JPH0493001A - Bond magnet and its manufacture - Google Patents

Bond magnet and its manufacture

Info

Publication number
JPH0493001A
JPH0493001A JP2210999A JP21099990A JPH0493001A JP H0493001 A JPH0493001 A JP H0493001A JP 2210999 A JP2210999 A JP 2210999A JP 21099990 A JP21099990 A JP 21099990A JP H0493001 A JPH0493001 A JP H0493001A
Authority
JP
Japan
Prior art keywords
magnetic powder
bonded magnet
powder
rare earth
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2210999A
Other languages
Japanese (ja)
Inventor
Yasuto Nozawa
野沢 康人
Motoharu Shimizu
元治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2210999A priority Critical patent/JPH0493001A/en
Publication of JPH0493001A publication Critical patent/JPH0493001A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enable rotation in an orientated magnetic field because of no mutual fixing of magnetic power and to obtain high BHmax by forming the remaining part substantially out of rare earth magnet powder with a specified amount of poly organosilsesquioxane containing a phenyl group in the side chain. CONSTITUTION:A bond magnet is prepared from Sm2Co17-based magnetic powder or R-Fe-B-based magnetic powder substantially in the remaining part with a weight ratio of 0.05% to 3.0% of polyorganosilsesquioxane containing a phenyl group in the side chain. It is preferable that the R-Fe-B-based magnetic powder is expressed by a compositional formula RvFewCoxByMz with an average crystal grain size of 0.01mum to 0.5mum. That is, R is a kind or more of rare earth element containing Y, M a kind or more of elements made of Ga, Zn, Si, Al, Nb, Ta, W, Ti, Zr, Hf, Mo, P, C, Cu and Ni and inevitable impurities, where 9<=v<=16, w=100-u-x-y-z, 0<=x<=30, 4<=y<=11, 0<z<5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類を含むボンド磁石に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a bonded magnet containing rare earth elements.

〔従来の技術〕[Conventional technology]

ボンド磁石の市場において、従来はフェライl−系磁粉
が用いられてきたが、OA機器や精密機器での小型化要
求に伴い、エネルギー積の高いSmC0系ボンド磁石が
広く実用に供されている(特公昭56−3184.1.
53−32330.53−34640.58−3664
1.)。
In the bonded magnet market, ferrite l-based magnetic powder has traditionally been used, but with the demand for downsizing in OA equipment and precision equipment, SmC0-based bonded magnets with a high energy product are now being widely put into practical use ( Tokuko Sho 56-3184.1.
53-32330.53-34640.58-3664
1. ).

近年開発されたR−Fe−B系焼結磁石(特開昭59−
46008)は、従来のS m −G o系焼結磁石よ
りも高い残留磁束密度と低い価格のため広く実用に供さ
れている。しかし、R−Fe−B系合金は、1μm以上
1mm以下の粉砕状態でボンド磁石に必要とされる保磁
力を示さない。このため、超急冷プロセスを利用し、0
.5μm以下の微細な結晶粒を有するR−Fa−B系等
方性ボンド磁石(特開昭59−211549.60−2
07302)が開発され、実用化されている。また、超
急冷プロセスと温間塑性加工を利用したR−Fe−B系
ボンド磁石は、粉砕して樹脂と混合する事により、高い
磁気特性を有する異方性ボンド磁石の原料として使用可
能であるという利点を有しており、研究開発の途上にあ
る。(特開昭従来、R−Fe−B系ボンド磁石はSm−
C。
R-Fe-B sintered magnets developed in recent years
46008) is widely put into practical use because of its higher residual magnetic flux density and lower price than conventional S m -G o based sintered magnets. However, R-Fe-B alloys do not exhibit the coercive force required for bonded magnets in a pulverized state of 1 μm or more and 1 mm or less. For this reason, we use an ultra-rapid cooling process to
.. R-Fa-B isotropic bonded magnet having fine crystal grains of 5 μm or less (Japanese Patent Application Laid-Open No. 59-211549.60-2
07302) has been developed and put into practical use. In addition, R-Fe-B bonded magnets using ultra-quenching process and warm plastic working can be used as raw materials for anisotropic bonded magnets with high magnetic properties by pulverizing and mixing with resin. It has the following advantages and is currently in the process of research and development. (Unexamined Japanese Patent Application Publication No. 2003-111001) Conventionally, R-Fe-B bonded magnets are Sm-
C.

系ボンド磁石に比べてキュリー点が低く、自動車搭載用
のモーターやサーボモーターといった150〜200℃
に及ぶ高温領域での使用は無理であると考えられてきた
。近年、Nbなどの添加元素により、耐熱温度を向」−
させたR −F e −B系磁粉が開発されている。(
特願昭63−250452、特願平]−3039)本合
金系による磁粉は、200℃に於ける不可逆減磁率を約
3%まで低下することが可能であり、耐熱ボンド磁石原
料として有望である。
The Curie point is lower than that of bonded magnets, and it can be used for applications such as automobile motors and servo motors at temperatures of 150 to 200 degrees Celsius.
It has been thought that it is impossible to use it in high-temperature areas. In recent years, the heat-resistant temperature has been improved by adding elements such as Nb.
R-Fe-B magnetic powder has been developed. (
Japanese Patent Application No. 63-250452, Japanese Patent Application No. 63-250452, Japanese Patent Application No. 1999-3039) The magnetic powder made from this alloy system can reduce the irreversible demagnetization rate to about 3% at 200°C, and is promising as a raw material for heat-resistant bonded magnets. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者等は液体エポキシ、粉末エポキシを使用して前
記磁粉よりボンド磁石を作製し、磁束の長期熱減磁(1
70℃×1000時間)を測定した。
The present inventors fabricated bonded magnets from the magnetic powder using liquid epoxy and powder epoxy, and the long-term thermal demagnetization of the magnetic flux (1
70°C x 1000 hours).

液体エポキシを使用した場合(特開昭6O−20730
2)、空隙をなくせるために、高い残留磁束密度を得ら
れた。しかし、長期熱減磁が大きいことが明らかになっ
た。エポキシの粘性のために金型に磁粉を均一給粉する
ことが難しい、時間と共に硬化が進行するため原料粉を
大量に保存できない、成形体が欠は易く取扱が困難であ
る、樹脂が硬化により膨張するため寸法精度が悪くなる
という欠点があった。
When using liquid epoxy (Japanese Patent Application Laid-Open No. 6O-20730
2) High residual magnetic flux density can be obtained due to the elimination of air gaps. However, it became clear that long-term thermal demagnetization was large. Due to the viscosity of the epoxy, it is difficult to uniformly feed magnetic powder into the mold, hardening progresses over time, making it impossible to store large amounts of raw material powder, molded objects are easily chipped and difficult to handle, and the resin hardens. There was a drawback that dimensional accuracy deteriorated due to expansion.

