JPH0492811A - Cellular sepiolite substance, its production and adsorptive decomposition catalyst using the same - Google Patents
Cellular sepiolite substance, its production and adsorptive decomposition catalyst using the sameInfo
- Publication number
- JPH0492811A JPH0492811A JP2206481A JP20648190A JPH0492811A JP H0492811 A JPH0492811 A JP H0492811A JP 2206481 A JP2206481 A JP 2206481A JP 20648190 A JP20648190 A JP 20648190A JP H0492811 A JPH0492811 A JP H0492811A
- Authority
- JP
- Japan
- Prior art keywords
- sepiolite
- substance
- cellular
- surface area
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004113 Sepiolite Substances 0.000 title claims abstract description 60
- 229910052624 sepiolite Inorganic materials 0.000 title claims abstract description 60
- 235000019355 sepiolite Nutrition 0.000 title claims abstract description 60
- 239000003054 catalyst Substances 0.000 title claims abstract description 30
- 238000000354 decomposition reaction Methods 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000126 substance Substances 0.000 title abstract description 8
- 230000001413 cellular effect Effects 0.000 title abstract 6
- 230000000274 adsorptive effect Effects 0.000 title 1
- 239000011148 porous material Substances 0.000 claims abstract description 45
- 238000001179 sorption measurement Methods 0.000 claims abstract description 25
- 239000002253 acid Substances 0.000 claims abstract description 7
- 238000005406 washing Methods 0.000 claims abstract description 6
- 238000009826 distribution Methods 0.000 claims abstract description 5
- 238000010304 firing Methods 0.000 claims description 8
- 235000019645 odor Nutrition 0.000 claims description 2
- 239000000843 powder Substances 0.000 abstract description 8
- 230000001143 conditioned effect Effects 0.000 abstract description 3
- 238000010298 pulverizing process Methods 0.000 abstract description 3
- 230000003197 catalytic effect Effects 0.000 abstract 1
- 230000003750 conditioning effect Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 239000013078 crystal Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- -1 platinum group metals Chemical class 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 230000001877 deodorizing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 238000001935 peptisation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明は細孔径が50Å以下の細孔が全表面積の20%
以上を占める吸着特性の優れたセピオライト多孔体、そ
の製造方法および該セピオライト多孔体に触媒成分を担
持させた吸着分解触媒に関する。[Detailed description of the invention] [Technical field] The present invention is characterized in that pores with a pore diameter of 50 Å or less account for 20% of the total surface area.
The present invention relates to a sepiolite porous body with excellent adsorption properties as described above, a method for producing the same, and an adsorption decomposition catalyst in which a catalyst component is supported on the sepiolite porous body.
セピオライトを原料として多孔質成形体を製造しようと
いう試みは特公昭55−31085号、特公昭59−1
8321号公報等において提案されている。Attempts to manufacture porous molded bodies using sepiolite as a raw material were made in Japanese Patent Publication No. 55-31085 and Japanese Patent Publication No. 59-1.
This method has been proposed in Publication No. 8321 and the like.
すなわち前記特公昭55−31085号公報には、「セ
ピオライトを主成分とし、比表面積が200d1g以上
ありかつそのうち100rrr/g以上が細孔径74Å
以上の細孔によって構成される部分であり、細孔径74
Å以上の細孔容積が0.5〜1.0cc/gあり、さら
に細孔径74Å以上の細孔容積に対する細孔径20′o
〜600人の細孔容積3゜
の割合が60%以上であることを特徴とする断熱材、吸
音材、吸着材ならびに触媒担体として有効なセピオライ
ト成形体。」
が開示されておりその製造方法として
「セピオライトを原料として多孔質体を成形する方法に
おいて、
(a) セピオライトを粉砕した後、水を加えて調湿
する工程:
(b) !p1湿物を十分に混練する工程:ならびに
(c) 混線物を成形、焼成する工程:以上の各工程
よりなることを特徴とするセビオライト成形体の製造方
法。」
が提案されている。In other words, the above-mentioned Japanese Patent Publication No. 55-31085 states, ``The main component is sepiolite, the specific surface area is 200d1g or more, and 100rrr/g or more of which has a pore diameter of 74Å.
