JPH0154686B2 - - Google Patents

Info

Publication number
JPH0154686B2
JPH0154686B2 JP55072341A JP7234180A JPH0154686B2 JP H0154686 B2 JPH0154686 B2 JP H0154686B2 JP 55072341 A JP55072341 A JP 55072341A JP 7234180 A JP7234180 A JP 7234180A JP H0154686 B2 JPH0154686 B2 JP H0154686B2
Authority
JP
Japan
Prior art keywords
light
film
magnetization
polarizer
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55072341A
Other languages
Japanese (ja)
Other versions
JPS56168622A (en
Inventor
Yoshinori Oota
Taketoshi Hibya
Koichi Matsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7234180A priority Critical patent/JPS56168622A/en
Publication of JPS56168622A publication Critical patent/JPS56168622A/en
Publication of JPH0154686B2 publication Critical patent/JPH0154686B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • G02F1/0955Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure used as non-reciprocal devices, e.g. optical isolators, circulators

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導波形の光回路要素のうち、光の進行
方向によつて透過特性の異なる非相反光回路素
子、そのなかでも、可動機構を有することなくこ
の方向性が切換えられ、尚かつエネルギーを消散
することなく状態を保持することの出来る非相反
光回路素子に関するものである。 フアイバー光通信システムを構成する端局や端
末装置、中継装置などでは、信号坦体であるフア
イバー光を分岐し、切換える各種の光回路素子を
必要とする。これらの光回路素子は高性能である
ことに加えて、信頼性が高く、小形であることが
望ましい。誘電体や半導体の基板表面に屈折率の
高い層を設けてこれを光導波路とし、上記各種の
光回路素子を構成する試みがなされている。この
ような素子は、従来のレンズ、プリズム等の光学
部品を組合せて構成する方法に較べて小形であ
り、光は基板内に閉じ込められているため、周囲
の温度湿度等の環境変化にたいして安定であり信
頼性が高い。 光分岐素子や光スイツチ素子をはじめとする各
種の光回路素子のうちでも、非相反回路素子であ
るアイソレータやサーキユレータは、フアイバー
から光源への戻り光を阻止し、光源の不安定動作
や雑音の発生を妨げる素子として、また、単一の
光フアイバーを使つて双方向の通信を行う場合に
2方向の信号を分離する素子としてなど、利用価
値の高い光回路素子である。従来から知られてい
る、光導波形の非相反回路素子は(111)ガドリ
ニウム・ガーネツト単結晶基板の上に、これより
屈折率の僅かに高い、イツトリウム・鉄ガーネツ
トなどの単結晶層を数ミクロンメートルと薄く成
長させて、これを光導波層とし、外部より光の透
過方向に磁場を印加し、上記結晶層中の磁化の方
向をこの方向に揃え、入射光のTE波を上記結晶
層のもつフアラデー効果によつてTM波に変換さ
せるものである。導波光の場合、TE波とTM波
とは位相速度が異なり、このままでは変換はほと
んど生じない。変換を効率よく生じさせるには、
位相速度を合致させる必要がある。このため上記
薄膜層の上に光学的に複屈折性を有する誘導体を
設置させ、この複屈折性を利用して、2つのモー
ドの位相速度を縮退させている。磁場の方向に逆
向きに進む光にたいしては、フアラデー効果の非
相反性によつて2つのモード間の結合は生じない
ため、素子の非相反性が保たれている。このよう
な従来の構成の導波形の非相反回路素子では、適
宜時間に応じて、方向性を逆転させ、またその状
態を保持できるような、電気的に方向性を制御す
る素子として用いようとする場合には、状態の保
持のために、電流や磁場を印加し続けるか、また
方向性を逆転させるには、永久磁石を機械的な機
構を介して回転させるなど、エネルギーの消散、
可動機構による信頼性の低下などが避け難い。こ
れは、従来の構成では磁性体である(111)イツ
トリウム鉄ガーネツトが膜面内の特定方向に磁化
容易軸を有しないことによる。イツトリウム鉄ガ
ーネツトは、膜面内に存在する等価な3本の
〈211〉の近傍にあり膜面より僅かに立上つた角度
にある〈111〉の影響を受け、3本の〈211〉が容
易軸と同じような働きをする。すなわち、膜面内
の特定方向に磁化容易軸を有しない(111)
Y3Fe5O12などの膜を用いた場合には、外部磁場
を取除いた際に磁化が結晶磁気異方性によつ決定
される膜面内の等価なる方向のいずれかを向いて
しまうからである。 本発明の目的は上記難点を除去した、O形で安
定な、記憶形の導波形非相反光回路素子を提供す
ることである。 発明者らは、膜面内の特定方向に磁化容易軸を
有するガーネツト膜を用いることにより、小形で
安定な導波形非相反回路素子が形成可能であるこ
とを見出し本発明をなすにいたつた。すなわち、
本発明の非相反光素子は、強磁性ガーネツト膜と
して、膜面内の特定方向に磁化容易軸を有するオ
ルソロンビツク異方性(110)膜を採用し、直線
偏光光を透過する偏光子とこの偏光子を透過する
光と45度の傾きをなす偏光光を透過する偏光子と
の間に前記磁性ガーネツト膜を設置して光が偏光
子−磁性ガーネツト膜−偏光子と通過し、かつ磁
性ガーネツト膜内においては光は磁化容易軸と平
行に伝搬するように前記磁性ガーネツト膜と2つ
の偏光子とを配置し、さらに磁場を磁化容易軸と
平行に磁性ガーネツト膜に印加する手段を備えた
構成とした。 本発明の詳細を実施例を用いて説明する。 第1表の1〜6に示すような膜組成を有する
(110)ガーネツト膜を液相エピタキシヤル法によ
つて育成したところ、いずれもオルソロンビツク
磁気異方性を有しており、第1表に示すような磁
気特性を示した。オルソロンビツク磁気異方性の
エネルギーEは以下の式で表わされる。この起源
は、成長誘導異方性による。 E=(Ku+Δ・sin2φ)sin2θ ここで、KuおよびΔは第1図に示すように、
3主軸間のエネルギーの差であり、φおよびθは
磁化Msの方位角および傾角である。この式より
KuおよびΔは直交する3主軸に関し一軸性の対
称性を有することを示している。第1表に示す材
料では、いずれもがKu<0,Δ>0およびKu+
Δ>0であつた。すなわち、上記の式より、いず
れの膜も膜面内の〔001〕が磁化容易軸、〔110〕
が困難軸であり、膜面に垂直方向の〔110〕が中
間軸であつた。 これらのガーネツト膜1を用い、第2図に示す
ような膜面内の磁化容易軸と平行に光2を入れる