粉末エポキシを使用した場合、保存性、取扱性は良いが
、プレスをする時にエポキシか固体であるために、空隙
をなくせなかった。このため、残留磁束密度が低い、酸
素や水分が入り込み易く長期熱減磁が大きい、耐湿性、
耐食性にも劣るという欠点を有していた。
When powdered epoxy is used, storage stability and handling are good, but since the epoxy is a solid, it is impossible to eliminate voids when pressed. For this reason, the residual magnetic flux density is low, oxygen and moisture easily enter, long-term thermal demagnetization is large, and moisture resistance.
It also had the disadvantage of poor corrosion resistance.

前記熱減磁したボンド磁石は、黒っぽく変色しており、
高温酸化を受けたと考えられる。特開昭62−2300
08には、シランカップリング剤を用いることにより、
磁粉の耐酸化性、磁粉と樹脂のぬれ性を改善できること
が示されている。
The thermally demagnetized bonded magnet is discolored to a blackish color.
It is thought that it underwent high-temperature oxidation. JP-A-62-2300
In 08, by using a silane coupling agent,
It has been shown that the oxidation resistance of magnetic particles and the wettability of magnetic particles and resin can be improved.

しかし、この特許における、耐酸化性の向上は一般論で
あり、高温での耐酸化性を向上させるため一 の具体的な方法は開示されていない。また、この方法は
、給粉性、寸法精度が悪いという欠点を有する。特開昭
63−152111.特開昭64−41201において
も、耐食性の改善のためにカップリング剤が使用されて
いるが、高温酸化に関する言及はされていない。
However, the improvement in oxidation resistance in this patent is a general discussion, and no specific method for improving oxidation resistance at high temperatures is disclosed. Furthermore, this method has the disadvantage of poor powder feeding performance and poor dimensional accuracy. JP-A-63-152111. JP-A-64-41201 also uses a coupling agent to improve corrosion resistance, but does not mention high temperature oxidation.

特開平2−123703には、ボンド磁石の高温強度を
向上させるために、シリコーンラダーポリマーを用いた
例が示されている。しかし、この特許は磁束の長期熱減
磁には言及しておらず、この特許の実施例では170℃
以上の高温で使用可能なボンド磁石を得る事ができない
JP-A-2-123703 discloses an example in which a silicone ladder polymer is used to improve the high-temperature strength of a bonded magnet. However, this patent does not mention long-term thermal demagnetization of the magnetic flux, and the example of this patent
Bonded magnets that can be used at higher temperatures cannot be obtained.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、磁束の長期熱減磁が小さく、残留磁束密度が
高く、均一給粉性、長期保存性、寸法精度に優れたボン
ド磁石を提供することを目的とする。具体的には、−ヒ
記目的を達成するために下記のような技術的手段を用い
た。
An object of the present invention is to provide a bonded magnet that has low long-term thermal demagnetization of magnetic flux, high residual magnetic flux density, and excellent uniform powder feeding, long-term storage stability, and dimensional accuracy. Specifically, the following technical means were used to achieve the objectives listed in (a).

すなわち、側鎖にフェニル基を含むポリオルガノシルセ
スキオキサンを重量比で0.05%以上3.0%以下含
み、残部が実質的にSm2Co17系磁粉、またはR−
Fe−B系磁粉(RはYを含む1種類以上の希土類元素
)であるボンド磁石を製造する事により、前記技術的課
題を解決した。
That is, it contains polyorganosilsesquioxane having a phenyl group in its side chain in a weight ratio of 0.05% to 3.0%, and the remainder is substantially Sm2Co17 magnetic powder or R-
The above technical problem was solved by manufacturing a bonded magnet made of Fe-B magnetic powder (R is one or more rare earth elements including Y).

前記R−Fe−B系磁粉が、RvFewCoxByMz
(RはYを含む1種類以上の希土類元素、MはGa、Z
n、Si、Al、Nb、Tap W+ Ti、Zr、H
f、Mo、P、C,Cu、Niよりなる元素の1種以−
]二および不可避不純物、9≦v≦1−6、w=100
−u−x−y−z、O≦X≦30.4≦y≦11、○〈
2≦5)の組成式で表され、平均結晶粒径が0.01μ
m以上0.5μm以下であるである事が望ましい。
The R-Fe-B magnetic powder is RvFewCoxByMz
(R is one or more rare earth elements including Y, M is Ga, Z
n, Si, Al, Nb, Tap W+ Ti, Zr, H
One or more elements consisting of f, Mo, P, C, Cu, and Ni
]2 and unavoidable impurities, 9≦v≦1-6, w=100
−u−x−y−z, O≦X≦30.4≦y≦11, ○<
2≦5), and the average crystal grain size is 0.01μ
It is desirable that the thickness is not less than m and not more than 0.5 μm.

前記ポリオルガノシルセスキオキサンに含まれるフェニ
ル基の70%未満をメチル基で置換してもよい。
Less than 70% of the phenyl groups contained in the polyorganosilsesquioxane may be substituted with methyl groups.

また、本発明は磁束の長期劣化が少なく、磁気的に異方
性であるボンド磁石を提供する。
Further, the present invention provides a bonded magnet that exhibits little long-term deterioration of magnetic flux and is magnetically anisotropic.

前記ボンド磁石は、側鎖にフェニル基を含むオルガノシ
ルセスキオキサンオリゴマーをR−Fe−B系磁粉(R
はYを含む1種類以上の希土類元素)表面に被覆し、最
終的に硬化処理する事により、製造できる。
The bonded magnet is made of R-Fe-B magnetic powder (R
can be manufactured by coating the surface with one or more rare earth elements (including Y) and finally subjecting it to a hardening treatment.

本発明において、Sm2Co17系磁粉は、主相として
S m 2Co 17あるいは、Sm2 (Co、Fe
)17を有する磁粉を意味する。添加物として、Cu、
Zr、Ti、、Hf等を含み、主として柱状晶よりなる
溶解インボッ1〜を不活性雰囲気または真空中で溶体化
後、急冷する。このあと700〜800′Cで数時間か
ら数十時間時効処理を施し、室温まで冷却する。この後
インボッ1−を数十μmから200μmに粉砕し、磁気
的に異方性を有するS m2Co 17系磁粉を得られ
る。
In the present invention, the Sm2Co17-based magnetic powder has Sm2Co17 or Sm2 (Co, Fe
)17. As additives, Cu,
The melted ingots 1 to 1 containing mainly columnar crystals containing Zr, Ti, Hf, etc. are solutionized in an inert atmosphere or vacuum, and then rapidly cooled. Thereafter, it is aged at 700 to 800'C for several hours to several tens of hours, and then cooled to room temperature. Thereafter, the ingot 1- is pulverized from several tens of micrometers to 200 micrometers to obtain S m2Co 17-based magnetic powder having magnetic anisotropy.