It is a part composed of the above pores, and the pore diameter is 74
The pore volume is 0.5 to 1.0 cc/g, and the pore size is 20'o for the pore volume of 74 Å or more.
~600 A sepiolite molded body effective as a heat insulating material, a sound absorbing material, an adsorbent, and a catalyst carrier, characterized in that the ratio of 3° pore volume is 60% or more. '' is disclosed, and its manufacturing method is ``a method of forming a porous body using sepiolite as a raw material, (a) a step of pulverizing sepiolite and then adding water to adjust the humidity; (b) !p1 wet material. "A method for producing a Seviolite molded body characterized by comprising the steps of sufficiently kneading: and (c) molding and firing the mixed wire material." is proposed.
さらに特公昭59−18321号公報には、天然セピオ
ライトを酸処理することによって細孔容積および比表面
積が著しく増大することが認められたと記載されている
。Further, Japanese Patent Publication No. 59-18321 states that it was observed that the pore volume and specific surface area of natural sepiolite were significantly increased by acid treatment.
本発明者等は、調湿物を十分に混錬する工程を採用せず
約650℃〜800℃の温度範囲で焼成することによっ
て、1000Å以上の極大細孔を天然物と同程度に有し
水に浸漬しても解膠しない耐水性に優れ、また熱ショッ
クに対しても強い特性を有するセビオライト成形体を得
られることを見出し先に出願した。しかしながら吸着能
に有効な50Å以下の細孔径を有する細孔の比表面積を
大きくすることができなかった。The present inventors have succeeded in creating ultra-large pores of 1000 Å or more to the same extent as natural products by firing the moisture-conditioned product at a temperature range of about 650°C to 800°C without adopting a process of thoroughly kneading it. We discovered that it is possible to obtain a Seviolite molded product that does not peptize even when immersed in water, has excellent water resistance, and is resistant to heat shock. However, it has not been possible to increase the specific surface area of pores having a pore diameter of 50 Å or less, which is effective for adsorption ability.
ところで、前記特公昭59−18321号公報には化学
的手段すなわちマグネシウム脱離剤を天然セピオライト
に反応させてその骨格マグネシウムを脱離させ天然セピ
オライトに比して極めて多孔性に富む変性セピオライト
が開示されており、重質油の水素化反応、殊に重質油の
水素化脱金属反応用触媒として有効であると記載されて
いるが、吸着性能に特に有効な50Å以下の細孔径の細
孔については一切の記載はない。さらにこのすぐれた吸
着特性に着目した吸着分解触媒については全く示唆され
ていない。By the way, the aforementioned Japanese Patent Publication No. 59-18321 discloses a modified sepiolite which is produced by chemical means, that is, by reacting a magnesium desorbing agent with natural sepiolite to eliminate its framework magnesium, and which is extremely porous compared to natural sepiolite. It is described that it is effective as a catalyst for the hydrogenation reaction of heavy oil, especially for the hydrodemetalization reaction of heavy oil. There is no mention of it. Furthermore, there is no suggestion at all of an adsorption-decomposition catalyst that focuses on this excellent adsorption property.
前述したように従来のセピオライト多孔体にはなかった
50Å以下の細孔径を有する細孔が大きな比表面積を有
し吸着性能が優れており、さらに触媒担体としても極め
て優れた特性を有するセピオライト多孔体を提供するこ
とを目的とする。As mentioned above, the sepiolite porous material has pores with a pore diameter of 50 Å or less that have a large specific surface area, which is not found in conventional sepiolite porous materials, and has excellent adsorption performance, and also has extremely excellent properties as a catalyst carrier. The purpose is to provide
〔問題点を解決するための手段および作用〕天然セピオ
ライトの比表面積は400rrf/g以下であって、3
00℃の温度で焼成したものの比表面積は200n(/
g程度に減少し、さらに500’C〜800℃の温度範
囲で焼成したものの比表面積は200ボ/gから120
11(/ gへと除々に減少する。また800℃以上の
温度で焼成するとステアタイトに変成し、比表面積の減
少にあいまって脆性を増し強度が低下してしまうことは
周知の事実である。しかしながら300℃〜800℃の
温度範囲で焼成した天然セピオライトは、メタセピオラ
イトに変性しセピオライト特有の5〜10人程度の結晶
構造が崩れ、結晶化度が減少し表面積も減少しており、
さらに結晶繊維束(0,2〜2μm!%、100〜30
0人幅、50〜100人厚)も焼結し、表面積が減少し
ているものの、前記5〜10人程度の結晶構造は完全に
破壊されておらず、脱水等により開孔部が閉塞し潰れた
状態になっている。[Means and effects for solving the problem] The specific surface area of natural sepiolite is 400rrf/g or less, and 3
The specific surface area of the product fired at a temperature of 00°C is 200n (/
The specific surface area of those fired in the temperature range of 500'C to 800'C ranges from 200 Bo/g to 120 Bo/g.