The present invention relates to a non-reciprocal optical circuit element among waveguide type optical circuit elements, which has transmission characteristics that differ depending on the direction of propagation of light, and in particular, a non-reciprocal optical circuit element that can switch the directionality without having a movable mechanism, and which can dissipate energy. The present invention relates to a non-reciprocal optical circuit element that can maintain a state without dissipating. Terminal stations, terminal devices, relay devices, etc. that make up a fiber optic communication system require various optical circuit elements to branch and switch fiber light, which is a signal carrier. It is desirable that these optical circuit elements have high performance, high reliability, and small size. Attempts have been made to construct the various optical circuit elements described above by providing a layer with a high refractive index on the surface of a dielectric or semiconductor substrate and using this as an optical waveguide. These elements are smaller than conventional methods that combine optical components such as lenses and prisms, and because the light is confined within the substrate, they are stable against environmental changes such as ambient temperature and humidity. Yes, it is highly reliable. Among various optical circuit elements such as optical branching elements and optical switch elements, isolators and circulators, which are non-reciprocal circuit elements, prevent light from returning from the fiber to the light source, preventing unstable operation of the light source and noise. It is an optical circuit element with high utility value, such as as an element that prevents optical fibers from occurring, or as an element that separates signals in two directions when performing bidirectional communication using a single optical fiber. Conventionally known optical waveguide type non-reciprocal circuit elements are made by coating a single crystal layer of yttrium, iron garnet, etc., which has a slightly higher refractive index, on a (111) gadolinium garnet single crystal substrate by several micrometers. This is grown thinly and used as an optical waveguide layer, and a magnetic field is applied from the outside in the direction of light transmission, aligning the direction of magnetization in the crystal layer in this direction, and directing the TE wave of the incident light to the crystal layer. It is converted into TM waves by the Faraday effect. In the case of guided light, the TE wave and TM wave have different phase velocities, and almost no conversion occurs if this continues. For conversion to occur efficiently,
It is necessary to match the phase velocities. For this reason, a dielectric having optical birefringence is placed on the thin film layer, and this birefringence is utilized to degenerate the phase velocities of the two modes. For light traveling in the opposite direction to the direction of the magnetic field, coupling between the two modes does not occur due to the non-reciprocity of the Faraday effect, so the non-reciprocity of the element is maintained. The waveguide type non-reciprocal circuit element with such a conventional configuration is intended to be used as an element that electrically controls the directionality so that the directionality can be reversed depending on the time and the state can be maintained. In this case, dissipation of energy is required, such as by continuing to apply a current or magnetic field to maintain the state, or by rotating a permanent magnet through a mechanical mechanism to reverse the direction.