本発明において、R−F e −B系磁粉は主相として
R2Fe14BあるいはR2(Fe、Co、N1)14
Bを有する磁粉を意味する。単ロール法、双ロール法、
超音波ガスアトマイズ法等の溶湯急冷法を用いて、溶融
金属を急速冷却する事により、非晶質状態または微細な
結晶よりなる合金粉を作成する事が可能である。
In the present invention, the R-Fe-B magnetic powder has R2Fe14B or R2(Fe, Co, N1)14 as the main phase.
means magnetic powder having B. Single roll method, double roll method,
By rapidly cooling a molten metal using a molten metal rapid cooling method such as an ultrasonic gas atomization method, it is possible to create an alloy powder in an amorphous state or in a fine crystalline state.

R−F e −B系磁粉の望ましい組成範囲を定めた理
由は以下の通りである。R(Yを含む希土類元素の1種
または2種以」二の組合せ)量が9at%未滴の場合に
は十分な保磁力を得られない。Rが16at%を越える
と主相量が減少し、0.5μmを越える粗大結晶粒が発
生し易いために残留磁束密度、角形性が低下する。よっ
て、9≦R≦16とした。特に、1o≦R≦14の時、
高い残留磁束密度と保磁力を同時に実現可能であり望ま
しい。
The reason for determining the desirable composition range of the R-Fe-B magnetic powder is as follows. If the amount of R (one or a combination of two or more rare earth elements including Y) is less than 9 at%, sufficient coercive force cannot be obtained. When R exceeds 16 at%, the amount of the main phase decreases, and coarse crystal grains exceeding 0.5 μm are likely to occur, resulting in a decrease in residual magnetic flux density and squareness. Therefore, it was set as 9≦R≦16. Especially when 1o≦R≦14,
It is possible and desirable to achieve high residual magnetic flux density and coercive force at the same time.

B量が4at%以下の場合は水系磁石の主相であるNd
2Fe14B相の形成が完全でなく、残留磁束密度、保
磁力ともに低い。また、B量が11at%を越えるとき
には、磁気特性的に好ましくない相の出現により、残留
磁束密度が低下する。
When the amount of B is 4 at% or less, Nd, which is the main phase of the water-based magnet,
The 2Fe14B phase is not completely formed, and both the residual magnetic flux density and coercive force are low. Furthermore, when the amount of B exceeds 11 at %, the residual magnetic flux density decreases due to the appearance of phases that are unfavorable in terms of magnetic properties.

よって、B量は4≦y≦11とした。エネルギー積と保
磁力のために特に好ましい範囲としては、5≦y≦8で
ある。
Therefore, the amount of B was set to 4≦y≦11. A particularly preferred range for energy product and coercive force is 5≦y≦8.

Goを添加することによりキュリー点は向−ヒするが、
主相の異方性定数が低下し、高保磁力が得られない。よ
って、Co量は30at%以下とした。
The Curie point is improved by adding Go, but
The anisotropy constant of the main phase decreases, making it impossible to obtain high coercive force. Therefore, the amount of Co was set to 30 at% or less.

添加元素として、Ga、Zn、Sj、、A1.、Nb、
Tar W+ Ti、Zr、Hf、Mo、pl C、C
u、Niを選択した理由は以下の通りである、3at%
以下のGa、Zn、Si、AI、Nb、Tap W+ 
Ti、Zr、Hf、Mo+ Pは保磁力向」−に効果が
ある。5at%を超える添加は保磁力を大きく減少させ
る。希土類やホウ素の還元過程で原料に混入するCは、
3at%以下であれば保磁力を減少させない。Cu、N
iは磁気特性をあまり変化させずに耐食性を向上する。
Additional elements include Ga, Zn, Sj, A1. ,Nb,
Tar W+ Ti, Zr, Hf, Mo, pl C, C
The reason for choosing u and Ni is as follows: 3at%
The following Ga, Zn, Si, AI, Nb, Tap W+
Ti, Zr, Hf, Mo+P have an effect on the direction of coercive force. Addition of more than 5 at% significantly reduces coercive force. C mixed into raw materials during the reduction process of rare earths and boron is
If it is 3 at% or less, the coercive force will not be reduced. Cu,N
i improves corrosion resistance without significantly changing magnetic properties.

Gaもまた耐食性を向−1−させる効果を有する。Ga also has the effect of improving corrosion resistance.

この合金粉を550℃から800°Cの範囲で不活性ガ
スまたは真空中で熱処理する事により、平均結晶粒径が
0.01μm以」二〇、5μm以下の磁気的に等方性の
磁粉を得られる。ここで磁気的な等方性とは、残留磁束
密度が測定方向により変化しない現象を言い、容易磁化
方向がランダムに分布する事と対応している。急冷速度
の適切な制御が可能であれば、この熱処理工程を省略で
きる。全体がほぼアモルファス状態の合金粉を熱処理す
ることにより、磁束の高温減磁が少ない磁粉を得ること
ができる。異方性ボンデツド磁粉は」二記等方性磁粉に
対して600℃以−ヒ900℃未満の温度で50%以上
の塑性変形を施すことにより得られる。上記塑性変形の
方法としては、据込み加工、圧延、押しだし等の既知の
熱間加工を用いることができる。異方性ボンド磁石は、
容易磁化方向が揃っているために、等方性ボンド磁石よ
りも高い残留磁束密度を実現可能である。
By heat-treating this alloy powder in the range of 550°C to 800°C in an inert gas or vacuum, magnetically isotropic magnetic powder with an average crystal grain size of 0.01 μm or more and 5 μm or less can be produced. can get. Here, magnetic isotropy refers to a phenomenon in which the residual magnetic flux density does not change depending on the measurement direction, and corresponds to the random distribution of easy magnetization directions. If the rapid cooling rate can be appropriately controlled, this heat treatment step can be omitted. By heat-treating alloy powder that is entirely in a substantially amorphous state, it is possible to obtain magnetic powder with less high-temperature demagnetization of magnetic flux. The anisotropic bonded magnetic powder is obtained by plastically deforming the isotropic magnetic powder by 50% or more at a temperature of 600°C or higher and lower than 900°C. As the method of plastic deformation, known hot working methods such as upsetting, rolling, and extrusion can be used. Anisotropic bonded magnet is
Because the easy magnetization directions are aligned, it is possible to achieve a higher residual magnetic flux density than isotropic bonded magnets.