It is a well-known fact that when fired at a temperature of 800°C or higher, it transforms into steatite, which increases brittleness and decreases strength as the specific surface area decreases. However, natural sepiolite fired at a temperature range of 300°C to 800°C changes to metasepiolite, the 5-10 crystal structure peculiar to sepiolite collapses, the degree of crystallinity decreases, and the surface area also decreases.
Furthermore, crystal fiber bundles (0.2-2 μm!%, 100-30
Although the crystal structure of the 5 to 10 layers is not completely destroyed and the pores are blocked due to dehydration etc., the crystal structure of the 5 to 10 layers is not completely destroyed. It is in a collapsed state.
適当な酸洗浄によりこの潰れた結晶構造が復元し、吸着
能に寄与するゼオリテックな50Å以下の細孔を回復す
ることにより表面積が増大しており、X線回折によって
も天然セピオライトの結晶構造に近い状態に結晶構造が
回復していることを確認した。Appropriate acid washing restores this crushed crystal structure, and by restoring the zeolitic pores of less than 50 Å, which contribute to adsorption capacity, the surface area increases, and X-ray diffraction shows that the crystal structure is close to that of natural sepiolite. It was confirmed that the crystal structure had been restored to the normal state.
本発明者等は上記の知見に基づいて鋭意研究をおこなっ
た結果、セピオライトを粉砕調湿したのち成形し、約6
50℃〜800℃の温度範囲で焼成し、焼成セピオライ
トを酸洗浄することにより、細孔径が50Å以下の細孔
が40〜200m2/gの比表面積を有し全表面積の2
0%以上を占めるセピオライト多孔体を製造できること
を見出し、その優れた吸着性能および物理的強度特性に
着目して触媒成分を担持させることにより冷蔵庫の悪臭
吸着除去用触媒を完成した。As a result of intensive research based on the above knowledge, the inventors of the present invention molded sepiolite after pulverizing and controlling its humidity.
By firing at a temperature range of 50°C to 800°C and washing the fired sepiolite with acid, pores with a pore diameter of 50 Å or less have a specific surface area of 40 to 200 m2/g and 2 of the total surface area.
We have discovered that it is possible to produce a sepiolite porous material that accounts for 0% or more, and have completed a catalyst for adsorption and removal of bad odors from refrigerators by supporting catalyst components, paying attention to its excellent adsorption performance and physical strength characteristics.
触媒成分は加熱時に悪臭成分または有害成分を分解除去
するものであって、白金族金属、マンガン、鉄、銅、コ
バルト、ニッケル、銀およびセリウム、ランタン等の希
土類金属よりなる群から選ばれた一種の元素の金属、酸
化物または複合物である。前記元素群のうち、白金族金
属とりわけ白金または、白金−パラジウムが好ましく、
さらに触媒成分中に希土類金属特にセリウムまたはラン
タンを併用すると触媒の耐熱性がさらに向上するので好
ましい。The catalyst component decomposes and removes malodorous or harmful components when heated, and is a type selected from the group consisting of platinum group metals, manganese, iron, copper, cobalt, nickel, silver, and rare earth metals such as cerium and lanthanum. metals, oxides or composites of the elements. Among the above elements, platinum group metals, especially platinum or platinum-palladium, are preferred;
Furthermore, it is preferable to use a rare earth metal, particularly cerium or lanthanum, in the catalyst component, since this further improves the heat resistance of the catalyst.
触媒成分は従来の方法によって担持することができる。The catalyst components can be supported by conventional methods.