It is difficult to avoid a decrease in reliability due to the movable mechanism. This is because in the conventional configuration, (111) yttrium iron garnet, which is a magnetic material, does not have an axis of easy magnetization in a specific direction within the film plane. Yttrium iron garnet is influenced by <111>, which is located near the three equivalent <211> existing within the film surface and is at a slight angle above the film surface, and the three <211> are easily It works in the same way as an axis. In other words, it does not have an axis of easy magnetization in a specific direction within the film plane (111)
When a film such as Y 3 Fe 5 O 12 is used, when the external magnetic field is removed, the magnetization is oriented in one of the equivalent directions in the film plane determined by the magnetocrystalline anisotropy. This is because it will be put away. SUMMARY OF THE INVENTION An object of the present invention is to provide a memory-type waveguide non-reciprocal optical circuit element which is O-type stable and which eliminates the above-mentioned drawbacks. The inventors have discovered that a small and stable waveguide non-reciprocal circuit element can be formed by using a garnet film having an axis of easy magnetization in a specific direction within the film plane, and have accomplished the present invention. That is,
The non-reciprocal optical element of the present invention employs an orthorombic anisotropic (110) film having an axis of easy magnetization in a specific direction within the film plane as a ferromagnetic garnet film, and a polarizer that transmits linearly polarized light and a polarizer that transmits linearly polarized light. The magnetic garnet film is installed between the light that passes through the polarizer and the polarizer that transmits the polarized light with an inclination of 45 degrees, so that the light passes through the polarizer-magnetic garnet film-polarizer, and the magnetic garnet film The magnetic garnet film and two polarizers are arranged so that the light propagates parallel to the easy axis of magnetization, and the magnetic garnet film is further provided with means for applying a magnetic field to the magnetic garnet film parallel to the easy axis of magnetization. did. The details of the present invention will be explained using examples. When (110) garnet films having the film compositions shown in Table 1, 1 to 6, were grown by the liquid phase epitaxial method, all of them had orthorombic magnetic anisotropy. It exhibited magnetic properties as shown. The energy E of orthorombic magnetic anisotropy is expressed by the following formula. This origin is due to growth-induced anisotropy. E=(Ku+Δ・sin 2 φ)sin 2 θ Here, Ku and Δ are as shown in Figure 1.
It is the difference in energy between the three principal axes, and φ and θ are the azimuth and inclination angle of the magnetization Ms. From this formula
It shows that Ku and Δ have uniaxial symmetry about three orthogonal principal axes. For the materials shown in Table 1, Ku<0, Δ>0 and Ku+
Δ>0. In other words, from the above equation, for both films, [001] in the film plane is the axis of easy magnetization, and [110]
was the difficult axis, and [110] perpendicular to the membrane surface was the intermediate axis. Using these garnet films 1, light 2 is introduced parallel to the axis of easy magnetization in the film plane as shown in Figure 2.