平均結晶粒径は、組成(とくに希土類量)や塑性加工条
件(昇温速度、加工温度、加工時間等)により、大きく
異なる。本発明においては、破面の写真」;に引いた直
線を横切る結晶粒の数より平均結晶粒径を求めた。平均
結晶粒径の規定理由は以下の通りである。平均結晶粒径
が0.01μm未満の場合、耐熱ボンド磁石に必要な保
磁力を得られない。平均結晶粒径が0.5μmを越える
ときには、保磁力が低下し、また保磁力の温度係数の絶
対値が増加するために、高温での熱減磁が大きくなる。
The average grain size varies greatly depending on the composition (particularly the amount of rare earth) and plastic working conditions (heating rate, working temperature, working time, etc.). In the present invention, the average crystal grain size was determined from the number of crystal grains crossing a straight line drawn on a photograph of a fracture surface. The reason for specifying the average crystal grain size is as follows. If the average crystal grain size is less than 0.01 μm, the coercive force required for a heat-resistant bonded magnet cannot be obtained. When the average crystal grain size exceeds 0.5 μm, the coercive force decreases and the absolute value of the temperature coefficient of the coercive force increases, resulting in large thermal demagnetization at high temperatures.

等方性のボンド磁石において高温での熱減磁を小さくす
るためには、平均結晶粒径を0.03μm以に、0.2
pm以下にすることがさらに望ましい。
In order to reduce thermal demagnetization at high temperatures in isotropic bonded magnets, the average crystal grain size should be 0.03 μm or more, 0.2
It is more desirable to keep it below pm.

熱処理後の磁粉は、上記微結晶の集合体であり、数mm
の大きさを有する。これらは、給粉を容易にするために
通常10μm以−t−,]、 m m以下に粉砕される
。平均粒径が10μm未満の場合、密度が減少するため
に、残留磁束密度が低下する。平均粒径が1mmを越え
るときには、狭いキャビティーへの給粉が困難であるが
、用途によっては使用可能である。
The magnetic powder after heat treatment is an aggregate of the above-mentioned microcrystals, several mm in size.
It has a size of These are usually ground to a size of 10 μm or more, mm or less, to facilitate powder feeding. When the average particle size is less than 10 μm, the residual magnetic flux density decreases because the density decreases. When the average particle size exceeds 1 mm, it is difficult to feed powder into a narrow cavity, but it can be used depending on the application.

本発明に用いられる側鎖にフェニル基を含むポリオルガ
ノシルセスキオキサンは、オルガノシルセスキオキサン
オリゴマーを加熱により縮合させる事により得られ、下
記の反復構造を有する。この樹脂は、5i−0−8j結
合とフェニル基のために470℃という高い分解温度を
有しており、ボンド磁石の使用限界温度(約200℃)
でも安定である。
The polyorganosilsesquioxane containing a phenyl group in the side chain used in the present invention is obtained by condensing an organosilsesquioxane oligomer by heating, and has the following repeating structure. This resin has a high decomposition temperature of 470°C due to the 5i-0-8j bond and phenyl group, which is the limit temperature for bonded magnets (approximately 200°C).
But it is stable.

C6I(5C6H5C6H5 0−8j −0−8i −0−8i  −0−0−8i
 −○−8i −〇−8i−0C6H5C6H5C6H
5 但し、」二記側鎖の70%までのフェニル基はメチル基
により置換しても差し支えない。この置換により樹脂の
硬度が」二昇するため、磁石が傷つきにくくなるという
利点がある。置換量の上限を70%としたのは、70%
を越える置換により、オリゴマーが常温で縮合反応をお
こして変化し易くなる事、硬化後の樹脂の分解温度が4
70℃から350℃に低下し、高温で破壊しやすくなる
事のためである。
C6I(5C6H5C6H5 0-8j -0-8i -0-8i -0-0-8i
-○-8i -○-8i-0C6H5C6H5C6H
5 However, up to 70% of the phenyl groups in the side chains in ``2'' may be substituted with methyl groups. This substitution increases the hardness of the resin by two degrees, which has the advantage of making the magnet less likely to be damaged. The upper limit of the replacement amount is 70%.
If the substitution exceeds 4,000 yen, the oligomer will undergo a condensation reaction at room temperature and become susceptible to change, and the decomposition temperature of the resin after curing will be 400 yen.
This is because the temperature drops from 70°C to 350°C, making it easier to break at high temperatures.

前記磁粉はオルガノシルセスキオキサンオリゴマー、潤
滑剤と共に、混練され、その後解砕され、プレス成形原
料(コンパウンド)となる。この操作により、オルガノ
シルセスキオキサンオリゴマーが実質的に磁粉の全表面
を被覆する。液状のエポキシ樹脂を用いた場合、コンパ
ウンドが徐々に硬化して磁石密度が低下する現象が知ら
れているが、本発明のコンパウンドは1時間的に変化し
にくいために長期保存性に優れている。ポリオルガノシ
ルセスキオキサン量が0.05%未満の場合には、磁粉
間を接着する効果がないためボンド磁石として使用でき
ない。また、ポリオルガノシルセスキオキサン量が3.
0%を越えるときには、残留磁束密度の低下が大きく実
用的でない。
The magnetic powder is kneaded together with an organosilsesquioxane oligomer and a lubricant, and then crushed to become a press molding raw material (compound). By this operation, the organosilsesquioxane oligomer covers substantially the entire surface of the magnetic powder. When liquid epoxy resin is used, it is known that the compound gradually hardens and the magnet density decreases, but the compound of the present invention has excellent long-term storage stability because it does not easily change over an hour. . When the amount of polyorganosilsesquioxane is less than 0.05%, it cannot be used as a bonded magnet because it has no effect of adhering magnetic particles. Moreover, the amount of polyorganosilsesquioxane is 3.
When it exceeds 0%, the residual magnetic flux density decreases so much that it is not practical.