白金族金属の担持量は0.5〜5g/Ω、好ましくは1
〜2gIQであり、希土類金属の担持量は1〜100
g / fi、好ましくは5〜20 g / Qである
。The amount of platinum group metal supported is 0.5 to 5 g/Ω, preferably 1
~2gIQ, and the amount of rare earth metal supported is 1~100
g/fi, preferably 5-20 g/Q.
本発明のセピオライト多孔体の好ましい製造方法を以下
に例示する。A preferred method for producing the sepiolite porous body of the present invention is illustrated below.
セピオライトを100メツシユ以下、好ましくは150
メツシユ以下に粉砕し、セピオライト粉体に水を添加し
、加水後のセピオライト粉体の含水率を4O−20(h
t%、好ましくは45〜55vt%に調整する。調湿の
際には水の一部に加えてアルコール、エステル、エーテ
ル、ケトン、アセトン、ニトリルなどの水溶性含酸素化
合物を併用することができる。加水したセピオライト粉
体を撹拌混合して均一に調湿するさい、もつとも注意し
なければならないことは混線を行なわないことである。Less than 100 meshes of sepiolite, preferably 150 meshes
Grind the sepiolite powder to a mesh size or less, add water to the sepiolite powder, and adjust the water content of the sepiolite powder after adding water to 4O-20 (h
t%, preferably adjusted to 45 to 55 vt%. In addition to a portion of water, a water-soluble oxygen-containing compound such as alcohol, ester, ether, ketone, acetone, or nitrile can be used for humidity control. When stirring and mixing the water-added sepiolite powder to uniformly control the humidity, care must be taken to avoid crosstalk.
前記特公昭55−31085号公報に開示された技術に
おいては、充分混練することこそが重要とされているが
、本発明において成形前に混練を行なわないことが焼成
後の酸洗浄とあいまって本発明の特異な物性を有するセ
ピオライト多孔体を得るために重要である。In the technique disclosed in Japanese Patent Publication No. 55-31085, thorough kneading is considered important, but in the present invention, not kneading before molding, combined with acid washing after firing, is This is important for obtaining the porous sepiolite material having the unique physical properties of the invention.
調湿したセピオライト粉体を任意の形状に、例えば加圧
成形し、成形体を100℃〜150℃の温度で乾燥した
後に約650℃〜800℃の温度、好ましくは700℃
〜800℃、とくに好ましくは720℃〜770℃で焼
成し、メタセピオライト領域の結晶構造を有するセピオ
ライト多孔体を得た後この焼成物を硝酸、硫酸、塩酸な
どの酸で洗浄し水洗乾燥してセピオライト多孔体を得た
。The conditioned sepiolite powder is molded into an arbitrary shape, for example by pressure, and the molded body is dried at a temperature of 100°C to 150°C, and then heated to a temperature of about 650°C to 800°C, preferably 700°C.
After firing at ~800°C, particularly preferably at 720°C ~ 770°C to obtain a sepiolite porous body having a crystal structure in the metasepiolite region, the fired product is washed with an acid such as nitric acid, sulfuric acid, or hydrochloric acid, washed with water, and dried. A sepiolite porous body was obtained.
実施例1
含水量17wt%のトルコ産高純度セピオライト(セピ
オライト純度92%以上) 10kgを粉砕しモルタル
ミキサーで良く混合した。Example 1 10 kg of high-purity sepiolite from Turkey with a water content of 17 wt% (sepiolite purity of 92% or more) was ground and mixed well with a mortar mixer.
粉砕セピオライト10kgに対して水6kgの割り合い
で水を加え、容器中にて混錬しないように手で良く撹拌
混合し均一に調湿する。さらに調湿したセピオライトを
100メツシユのスクリーンに通して100メツシユ以
下の粒度に調整した粉体を得た。該セピオライト粉体を
加圧成形してセピオライト板状体を得た。Add water at a ratio of 6 kg to 10 kg of crushed sepiolite, and stir and mix well by hand so as not to knead in the container to uniformly control the humidity. Further, the moisture-adjusted sepiolite was passed through a 100 mesh screen to obtain a powder whose particle size was adjusted to 100 mesh or less. The sepiolite powder was pressure-molded to obtain a sepiolite plate.
得られたセピオライト板状体を120℃の温度で12時
間乾燥した後、740℃の焼成温度で3時間焼成し、5
4+mX18■X6mセピオライト多孔体aを得た。The obtained sepiolite plate was dried at a temperature of 120°C for 12 hours, and then fired at a firing temperature of 740°C for 3 hours.