【表】【table】

【表】 導波形回路素子を形成した。これらの材料にお
いては、オルソロンビツク磁気異方性を有するこ
とから、外部磁場が印加されない場合には、磁化
は〔001〕もしくはこれと等価で180゜反対方向の
〔001〕のいずれかを向いている。第2図中に示
した〔110〕は磁化困難軸〔110〕は中間軸と
なつている。この素子に巻きつけられたコイル3
に電流を流すことによつて予め〔001〕に平行に
ガーネツト膜を磁化しておき、TE波(又はTM
波)を〔001〕と平行に入射したところ、材料の
フアラデー回転係数φFによつて決められる光路
長だけ光が進んで素子を出射する光は、偏光方向
が入射光の偏光方向から45゜傾いた直線偏光へと
フアラデー回転を受ける。従来のアイソレータと
同様に、逆向きに進むこの45゜傾いた直線偏光光
は、素子中を磁化の方向にたいして前述とは逆向
きであるため、素子を出射した時点では入射光と
直交した直線偏光となる。従つて入射側に入射光
の偏光すなわちTE波(又はTM波)を透過する
偏光素子を、また出射側にそれと45゜傾いた偏光
光を透過する偏光素子を備えることによつて、ア
イソレータが形成された。またコイル3に流す電
流を前述とは逆向きに通じると、磁化は〔001〕
方向に揃えられ、前述の入射TE波(TM波)は
逆向きの回転を受けるため出射側の偏光子を通過
することは出来ず、これにたいして出射側偏光子
を透過し、反対方向に進む光は素子中で偏光面の
回転を受けて、入射側の偏光子を通過することが
できた。すなわち本発明でいうところの非相反光
素子が形成された。 本素子は、(110)ガーネツト膜の面内の特定方
向を向く磁気異方性を用いていることから、コイ
ルに流す電流によつて生ずる磁場を取り去つても
ガーネツト膜の磁化はコイル電流によつて生ずる
磁場の方向を向き続けることができるため、可動
機構を有することなく方向性を切り換えられ、し
かもエネルギーを消散することなく状態を保持す
ることのできる記憶形の非相反光素子となつた。 さらに、第1表の1〜5の膜組成のガーネツト
膜ではBi3+を含有することからフアラデー回転係
数|φF|の値が大きく、素子を小形化すること
[Table] A waveguide circuit element was formed. These materials have orthorombic magnetic anisotropy, so when no external magnetic field is applied, the magnetization points to either [001] or the equivalent 180° opposite direction to [001]. . The hard magnetization axis [110] shown in FIG. 2 is the intermediate axis. Coil 3 wound around this element
The garnet film is magnetized in advance in parallel to [001] by passing a current through the TE wave (or TM
When a wave) is incident parallel to [001], the light travels by the optical path length determined by the Faraday rotation coefficient φ F of the material and exits the element with a polarization direction of 45 degrees from the polarization direction of the incident light. It undergoes Faraday rotation into tilted linearly polarized light. Similar to conventional isolators, this 45°-inclined linearly polarized light traveling in the opposite direction travels through the element in the opposite direction to the direction of magnetization, so when it exits the element it becomes linearly polarized light perpendicular to the incident light. becomes. Therefore, an isolator is formed by equipping the input side with a polarizing element that transmits the polarized light of the incident light, that is, the TE wave (or TM wave), and the output side with a polarizing element that transmits the polarized light tilted by 45 degrees. It was done. Also, if the current is passed through the coil 3 in the opposite direction to the above, the magnetization will be [001]
The above-mentioned incident TE wave (TM wave) is rotated in the opposite direction and cannot pass through the output polarizer, whereas the light that passes through the output polarizer and travels in the opposite direction. was able to pass through the polarizer on the incident side due to rotation of the plane of polarization in the element. In other words, a non-reciprocal optical element as referred to in the present invention was formed. This device uses magnetic anisotropy that points in a specific direction within the plane of the (110) garnet film, so even if the magnetic field generated by the current flowing through the coil is removed, the magnetization of the garnet film will not change depending on the coil current. Since the direction of the resulting magnetic field can continue to be oriented, it has become a memory-type non-reciprocal optical element that can switch direction without having a moving mechanism and can maintain its state without dissipating energy. . Furthermore, since the garnet films with film compositions 1 to 5 in Table 1 contain Bi 3+ , the value of the Faraday rotation coefficient |φ F | is large, making it possible to miniaturize the device.

【表】 できた。 また、第2表に示すような、磁化容易軸が膜面
内の〔110〕となる(110)膜を用いる場合に
は、光の透過方向を〔110〕もしくは〔110〕
とし、この磁化容易軸と平行に〔110〕(又は
〔110〕)方向もしくは反対方向に磁場を発生する
ようにコイルを設けることによつて、前述と同
様、可動機構のない、記憶形の非相反光回路素子
を作成することができた。〔110〕が磁化容易
軸となる場合には、第2表に示すようにKu+Δ
<0とならなければならなかつた。 以上に述べたように、本発明によれば可動機構
を有することなく方向性を切り換えられ、しかも
エネルギーを消散することなく状態を保持するこ
とのできる非相反光素子が得られる。
[Table] Done. In addition, when using a (110) film in which the axis of easy magnetization is [110] in the film plane as shown in Table 2, the light transmission direction is set to [110] or [110].
By providing a coil to generate a magnetic field in the [110] (or [110]) direction or in the opposite direction to this axis of easy magnetization, a memory-type non-magnetic device without a movable mechanism can be created. We were able to create a reciprocal optical circuit element. When [110] is the axis of easy magnetization, Ku + Δ as shown in Table 2
It had to be <0. As described above, according to the present invention, a non-reciprocal optical element can be obtained which can switch directionality without having a movable mechanism and can maintain a state without dissipating energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は(110)ガーネツト膜におけるオルソ
ロンビツク磁気異方性を示す概念図で、Kuは
〔110〕と〔001〕との間の、Ku+Δは〔110〕と
〔110〕との間の、Δは〔001〕と〔110〕と
の間のエネルギーの差を示す。 第2図は本発明の一実施例の非相反光素子の構
成原理図で1はガーネツト膜、2はレーザ光、3
はコイルである。
Figure 1 is a conceptual diagram showing the orthorombic magnetic anisotropy in a (110) garnet film, where Ku is between [110] and [001], and Ku + Δ is Δ between [110] and [110]. indicates the difference in energy between [001] and [110]. FIG. 2 is a diagram showing the principle of construction of a non-reciprocal optical device according to an embodiment of the present invention, in which 1 is a garnet film, 2 is a laser beam, and 3 is a garnet film.
is a coil.