オルガノシルセスキオキサンオリゴマーは、混線温度で
磁粉表面を均一に被覆できるだけの流動性があればよい
。一つの方法としては、オルガノシルセスキオキサンオ
リゴマーが軟化する80°Cから120℃の範囲で混線
を行う方法がある。この方法は、混練中に徐々に硬化が
始まり、粘度が増加するために、磁粉が粉砕され密度が
低くなる傾向がある。もう一つの方法としては、オルガ
ノシルセスキオキサンオリゴマーを有機溶媒(エタノー
ル、1〜ルエン、アセトン、インプロパツール等)に溶
解させ、磁粉と混合し、混練しながら有機溶媒を蒸発さ
せる方法がある。この方法により、磁粉表面が樹脂で均
一に被覆されるために、磁束の長期熱減磁が改善される
。異方性ボンド磁石のコンパウンドを製造するときには
、磁粉間の接着を抑制するために、ポリオルガノシルセ
スキオキサン量を1.5%以下とすることが望ましい。
The organosilsesquioxane oligomer only needs to have enough fluidity to uniformly cover the surface of the magnetic particles at the crosstalk temperature. One method is to carry out crosstalk at a temperature in the range of 80°C to 120°C, at which point the organosilsesquioxane oligomer softens. In this method, hardening begins gradually during kneading and the viscosity increases, so the magnetic powder tends to be crushed and the density decreases. Another method is to dissolve the organosilsesquioxane oligomer in an organic solvent (ethanol, 1 to toluene, acetone, impropatol, etc.), mix it with magnetic powder, and evaporate the organic solvent while kneading. . With this method, the surface of the magnetic particles is uniformly coated with the resin, so that long-term thermal demagnetization of the magnetic flux is improved. When manufacturing a compound for anisotropic bonded magnets, it is desirable that the amount of polyorganosilsesquioxane be 1.5% or less in order to suppress adhesion between magnetic particles.

また、潤滑剤は、磁粉間の接着を防ぐために混練時に添
加されるか、またはプレス成形前、あるいはその両方の
時点で添加される。潤滑剤としては、ステアリン酸アル
ミ、ステアリン酸亜鉛、ステアリン酸カルシウム、溶融
ワックス、シリコーン系界面活性剤、アルコール系潤滑
剤より選択される1種類または2種類以上の混合物が良
好であり、ポリオルガノシルセスキオキサンに対する配
合比が1wt%以上10 w t;%以下であることが
望ましい。ステアリン酸カルシウムは、吸湿によるふく
れを生じる事があるため、耐湿性の要求が厳しくない用
途に用いられる。シリコーン系界面活性剤の例としては
、ジメチルポリシロキサンや、ポリアルキレンオキサイ
ドとメチルポリシロキサンの化合物等がある。アルコー
ル系潤滑剤は、側鎖に○H基を有する潤滑剤であり、例
としては0Ctadecil−3−(3’ 、 5’ 
−di−tert−butyl−4’ −hydroo
xyphenj、1)propionateや、Tet
rakis [methyl、ene−:3− (3’
 +5’−di−tert−butyl−4’−hyd
roxyphenil)propionate]met
hane等がある。これらの潤滑剤のポリオルガノシル
セスキオキサンに対する配合比が1wt%未満では、磁
粉間の接着を抑制する効果がない。
Further, a lubricant is added during kneading to prevent adhesion between magnetic particles, or before press molding, or at both times. As the lubricant, one type or a mixture of two or more types selected from aluminum stearate, zinc stearate, calcium stearate, molten wax, silicone surfactant, and alcohol type lubricant is suitable. It is desirable that the blending ratio to oxane is 1 wt% or more and 10 wt% or less. Calcium stearate may cause blistering due to moisture absorption, so it is used in applications where moisture resistance is not strictly required. Examples of silicone surfactants include dimethylpolysiloxane and compounds of polyalkylene oxide and methylpolysiloxane. Alcohol-based lubricants are lubricants having ○H groups in their side chains, and examples include 0Ctadecyl-3-(3', 5'
-di-tert-butyl-4' -hydroo
xyphenj, 1)propionate, Tet
rakis [methyl, ene-:3- (3'
+5'-di-tert-butyl-4'-hyd
roxyphenil)propionate]met
Hane et al. If the blending ratio of these lubricants to polyorganosilsesquioxane is less than 1 wt%, there is no effect of suppressing adhesion between magnetic particles.

配合比が10wt%を越えると、完全硬化後のボンド磁
石の破壊強度が著しく低下するために、慎重な取扱を要
し、実用的でない。とくに好ましい範囲は、2wt%以
上6 w t%以下である。
If the blending ratio exceeds 10 wt%, the fracture strength of the bonded magnet after complete hardening will drop significantly, requiring careful handling, which is impractical. A particularly preferable range is 2 wt% or more and 6 wt% or less.

上記コンパウンドをプレス成形し、硬化処理(1、80
℃付近で1時間保持)することにより、ボンド磁石を得
る事ができる。異方性ボンド磁粉を磁場中でプレス成形
する事により、異方性ボンド磁石を得られる。オルガノ
シルセスキオキサンオリゴマーはエポキシ等の一般的な
樹脂よりも硬化による寸法変化が小さく、寸法精度の良
好なボンド磁石を製造できる。
The above compound was press-molded and hardened (1, 80
A bonded magnet can be obtained by holding it at around ℃ for 1 hour). An anisotropic bonded magnet can be obtained by press-molding anisotropic bonded magnetic powder in a magnetic field. Organosilsesquioxane oligomers have smaller dimensional changes upon curing than general resins such as epoxy, and can produce bonded magnets with good dimensional accuracy.

得られたボンド磁石に対して、含浸処理をする事により
、磁束の長期熱減磁が更に小さいボンド磁石とする事が
出来る。含浸する物質としては、有機溶媒に溶解したオ
ルガノシルセスキオキサンオリゴマー、シリコーンオイ
ル、H種の耐熱ワニス等が良好な結果を与える。特にオ
ルガノシルセスキオキサンオリゴマーを加熱して硬化処
理することにより、磁束の長期熱減磁が小さく同時に耐
食性に優れたボンド磁石となる。エポキシ樹脂、アクリ
ル系含浸剤、水ガラスは、磁束の長期劣化を促進するた
め、使用しない事が望ましい。
By subjecting the obtained bonded magnet to an impregnation treatment, a bonded magnet with even smaller long-term thermal demagnetization of the magnetic flux can be obtained. As the impregnating substance, organosilsesquioxane oligomer dissolved in an organic solvent, silicone oil, heat-resistant varnish of H class, etc. give good results. In particular, by heating and curing the organosilsesquioxane oligomer, a bonded magnet with low long-term thermal demagnetization of magnetic flux and excellent corrosion resistance can be obtained. Epoxy resin, acrylic impregnating agent, and water glass promote long-term deterioration of magnetic flux, so it is preferable not to use them.