A 4+m×18×6m sepiolite porous body a was obtained.
得られたセピオライト多孔体aをさらに50℃の温度に
保った1%硝酸溶液に1時間浸漬処理した後、水洗しセ
ピオライト多孔体すを得た。The obtained sepiolite porous body a was further immersed in a 1% nitric acid solution kept at a temperature of 50° C. for 1 hour, and then washed with water to obtain a sepiolite porous body.
実施例2
50℃に温度に保った1%硝酸溶液に2時間浸漬した点
をのぞいて実施例1と同様にしてセピオライト多孔体C
を得た。Example 2 Sepiolite porous body C was prepared in the same manner as in Example 1 except that it was immersed in a 1% nitric acid solution kept at a temperature of 50°C for 2 hours.
I got it.
得られたセピオライト多孔体a、bおよびCの性状を調
べたところ次の通りであった。The properties of the obtained sepiolite porous bodies a, b and C were investigated and found to be as follows.
(以下余白)
50kg/fflの圧力テ54m X 18m X 6
wm (7)セビオライト板状体に加圧成形したもの
について、45履間隔でのまば強度
tビオライト多孔体a セビオライト多孔Th
セピオライト多孔体C1,3kg
1.5kg 1.5kgなお曲
げ強度は第4図に示す装置を使用して測定したものであ
る。すなわち、基体11上に45■間隔で先端の曲率半
径が5mの支持片12を設けその上に試験片14を載置
し先端が支持片と同じ曲率半径をもつ押え体13により
荷重を負荷し、試験片14の破壊時の荷重(kg)をも
って曲げ強度とした。(Left below) 50kg/ffl pressure 54m x 18m x 6
wm (7) Regarding the press-formed Seviolite plate-like material, the strength at 45-foot intervals t Seviolite porous body a Seviolite porous Th
Sepiolite porous material C1.3kg
1.5 kg 1.5 kg The bending strength was measured using the apparatus shown in FIG. That is, support pieces 12 each having a radius of curvature of 5 m at the tip are placed on the base 11 at intervals of 45 cm, and a test piece 14 is placed thereon, and a load is applied to the support piece 12 whose tip has the same radius of curvature as the support piece. The load (kg) at the time of fracture of the test piece 14 was defined as the bending strength.
第1図ないし第3図にBJH法(窒素脱着法)によるセ
ビオライト多孔体a、bおよびCの細孔分布を示す。Figures 1 to 3 show the pore distribution of Seviolite porous materials a, b, and C obtained by the BJH method (nitrogen desorption method).
第1図ないし第3図より硝酸処理したセピオライト多孔
体すおよびCには50Å以下の細孔径の位置に主要ピー
クが存在し、酸処理によって50Å以下の細孔径を有す
る細孔が発現していることが認められる。From Figures 1 to 3, there is a main peak at a pore diameter of 50 Å or less in the porous sepiolite materials S and C treated with nitric acid, and pores with a pore diameter of 50 Å or less are developed by the acid treatment. It is recognized that
比較例1
焼成温度が500℃であることを除いて実施例1と同様
にしてセビオライト成形体dを得た。Comparative Example 1 Seviolite molded body d was obtained in the same manner as in Example 1 except that the firing temperature was 500°C.
得られたセピオライト成形体dを実施例1と同様に硝酸
処理したところセピオライト成形体dは解膠してしまい
ぼろぼろになって実用強度をもった成形体が得られなか
った。When the obtained sepiolite molded body d was treated with nitric acid in the same manner as in Example 1, the sepiolite molded body d was peptized and became crumbly, so that a molded body with practical strength could not be obtained.
