配置である請求項1記載
の光アイソレータ。 6、前記導波路はGaAs(001)基板上に作製され
ている請求項1記載の光アイソレータ。 7、請求項1、2、3、4、5又は6記載の光アイソレ
ータと半導体レーザ部が同一基板上に集積されているこ
とを特徴とする半導体レーザ装置。
[Claims] 1. It has a waveguide made of a magnetic semiconductor, and an electric field and a magnetic field are simultaneously applied to the waveguide to cause mode conversion by electro-optic effect and magneto-optic effect in the same region, thereby creating a phase difference. An optical isolator characterized in that it compensates for a decrease in mode conversion efficiency due to matching. 2. The optical isolator according to claim 1, wherein the electric field is applied in the [110] direction in the zincblende structure. 3. The optical isolator according to claim 1, wherein the magnetic semiconductor is CdMnTe. 4. The optical isolator according to claim 1, wherein the mode conversion is performed between TE light and TM light. 5. The optical isolator according to claim 1, wherein the electric field and the magnetic field are orthogonal to each other. 6. The optical isolator according to claim 1, wherein the waveguide is fabricated on a GaAs (001) substrate. 7. A semiconductor laser device, wherein the optical isolator according to claim 1, 2, 3, 4, 5, or 6 and the semiconductor laser section are integrated on the same substrate.
JP20709690A 1990-08-04 1990-08-04 Optical isolator and semiconductor laser device integrated therewith Pending JPH0493815A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20709690A JPH0493815A (en) 1990-08-04 1990-08-04 Optical isolator and semiconductor laser device integrated therewith
EP91113047A EP0470523B1 (en) 1990-08-04 1991-08-02 Optical polarization-state converting apparatus for use as isolator, modulator and the like
DE69130816T DE69130816T2 (en) 1990-08-04 1991-08-02 Optical polarization converter device for use as an isolator, modulator and the like
US07/939,427 US5245465A (en) 1990-08-04 1992-09-04 Optical polarization-state converting apparatus for use as isolator, modulator and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20709690A JPH0493815A (en) 1990-08-04 1990-08-04 Optical isolator and semiconductor laser device integrated therewith

Publications (1)

Publication Number Publication Date
JPH0493815A true JPH0493815A (en) 1992-03-26

Family

ID=16534136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20709690A Pending JPH0493815A (en) 1990-08-04 1990-08-04 Optical isolator and semiconductor laser device integrated therewith

Country Status (1)

Country Link
JP (1) JPH0493815A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402511A (en) * 1993-06-11 1995-03-28 The United States Of America As Represented By The Secretary Of The Army Method of forming an improved tapered waveguide by selectively irradiating a viscous adhesive resin prepolymer with ultra-violet light
US5991481A (en) * 1996-04-30 1999-11-23 Nec Corporation Optical isolator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402511A (en) * 1993-06-11 1995-03-28 The United States Of America As Represented By The Secretary Of The Army Method of forming an improved tapered waveguide by selectively irradiating a viscous adhesive resin prepolymer with ultra-violet light
US5991481A (en) * 1996-04-30 1999-11-23 Nec Corporation Optical isolator
US6226427B1 (en) 1996-04-30 2001-05-01 Nec Corporation Optical isolator

Similar Documents

Publication Publication Date Title
JP3054707B1 (en) Optical isolator
Warner Nonreciprocal magnetooptic waveguides
US3851973A (en) Ring laser magnetic bias mirror compensated for non-reciprocal loss
US5245465A (en) Optical polarization-state converting apparatus for use as isolator, modulator and the like
US4859013A (en) Magneto-optical waveguide device with artificial optical anisotropy
JP2719187B2 (en) Optical waveguide and optical isolator using the same
US4246549A (en) Magneto-optical phase-modulating devices
US3830555A (en) Nonreciprocal waveguide mode converter
US20040047531A1 (en) Waveguide mach-zehnder optical isolator utilizing transverse magneto-optical phase shift
EP0470523B1 (en) Optical polarization-state converting apparatus for use as isolator, modulator and the like
JPH0493815A (en) Optical isolator and semiconductor laser device integrated therewith
JPH02226232A (en) Directional coupler type optical switch
JP2542532B2 (en) Method for manufacturing polarization-independent optical isolator
JP2808564B2 (en) Optical modulator with isolator function
JP3090292B2 (en) Non-reciprocal light circuit
JP3175320B2 (en) Optical isolator, semiconductor laser device using the same, terminal device, and optical communication system
JP3130131B2 (en) Optical isolator
CA2036759C (en) Magnetooptic device and its driving method
Mizumoto Isolator and Circulator
JPH07191281A (en) Fiber type optical isolator
JPH0561002A (en) Waveguide type optical isolator and optical circulator
JPH0868965A (en) Optical non-reciprocal circuit
Castéra et al. Nonreciprocal devices in integrated optics
Makio et al. Optical isolators for optical communication systems
JPH0154686B2 (en)