〔実施例〕〔Example〕

実施例1 組成式N d 1.2.5F ebal、B6.5N 
b 1.5 (表示は原子%、以下同様)に秤量した原
料を、Ar雰囲気中で高周波溶解炉を用いて溶解し母合
金を作製した。母合金を下部に孔を有する透明石英ノズ
ルに入れ、Cuロール上でセラ(−シた。ロールを絹み
込んだチャンバーを真空引きした後、760Torrま
でArガスを導入した。母合金を高周波により再溶解後
、250 g / c m 2のAr圧力により、周速
25 m / s e cで回転するロール上に溶湯を
噴出した。溶湯は急速に冷却されて薄片状に凝固した。
Example 1 Composition formula N d 1.2.5F ebal, B6.5N
A master alloy was prepared by melting raw materials weighed to b 1.5 (expressed as atomic %, the same applies hereinafter) in an Ar atmosphere using a high-frequency melting furnace. The mother alloy was placed in a transparent quartz nozzle with a hole at the bottom, and then ceramicized on a Cu roll. After the chamber containing the roll was evacuated, Ar gas was introduced to a temperature of 760 Torr. The mother alloy was heated to 760 Torr. After remelting, the molten metal was spouted onto a roll rotating at a circumferential speed of 25 m/sec using an Ar pressure of 250 g/cm2.The molten metal was rapidly cooled and solidified into flakes.

平均厚さ22μm、保磁力0.4に○eであった。The average thickness was 22 μm, and the coercive force was 0.4 and ○e.

得られた薄片をAr’JJ囲気中で650℃で1時間保
持した後、炉内で冷却した。得られた薄片の平均結晶粒
径は0.06μmであった。この薄片を250μm以下
に粉砕し、これを50°Cに保持した混練機に供給した
。オルガノシルセスキオキサンオリゴマー(昭和電工製
 GR−950、以下オリゴマーと記す)の30wt%
アセ1−ン溶液を、前記混線機に供給し、混練しながら
アセ1〜ンを蒸発させた。オリゴマーの比率は、重量比
でO、05%から3.0%まで数段階変化させた物を作
製した。ただし、比較例として試料9は液状エポキシ(
油化シェルエポキシ #807)と無水ハイミック酸(
日立化成)を2.5%として、アセトンを用いる事なく
常温で混練した。オリゴマー量1.5%以下の混合物は
、常温まで降温しても、はとんど凝集しなかった。一方
、オリゴマー量265%以上の混合物では磁粉の凝集が
見られ、解砕後500μmのふるいを通し、オリゴマー
の2wt%の粉末状のステアリン酸アミドを均一に混合
してボンド磁石の原料とした。
The obtained flakes were held at 650° C. for 1 hour in an Ar'JJ atmosphere and then cooled in a furnace. The average crystal grain size of the obtained flakes was 0.06 μm. This flake was ground to 250 μm or less and fed to a kneader maintained at 50°C. 30 wt% of organosilsesquioxane oligomer (GR-950 manufactured by Showa Denko, hereinafter referred to as oligomer)
The acetone solution was supplied to the mixer, and the acetone was evaporated while being kneaded. The oligomer ratio was changed in several steps from 0.05% to 3.0% by weight. However, as a comparative example, sample 9 was made using liquid epoxy (
oil-based shell epoxy #807) and Himic anhydride (
Hitachi Chemical) was set at 2.5% and kneaded at room temperature without using acetone. A mixture with an oligomer content of 1.5% or less did not aggregate at all even when the temperature was lowered to room temperature. On the other hand, in a mixture with an oligomer content of 265% or more, agglomeration of magnetic powder was observed, and after crushing, the mixture was passed through a 500 μm sieve, and powdered stearic acid amide containing 2 wt % of the oligomer was uniformly mixed to be used as a raw material for a bonded magnet.

この原料を7ton/cm2の圧力で直径12.5mm
、高さ8.3mmに成形した後、200℃で1時間硬化
させることにより、ボンド磁石を作製した。得られたボ
ンド磁石の特性を表1に示す。エネルギー積(BH)m
axは25kOeの磁場で着磁後測定された。なお、こ
れらの磁石の保磁力jHcはすべて、13.8−14.
4kOeの範囲に入っていた。熱減磁は、上記試料を4
0kOeのパルス磁場で着磁後、170℃で1000時
間保持し、常温に戻したときの磁束の減少量により求め
た。
This raw material is heated to a diameter of 12.5 mm at a pressure of 7 tons/cm2.
A bonded magnet was produced by molding to a height of 8.3 mm and curing at 200° C. for 1 hour. Table 1 shows the characteristics of the obtained bonded magnet. Energy product (BH) m
ax was measured after magnetization in a magnetic field of 25 kOe. The coercive force jHc of these magnets is all 13.8-14.
It was in the 4kOe range. Thermal demagnetization was carried out by
After magnetization with a pulsed magnetic field of 0 kOe, the temperature was maintained at 170° C. for 1000 hours, and the decrease in magnetic flux was determined by the amount of decrease in magnetic flux when the temperature was returned to room temperature.

本発明例の試料2〜7は、エポキシ樹脂を用いた試料9
に比べてエネルギー積(BH)maxが高く、磁束の長
期熱減磁に優れている。試料8はポリオルガノシルセス
キオキサン量が多すぎるためにエネルギー積が低下して
いる。また、比較例1は、オリゴマー層が余りにも簿い
ために磁粉間に働く接着力が弱く、実験途中で磁石が崩
壊してしまった。
Samples 2 to 7 of the invention examples are sample 9 using epoxy resin.
It has a higher energy product (BH) max than that of BH, and is excellent in long-term thermal demagnetization of magnetic flux. Sample 8 has a low energy product because the amount of polyorganosilsesquioxane is too large. Furthermore, in Comparative Example 1, the oligomer layer was too thin, so the adhesive force acting between the magnetic particles was weak, and the magnet collapsed during the experiment.

実施例2 オリゴマー中のフェニル基をメチル基で置換する以外は
、試料5と同様にして磁石原料を作成した。結果を表2
に示す。表中にはポリオルガノシルセスキオキサンのD
TAによる分解温度もあわせて示した。
Example 2 A magnet raw material was prepared in the same manner as Sample 5 except that the phenyl group in the oligomer was replaced with a methyl group. Table 2 shows the results.
Shown below. In the table, polyorganosilsesquioxane D
The decomposition temperature by TA is also shown.

表2 =20 試料13はメチル基が酸化されやすいために熱減磁が大
きいと考えられる。
Table 2 =20 Sample 13 is considered to have large thermal demagnetization because the methyl group is easily oxidized.