実施例3
実施例1で得られたセピオライト多孔体aおよびbなら
びに実施例2で得られたセピオライト多孔体Cをそれぞ
れ36枚、ヘキサンアンミン白金OV)塩化物溶液(1
,463%pt含有量) 5.13mmに28%アンモ
ニア水(和光純薬製)0.74gを加えpH10,5に
調整し340m Qに稀釈した溶液に浸漬した。水洗、
乾燥したのち水素気流中500℃の温度で還元し、pt
換算で1.47 g/ Qの白金を担持した吸着分解触
媒a、bおよびCを得た。Example 3 Thirty-six sheets each of sepiolite porous bodies a and b obtained in Example 1 and sepiolite porous body C obtained in Example 2 were added to a hexane ammine platinum OV) chloride solution (1
, 463% pt content) 0.74 g of 28% ammonia water (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 5.13 mm, the pH was adjusted to 10.5, and the sample was immersed in a solution diluted to 340 mQ. washing with water,
After drying, it is reduced at a temperature of 500°C in a hydrogen stream, and pt
Adsorption and decomposition catalysts a, b, and C carrying platinum in an amount of 1.47 g/Q were obtained.
試験例1
トリメチルアミン反応テスト
得られた吸着分解触媒a、bおよびCを16Qのガラス
製の反応槽内に設置し、トリメチルアミンを槽内濃度が
3000ppmになるように注入し30分間室温に放置
したのち15分間吸着分解触媒表面温度を350℃まで
昇温加熱し、さらに25分間放冷しトリメチルアミン濃
度の変化を測定しその結果を第4図に示す。Test Example 1 Trimethylamine reaction test The obtained adsorption and decomposition catalysts a, b, and C were placed in a 16Q glass reaction tank, and trimethylamine was injected so that the concentration in the tank was 3000 ppm, and the mixture was left at room temperature for 30 minutes. The surface temperature of the adsorption decomposition catalyst was heated to 350° C. for 15 minutes, and the mixture was allowed to cool for another 25 minutes, and the change in trimethylamine concentration was measured. The results are shown in FIG.
なお、残存率(%)は初期濃度COと経時濃度Ctとの
以下の関係式により求めた。Incidentally, the residual rate (%) was determined by the following relational expression between the initial concentration CO and the concentration Ct over time.
残存率(%) =Ct/Co X100第3図より、酸
処理したセピオライト多孔体すおよびCを用いた吸着分
解触媒すおよびCは明らかに吸着性能および酸化分解性
能ともに優れていることが認められる。Residual rate (%) = Ct/Co .
実施例4
実施例3で得られた吸着分解触媒すおよびCを、冷却空
気強制循環方式の冷蔵庫の冷却空気の循環経路にある除
霜ヒーター近傍に設置した。Example 4 The adsorption and decomposition catalysts obtained in Example 3 and C were installed near a defrosting heater in the cooling air circulation path of a refrigerator of forced cooling air circulation type.
冷蔵庫の冷却運転中には庫内の空気はファンにより前記
循環経路を経て循環し、貯蔵食品から発生した悪臭ガス
は前記吸着分解触媒すにより吸着除去され冷蔵庫内の脱
臭が行われる。冷却器に霜がついて冷却性能が低下した
ときには、除霜ヒーターが自動的に作動する。このとき
前記除霜ヒーターの熱を利用することにより前記吸着分
解触媒すを加熱し、吸蔵した悪臭ガスを脱着させ吸着能
を再生するとともに、脱着した悪臭ガスを前記吸着分解
触媒すに担持した酸化触媒によって酸化分解し処理ガス
の浄化を行う。During the cooling operation of the refrigerator, the air inside the refrigerator is circulated by the fan through the circulation path, and the malodorous gas generated from the stored food is adsorbed and removed by the adsorption/decomposition catalyst, thereby deodorizing the inside of the refrigerator. When frost builds up on the cooler and cooling performance deteriorates, the defrost heater automatically activates. At this time, the adsorption and decomposition catalyst is heated by using the heat of the defrosting heater, the occluded malodorous gas is desorbed and the adsorption capacity is regenerated, and the desorbed malodorous gas is oxidized to the adsorption and decomposition catalyst The process gas is purified by oxidative decomposition using a catalyst.
このとき前記吸着分解触媒には水分がたくさん付着した
り、吸着したりした条件で凍結、加熱が繰り返されるが
、本発明に係る吸着分解触媒すは、凍結破壊をおこすこ
となくまた優れた耐熱ショック性を示し脆化することな
く、極めて良好な悪臭ガスの吸着分解による脱臭処理能
力を持続した。At this time, the adsorption and decomposition catalyst is repeatedly frozen and heated under conditions in which a large amount of water is attached or adsorbed. However, the adsorption and decomposition catalyst according to the present invention has excellent heat shock resistance without causing freeze failure. It exhibited excellent deodorizing ability through adsorption and decomposition of malodorous gases without becoming brittle.