Claims (1)

【特許請求の範囲】[Claims] 1 直線偏光光を透過する偏光子と該偏光子を透
過する光と45度の傾きをなす偏光光を透過する偏
光子と、これら2つの偏光素子に光透過方向に挟
まれて位置する磁気光学媒体とからなる磁気光学
素子において、磁化容易軸が膜面内にあり、オル
ソロンビツク磁気異方性を有する(110)磁性ガ
ーネツト膜を磁気光学媒体とし、該(110)磁性
ガーネツト膜の磁化容易方向に光を導波させ、該
磁化容易軸と平行に磁場を印加する手段を有する
ことを特徴とする磁気光学非相反光素子。
1. A polarizer that transmits linearly polarized light, a polarizer that transmits polarized light that is at an angle of 45 degrees to the light transmitted through the polarizer, and a magneto-optical device that is sandwiched between these two polarizing elements in the light transmission direction. In a magneto-optical element consisting of a medium, a (110) magnetic garnet film with an axis of easy magnetization in the film plane and having orthorombic magnetic anisotropy is used as the magneto-optic medium, and the easy magnetization direction of the (110) magnetic garnet film is 1. A magneto-optical non-reciprocal optical element characterized by having means for guiding light and applying a magnetic field parallel to the easy axis of magnetization.
JP7234180A 1980-05-30 1980-05-30 Magnetooptic nonreciprocal optical element Granted JPS56168622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7234180A JPS56168622A (en) 1980-05-30 1980-05-30 Magnetooptic nonreciprocal optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7234180A JPS56168622A (en) 1980-05-30 1980-05-30 Magnetooptic nonreciprocal optical element

Publications (2)

Publication Number Publication Date
JPS56168622A JPS56168622A (en) 1981-12-24
JPH0154686B2 true JPH0154686B2 (en) 1989-11-20

Family

ID=13486491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7234180A Granted JPS56168622A (en) 1980-05-30 1980-05-30 Magnetooptic nonreciprocal optical element

Country Status (1)

Country Link
JP (1) JPS56168622A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113026A (en) * 1984-11-07 1986-05-30 Agency Of Ind Science & Technol Medium for magnetooptic element
JPH0766044B2 (en) * 1985-06-29 1995-07-19 株式会社東芝 Magnetic field sensor

Also Published As

Publication number Publication date
JPS56168622A (en) 1981-12-24

Similar Documents

Publication Publication Date Title
JPH10161076A (en) Optical device using magnetooptical effect
US7555177B1 (en) All fiber magneto-optic on-off switch for networking applications
US4032217A (en) Optical wave guide for carrying out phase-tuning between two modes of light propagation
US6833941B2 (en) Magneto-optic optical device
JPH0154686B2 (en)
JPS5828561B2 (en) optical isolator
JP2542532B2 (en) Method for manufacturing polarization-independent optical isolator
JP2005099737A (en) Magnetooptic optical component
JP7476686B2 (en) Magnetic circuit, Faraday rotator, and magneto-optical device
JP2721879B2 (en) Self-temperature compensated optical isolator
JPS6343726B2 (en)
Wolfe Thin films for non-reciprocal magneto-optic devices
JPH0651241A (en) Optical non-reciprocal circuit
JP2567697B2 (en) Faraday rotation device
JPS59165020A (en) Optical isolator device
JPH0850261A (en) Optical circulator
JPS6343725B2 (en)
Yan et al. Magneto‐optic circulator for optical fiber transmission
JP3130131B2 (en) Optical isolator
JP2001117060A (en) Optical switch
JP3672211B2 (en) Polarization switching element and optical shutter
JPH04264515A (en) Optical isolator
Schmitt Magneto-optic devices
JP2570826B2 (en) Solid state circulator
Makio et al. Optical isolators for optical communication systems