実施例3 平均粒径を変化させる以外は試料12と同様にして、磁
石を作成した。平均粒径、エネルギー積、熱減磁を表3
に示す。
Example 3 A magnet was produced in the same manner as Sample 12 except that the average particle size was changed. Table 3 shows the average particle size, energy product, and thermal demagnetization.
Shown below.

表3 試料10 温度の高いボンド磁石を実現している。比較例の皇祷畢
し亡ヰ 実施例4 急冷薄片の熱処理温度を変化させ、平均結晶粒径を変え
る以外は実施例6と同様にして、ボンド磁石を作成した
。エネルギー積、耐熱温度を表4に示す。この実験にお
ける耐熱温度は、1時間定温保持により5%減磁する温
度として定義した。
Table 3 Sample 10 Realizes a bonded magnet with high temperature. Comparative example of imperial prayer and death Example 4 A bonded magnet was produced in the same manner as in Example 6 except that the heat treatment temperature of the quenched flakes was changed and the average crystal grain size was changed. Table 4 shows the energy product and heat resistance temperature. The heat-resistant temperature in this experiment was defined as the temperature at which 5% demagnetization occurred when the temperature was maintained for 1 hour.

表4 実施例5 試料4と同様にしてボンド磁石を作成し、種々の物質を
含浸した。エネルギー積は含浸により変化しなかった。
Table 4 Example 5 Bonded magnets were prepared in the same manner as Sample 4 and impregnated with various substances. The energy product did not change with impregnation.

熱減磁の結果を表5に示す。Table 5 shows the results of thermal demagnetization.

表5 実施例6 組成を変化させる以外は試料12と同様にして磁石を作
成した。磁気特性を表6に示す。なお、平均結晶粒径は
いずれも0.03〜0.2μmの範囲に入っていた。
Table 5 Example 6 A magnet was created in the same manner as Sample 12 except that the composition was changed. The magnetic properties are shown in Table 6. In addition, the average crystal grain size was all within the range of 0.03 to 0.2 μm.

表6 実施例7 組成式をNd12.]、FebalCo3B6.5Mx
 (Mは添加元素)とし、添加物元素を変化させる以外
は試料7と同様にして磁石を作成した。磁気特性を表7
に示す。なお、平均結晶粒径はいずれも0゜02〜0.
1μmの範囲に入っていた。
Table 6 Example 7 The composition formula is Nd12. ], FebalCo3B6.5Mx
(M is an additive element), and a magnet was created in the same manner as Sample 7 except that the additive element was changed. Table 7 shows the magnetic properties.
Shown below. In addition, the average crystal grain size is 0.02 to 0.02.
It was within the range of 1 μm.

表7 いずれの添加物も保磁力を増加し、減磁率を減少させる
効果がある事が分かる。
Table 7 It can be seen that all additives have the effect of increasing the coercive force and decreasing the demagnetization rate.

実施例8 混線時に潤滑剤を同時に混合する以外は、試料7と同様
にして磁石原料を作成した。結果を表8に示す。
Example 8 A magnet raw material was prepared in the same manner as Sample 7, except that a lubricant was mixed at the same time when the wires were crossed. The results are shown in Table 8.

表8 潤滑剤のポリオルガノシルセスキオキサンに対する添加
量を1wt%以上10%以下にすることにより、磁粉相
互の接着の少ない、ボンド磁石原料を実現している。
Table 8 By controlling the amount of lubricant added to the polyorganosilsesquioxane from 1 wt% to 10%, a bonded magnet raw material with less adhesion between magnetic particles is realized.

実施例9 最初に混合する潤滑剤の種類と量以外は、試料6と同様
にして磁石原料を作成した。結果を表9に示す。但し、
耐湿性の評価は、80℃相対湿度90%の大気中に20
0時間放置したときの錆または膨れの有無により判断し
た。
Example 9 A magnet raw material was prepared in the same manner as Sample 6 except for the type and amount of the lubricant mixed first. The results are shown in Table 9. however,
Moisture resistance evaluation is 20% in air at 80°C and 90% relative humidity.
Judgment was made based on the presence or absence of rust or swelling when left for 0 hours.

表9 ステアリン酸系の潤滑剤は、錆は見られな力飄っだが、
コーテイング膜に小さな膨れが散見された。
Table 9 Stearic acid-based lubricants are easy to use with no rust, but
Small blisters were observed here and there on the coating film.

用途によっては、問題なく使用できると考えられる。Depending on the purpose, it can be used without any problem.

実施例10 磁粉をNdXFebalco6B6Gay異方性磁粉に
変え、圧縮成形時に15kOeの磁場を加える以外は、
試料32と同様の方法で磁石を作製した。特性を表10
に示す。
Example 10 Except for changing the magnetic powder to NdXFebalco6B6Gay anisotropic magnetic powder and applying a magnetic field of 15 kOe during compression molding,
A magnet was produced in the same manner as Sample 32. Table 10 characteristics
Shown below.

表10 本方法を異方性ボンド磁石に適応することにより、磁粉
相互が固着しないので、配向磁場中で回転可能であり、
高い(BH)maxを実現可能である。また、磁粉が被
覆されているために良好な耐湿性を同時に実現可能であ
る。
Table 10 By applying this method to anisotropic bonded magnets, the magnetic particles do not stick to each other, so they can rotate in an orienting magnetic field.
A high (BH)max can be achieved. In addition, since the magnetic powder is coated, good moisture resistance can be achieved at the same time.

実施例11 磁粉をSm2Co17系異方性磁粉に変え、圧縮成形時
に15kOeの磁場を加える以外は、試料32と同様の
方法で磁石を作製した。特性を表11に示す。
Example 11 A magnet was produced in the same manner as Sample 32, except that the magnetic powder was changed to Sm2Co17-based anisotropic magnetic powder and a magnetic field of 15 kOe was applied during compression molding. The characteristics are shown in Table 11.

表11 本方法をSm2Co17系異方性ボンド磁石に適応する
ことにより、磁粉相互が固着しないので、配向磁場中で
回転可能であり、高い(BH)maxを実現可能である
。また、磁粉が被覆されているために良好な耐湿性を同
時に実現可能である。
Table 11 By applying this method to Sm2Co17-based anisotropic bonded magnets, the magnetic particles do not stick to each other, so they can be rotated in an alignment magnetic field and a high (BH)max can be achieved. In addition, since the magnetic powder is coated, good moisture resistance can be achieved at the same time.