本発明のセビオライト多孔体は50Å以下の細孔径を有
する細孔の比表面積が大きく吸着能力が極めて高いとと
もに耐熱ショック性、凍結非破壊強度が優れておりかつ
水に対する非解膠を有しているので温度変化が激しく水
がかかりやすい厳しい環境にも適応するので冷滝庫の悪
臭吸着分触除去用触媒担持として極めて優れた特性を有
している。The Seviolite porous material of the present invention has a large specific surface area of pores with a pore diameter of 50 Å or less, has an extremely high adsorption capacity, and has excellent heat shock resistance, non-freezing strength, and non-deflocculation against water. Therefore, it is suitable for harsh environments where temperature changes are large and it is easy to get wet with water, so it has extremely excellent characteristics as a catalyst support for removing malodors and adsorbing particles in cold storages.
第1図ないし第3図は細孔分布を示すグラフである。
第4図はトリメチルアミンの残存率を示すグラフである
。
第5図は曲げ強度を試験するための装置を示す参考図で
ある。
特許出願人 日揮ユニバーサル株式会社代理人弁理士
友 松 英 画業1図
第2図
肩孔径(Al
#fl孔怪(λ)
Xの
v/r
第3
図
軸孔径(幻
第4
図
第
5図
手続補正書
事件の表示
補正をする者
事件との関係1 to 3 are graphs showing pore distribution. FIG. 4 is a graph showing the residual rate of trimethylamine. FIG. 5 is a reference diagram showing an apparatus for testing bending strength. Patent Applicant Hide Tomo Matsu, Patent Attorney for JGC Universal Co., Ltd. Illustration 1 Figure 2 Shoulder Hole Diameter (Al #fl Hole Monster (λ) X v/r Figure 3 Shaft Hole Diameter (Vision Figure 4 Figure 5 Procedure Relationship between the written amendment case and the person who amends the labeling case
Claims (1)
gの比表面積を有し、全表面積の20%以上を占め、そ
の細孔分布曲線が50Å以下の細孔径の位置に主要ピー
クを有することを特徴とするセピオライト多孔体。 2、セピオライトを粉砕、調湿したのち成形し約650
℃〜800℃の温度範囲で焼成し、焼成セピオライトを
酸洗浄することを特徴とするセピオライト多孔体の製造
方法。 3、細孔径が50Å以下の細孔が40〜200m^2/
gの比表面積を有し、全表面積の20%以上を占め、そ
の細孔分布曲線が50Å以下の細孔径の位置に主要ピー
クを有するセピオライト多孔体に触媒成分を担持させた
ことを特徴とする吸着分解触媒。 4、冷蔵庫の悪臭吸着分解除去用触媒として使用するこ
とを特徴とする吸着分解触媒。[Claims] 1. Pores with a pore diameter of 50 Å or less are 40 to 200 m^2/
A sepiolite porous material having a specific surface area of 1.5 g, accounting for 20% or more of the total surface area, and having a pore distribution curve having a main peak at a pore diameter of 50 Å or less. 2. Crush sepiolite, adjust the humidity, and then mold it to about 650 yen.