〔発明の効果〕〔Effect of the invention〕

以上の記述のように、本発明によるボンド磁石は磁束の
長期熱減磁が小さく、残留磁束密度が高く、均−給粉性
、長期保存性、寸法精度に優れており、工業的に有用で
ある。
As described above, the bonded magnet according to the present invention has low long-term thermal demagnetization of magnetic flux, high residual magnetic flux density, excellent uniformity of powder distribution, long-term storage stability, and dimensional accuracy, and is industrially useful. be.

Claims (6)

【特許請求の範囲】[Claims] (1)側鎖にフェニル基を含むポリオルガノシルセスキ
オキサンを重量比で0.05%以上3.0%以下含み、
残部が実質的に希土類磁石粉であるボンド磁石。
(1) Contains 0.05% or more and 3.0% or less by weight of polyorganosilsesquioxane containing a phenyl group in the side chain,
A bonded magnet in which the remainder is essentially rare earth magnet powder.
(2)前記希土類磁石粉がSm2Co17系磁粉、また
はR−Fe−B系磁粉(RはYを含む1種類以上の希土
類元素)である請求項1に記載のボンド磁石。
(2) The bonded magnet according to claim 1, wherein the rare earth magnet powder is Sm2Co17-based magnetic powder or R-Fe-B-based magnetic powder (R is one or more rare earth elements including Y).
(3)R−Fe−B系磁粉が、RvFewCoxByM
z(RはYを含む1種類以上の希土類元素、MはGa、
Zn、Si、Al、Nb、Ta、W、Ti、Zr、Hf
、Mo、P、C、Cu、Niよりなる元素の1種以上お
よび不可避不純物、9≦v≦16、w=100−u−x
−y−z,0≦x≦30、4≦y≦11、0<z≦5)
の組成式で表され、平均結晶粒径が0.01μm以上0
.5μm以下であるである事を特徴とする請求項2に記
載のボンド磁石。
(3) R-Fe-B magnetic powder is RvFewCoxByM
z (R is one or more rare earth elements including Y, M is Ga,
Zn, Si, Al, Nb, Ta, W, Ti, Zr, Hf
, one or more elements consisting of Mo, P, C, Cu, and Ni and unavoidable impurities, 9≦v≦16, w=100−u−x
-y-z, 0≦x≦30, 4≦y≦11, 0<z≦5)
It is represented by the composition formula, and the average crystal grain size is 0.01 μm or more.
.. The bonded magnet according to claim 2, wherein the bonded magnet has a diameter of 5 μm or less.
(4)ポリオルガノシルセスキオキサンに含まれるフェ
ニル基の70%未満をメチル基で置換する事を特徴とす
る請求項1に記載のボンド磁石。
(4) The bonded magnet according to claim 1, wherein less than 70% of the phenyl groups contained in the polyorganosilsesquioxane are substituted with methyl groups.
(5)磁気的に異方性である事を特徴とする請求項1に
記載のボンド磁石。
(5) The bonded magnet according to claim 1, which is magnetically anisotropic.
(6)R−Fe−B系磁粉(RはYを含む1種類以上の
希土類元素)をバインダーで結合するボンド磁石の製造
方法において、側鎖にフェニル基を含むオルガノシルセ
スキオキサンオリゴマーを前記R−Fe−B系磁粉の表
面に被覆する事を特徴とするボンド磁石の製造方法。
(6) In a method for manufacturing a bonded magnet in which R-Fe-B magnetic powder (R is one or more rare earth elements including Y) is bonded with a binder, an organosilsesquioxane oligomer containing a phenyl group in the side chain is A method for producing a bonded magnet, which comprises coating the surface of R-Fe-B magnetic powder.
JP2210999A 1990-08-09 1990-08-09 Bond magnet and its manufacture Pending JPH0493001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2210999A JPH0493001A (en) 1990-08-09 1990-08-09 Bond magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2210999A JPH0493001A (en) 1990-08-09 1990-08-09 Bond magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPH0493001A true JPH0493001A (en) 1992-03-25

Family

ID=16598651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2210999A Pending JPH0493001A (en) 1990-08-09 1990-08-09 Bond magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPH0493001A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251037A (en) * 2006-03-17 2007-09-27 Meiji Univ Alloy thin strip for rare earth magnet, its manufacturing method, and alloy for rare earth magnet
JP2015146378A (en) * 2014-02-03 2015-08-13 スリーエム イノベイティブ プロパティズ カンパニー Binder for bond magnet, composition for bond magnet, bond magnet, and manufacturing method thereof
JP2017073479A (en) * 2015-10-08 2017-04-13 日立化成株式会社 Bond magnet hardened body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251037A (en) * 2006-03-17 2007-09-27 Meiji Univ Alloy thin strip for rare earth magnet, its manufacturing method, and alloy for rare earth magnet
JP2015146378A (en) * 2014-02-03 2015-08-13 スリーエム イノベイティブ プロパティズ カンパニー Binder for bond magnet, composition for bond magnet, bond magnet, and manufacturing method thereof
JP2017073479A (en) * 2015-10-08 2017-04-13 日立化成株式会社 Bond magnet hardened body

Similar Documents

Publication Publication Date Title
US6022424A (en) Atomization methods for forming magnet powders
EP0865051A1 (en) Method of manufacturing bonded magnets of rare earth metal, and bonded magnet of rare earth metal
KR0149901B1 (en) Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom
JPH0669003B2 (en) Powder for permanent magnet and method for manufacturing permanent magnet
JP2005520351A (en) Bond magnet manufactured using atomized permanent magnet powder
JPH0447024B2 (en)
JPH03153006A (en) Permanent magnet and raw material therefor
CN1198292C (en) Sm(Co, Fe, Cu, Zr, C) compositions and methods of producing same
JPH0493001A (en) Bond magnet and its manufacture
JPH01100242A (en) Permanent magnetic material
JPH056323B2 (en)
JP2708568B2 (en) Magnetic material
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPH0464202A (en) Bonded magnet and manufacture thereof
JPH06316745A (en) Production of r-fe-b series sintered magnet by injection molding method
JPH1012472A (en) Manufacture of rare-earth bond magnet
JPS6353201A (en) Production of permanent magnet material
JPH0480901A (en) Bonded magnet and manufacture thereof
JP3710837B2 (en) Rare earth alloy ingot for permanent magnet, alloy powder and method for producing bonded magnet
JPH0845719A (en) Quenched thin band for bond magnet, particles for bond magnet, bond magnet and manufacture thereof
JPS6373502A (en) Manufacture of rare earth magnet
JPH0270011A (en) Production of permanent magnet material
KR940003340B1 (en) Magnetic materials
JPH03295204A (en) Permanent magnet and manufacture thereof
JPH0582319A (en) Permanent magnet