A method for producing a porous sepiolite body, which comprises firing at a temperature range of 800°C to 800°C, and washing the fired sepiolite with an acid. 3. Pores with a pore diameter of 50 Å or less are 40 to 200 m^2/
The catalyst component is supported on a sepiolite porous body which has a specific surface area of 1.5 g, occupies 20% or more of the total surface area, and whose pore distribution curve has a main peak at a pore diameter of 50 Å or less. Adsorption decomposition catalyst. 4. An adsorption and decomposition catalyst characterized in that it is used as a catalyst for adsorption and decomposition removal of bad odors in refrigerators.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2206481A JP2934978B2 (en) | 1990-08-03 | 1990-08-03 | Sepiolite porous body, method for producing the same, and adsorption decomposition catalyst using the same |
GB9113565A GB2245505B (en) | 1990-06-27 | 1991-06-24 | Porous sepiolite,process for producing same and adsorptive decomposition catalyst composition utilizing such porous sepiolite |
US07/722,192 US5302558A (en) | 1990-06-27 | 1991-06-27 | Porous sepiolite, process for producing same and adsorptive decomposition catalyst composition utilizing such porous sepiolite |
US08/154,542 US5397752A (en) | 1990-06-27 | 1993-11-19 | Production of water resisting, hard, porous metasepiolite |
US08/154,541 US5399538A (en) | 1990-06-27 | 1993-11-19 | Porous sepiolite, process for producing same and adsorptive decomposition catalyst compostion utilizing such porous sepiolite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2206481A JP2934978B2 (en) | 1990-08-03 | 1990-08-03 | Sepiolite porous body, method for producing the same, and adsorption decomposition catalyst using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0492811A true JPH0492811A (en) | 1992-03-25 |
JP2934978B2 JP2934978B2 (en) | 1999-08-16 |
Family
ID=16524091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2206481A Expired - Fee Related JP2934978B2 (en) | 1990-06-27 | 1990-08-03 | Sepiolite porous body, method for producing the same, and adsorption decomposition catalyst using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2934978B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008149213A (en) * | 2006-12-14 | 2008-07-03 | Tosoh Corp | PALLADIUM SUPPORTED SEPIOLITE CATALYST AND MANUFACTURING METHOD OF beta-AMINO ACIDS |
JP2014521508A (en) * | 2011-08-08 | 2014-08-28 | アクシオナ インフラエストゥルクトゥーラス,ソシエダッド アノニマ | Method for preparing an additive comprising supported and dispersed TiO2 particles |
-
1990
- 1990-08-03 JP JP2206481A patent/JP2934978B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008149213A (en) * | 2006-12-14 | 2008-07-03 | Tosoh Corp | PALLADIUM SUPPORTED SEPIOLITE CATALYST AND MANUFACTURING METHOD OF beta-AMINO ACIDS |
JP2014521508A (en) * | 2011-08-08 | 2014-08-28 | アクシオナ インフラエストゥルクトゥーラス,ソシエダッド アノニマ | Method for preparing an additive comprising supported and dispersed TiO2 particles |
Also Published As
Publication number | Publication date |
---|---|
JP2934978B2 (en) | 1999-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5236878A (en) | Zeolite-containing adsorptive composition and adsorptive decomposition composition containing such zeolite-containing composition | |
US5948398A (en) | Deodorant comprising metal oxide-carrying activated carbon | |
JP2960143B2 (en) | Activated carbon production method | |
JP3390649B2 (en) | Spherical carbon material and method for producing the same | |
Takeuchi et al. | Removal of ozone from air by activated carbon treatment | |
US5399538A (en) | Porous sepiolite, process for producing same and adsorptive decomposition catalyst compostion utilizing such porous sepiolite | |
JP2001294414A (en) | Manufacturing method of activated coke having high strength and high adsorpability | |
JPH0492811A (en) | Cellular sepiolite substance, its production and adsorptive decomposition catalyst using the same | |
JP5312357B2 (en) | Method for producing adsorbent for nitric oxide | |
JPH10501174A (en) | Air purification in enclosed space | |
JP3098290B2 (en) | Activated carbon impregnated with palladium chloride | |
JP3357137B2 (en) | Deodorization method | |
RU2701028C1 (en) | Method of producing sorbent for acid gas absorption | |
RU2228902C1 (en) | Catalyst preparation process | |
JP4190047B2 (en) | Method for oxidizing organic compounds and catalyst for aldehyde oxidation | |
KR20030028325A (en) | Process for Preparing Activated Carbon Having Nano-structure Photocatalyst | |
JP2002306581A (en) | Deodorant and method of preparation for the same | |
JP2908233B2 (en) | Method for producing ozone decomposition catalyst | |
JPH07116509A (en) | Preparation of deodorizer and method for deodorization | |
JP3283593B2 (en) | Method for producing catalyst body | |
JP3068231B2 (en) | NO adsorbent | |
JPH07116236A (en) | Refrigerator deodorizing method | |
JPH04108542A (en) | Ozone decomposing catalyst | |
CN116173896A (en) | Adsorbent for purifying alcohol VOCs and preparation method thereof | |
JPH02211248A (en) | Ozone decomposing catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |