JPH0492296A - Fuse circuit - Google Patents

Fuse circuit

Info

Publication number
JPH0492296A
JPH0492296A JP2207742A JP20774290A JPH0492296A JP H0492296 A JPH0492296 A JP H0492296A JP 2207742 A JP2207742 A JP 2207742A JP 20774290 A JP20774290 A JP 20774290A JP H0492296 A JPH0492296 A JP H0492296A
Authority
JP
Japan
Prior art keywords
signal wiring
resistance element
resistance
level
disconnectable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2207742A
Other languages
Japanese (ja)
Inventor
Tadao Kadowaki
忠雄 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2207742A priority Critical patent/JPH0492296A/en
Publication of JPH0492296A publication Critical patent/JPH0492296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Read Only Memory (AREA)

Abstract

PURPOSE:To obtain the fuse circuit of low current consumption without necessitating an N type MOS-FET for holding the voltage level of signal wiring 'L' by constituting by a resistance element, a disconnectable resistance element, a latch circuit and the signal wiring. CONSTITUTION:A disconnectable resistance element (fuse element) 2 is arranged between signal wiring 6 and a positive electrode power source 7. Besides, a resistance element 3 is arranged between the signal wiring 6 and a negative electrode power source 8. Then, when the disconnectable resistance element 2 is non-disconnection, the voltage level of the signal wiring 6 is determined by the ratio of a resistance value R2 of the disconnectable resistance element 2 and a resistance value R3 of a resistance element 3, since the relation of the resistance R2 and R3 is R2<<R3, the signal wiring 6 comes to be approximately an 'H' level. On the other hand, when the disconnectable element 2 is disconnected, the signal wiring 6 comes to be an 'L' level by the resistance element 3. Moreover, the 'L' level of the signal wiring 6 is latched by an inverter 5 of a latch circuit and an N type MOS-FET 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、不揮発性メモリーとしてヒユーズ回路を用い
た場合の半導体集情回路(以下ICと称〔従来の技術〕 できあがった工aの外部より、何らかの操作を行つ事に
よってICの特性や機能を変更できる事は、機能の多様
化や特性の高精度化が可能となり工Cの付加価値を高め
る事となる。従来より、工Cの外部より何らかの操作を
行って機能・特性を変更する手段としては、工Cの製造
コスト上鏝も安価なヒユーズ回路が多く用いられている
。従来のヒユーズ回路の一例を第2図に示す。1は外部
との電気的接続をする為のパッド、2はヒユーズ素子、
4はN型MO8−FFJT、5はインバータ、6はパッ
ド1に接続した信号配線、7は正極電源、8は負極電源
、9はN型MO3−FIT。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit (hereinafter referred to as IC [prior art]) when a fuse circuit is used as a nonvolatile memory. , being able to change the characteristics and functions of an IC by performing some operations makes it possible to diversify functions and improve the precision of characteristics, increasing the added value of Engineering C. As a means of changing functions and characteristics by performing some kind of operation, fuse circuits are often used because they are inexpensive in terms of manufacturing cost.An example of a conventional fuse circuit is shown in Fig. 2.1 is Pad for electrical connection with the outside, 2 is a fuse element,
4 is an N-type MO8-FFJT, 5 is an inverter, 6 is a signal wiring connected to the pad 1, 7 is a positive power supply, 8 is a negative power supply, and 9 is an N-type MO3-FIT.

10はN型MO8−PETを制御する制御信号である。10 is a control signal for controlling the N-type MO8-PET.

信号配線6への情報書き込みは、ヒユーズ素子2を切断
が非切断で切り替える。ヒユーズ素子2は多結晶シリコ
ン等で形成されており、その切断は正極電源7とパッド
10間に、例えば20〜25V程度の電圧を数ミ+7秒
間印加し、電流により溶断させる事によって行う。
When information is written to the signal wiring 6, the fuse element 2 is switched without being cut. The fuse element 2 is made of polycrystalline silicon or the like, and is cut by applying a voltage of, for example, about 20 to 25 V between the positive electrode power source 7 and the pad 10 for several milliseconds and blowing it out with a current.

次に書き込み動作について説明する。ヒユーズ素子2が
非切断の場合、信号配線6には、ヒユーズ素子2を介し
て正極電源7の電圧レベルが出力され、“H”レベルと
なる。インバータ5は“L”を出力し、N型MOS−F
ET4はオフする。
Next, the write operation will be explained. When the fuse element 2 is not cut, the voltage level of the positive power supply 7 is outputted to the signal wiring 6 via the fuse element 2, and becomes "H" level. Inverter 5 outputs "L", and N type MOS-F
ET4 is turned off.

N型Mτ5−FET9がオンした時のインピーダンスに
対し、ヒユーズ素子2のインピーダンスを充分小さくし
ておけば、たとえN型MOS−FET9がオンしても、
信号配線6は@H#レベルを保持する。
If the impedance of the fuse element 2 is made sufficiently small compared to the impedance when the N-type Mτ5-FET9 is turned on, even if the N-type MOS-FET9 is turned on,
Signal wiring 6 holds @H# level.

一方、ヒユーズ素子2が切断されていると、信号配線6
は初期時にフローティングとなるが、制御信号10が一
度“H”となると、N型MOS−FET9がオンし、負
極電源已に接続するので”L”レベルとなる。するとイ
ンバータ5は″”H”を出力し、N型MOS−’IPE
T4をオンさせるので、制御信号10が“L#に切シ替
わってN型MOS−FET9をオフさせても、信号配線
6は6L”レベルを保持する。
On the other hand, if the fuse element 2 is disconnected, the signal wiring 6
is floating at the initial stage, but once the control signal 10 becomes "H", the N-type MOS-FET 9 is turned on and connected to the negative power supply terminal, so that it becomes "L" level. Then, the inverter 5 outputs "H", and the N-type MOS-'IPE
Since T4 is turned on, even if the control signal 10 switches to "L#" and turns off the N-type MOS-FET 9, the signal wiring 6 maintains the 6L level.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第2図の従来例では、ヒユーズ素子2が非切断の場合、
N型MOS−FET9がオンする毎に電流を消費してし
まう。電池を電源とするハンディ機器や電子腕時計のよ
うに低消費電流で動作する事が重要な特性の製品では、
上述の電流を極力制限する必要がある。その為にはN型
MOS−FET9を制御する制御信号10がH″となる
タイミング(=N型M OS −F E T カオンす
るタイミング)が極力少ないデー−ティの信号を形成す
る必要がある。しかしながら、M御信号10が“H”と
なるタイミングの極力少ない信号として、例えば1秒に
1回、10ミリ秒だけ“H”となる信号としたとすると
、電源投入時、制御信号10が′H”レベルとなるまで
の時間、つまり約1秒間は入力配線6はフローティング
となり、工Cを誤動作させてしまうという課題があった
In the conventional example shown in FIG. 2, when the fuse element 2 is not cut,
Current is consumed every time the N-type MOS-FET 9 is turned on. For products that require low current consumption, such as handheld devices and electronic watches that are powered by batteries,
It is necessary to limit the above-mentioned current as much as possible. For this purpose, it is necessary to form a data signal with as few timings as possible at which the control signal 10 controlling the N-type MOS-FET 9 becomes H'' (=timing at which the N-type MOS-FET turns on). However, if the M control signal 10 is set to "H" as little as possible, for example, once every second for 10 milliseconds, then when the power is turned on, the control signal 10 becomes "H". There was a problem in that the input wiring 6 was floating for the time until it reached the H'' level, that is, about 1 second, causing the circuit C to malfunction.

本発明は、上述の課題を解決するもので有り、目的とす
る所は入力配線6の電圧レベルを“L″に保持するため
のN型MOS−FET9の必要のない、低消費電流のヒ
ユーズ回路を提供する事にある。
The present invention is intended to solve the above-mentioned problems, and its purpose is to create a low current consumption fuse circuit that does not require an N-type MOS-FET 9 to maintain the voltage level of the input wiring 6 at "L". The goal is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

上述した課題を解決する為に4本発明のヒユーズ回路は
、抵抗素子と、切断可能な抵抗素子と、ラッチ回路と、
信号配線とで構成され、前記信号配線は前記抵抗素子を
介して一方の電源へ接続され、更に前記信号配線は、前
記切断可能な抵抗素子を介して他の一方の電源へ接続さ
れ、前記信号配線に前記抵抗素子が接続した側の電源電
圧レベルが与えられた場合は、前記信号配線の電圧レベ
ルを前記ラッチ回路がラッチする事を特徴とする〔実施
例〕 本発明の一実烏例を第1図の回路図に示す。基本的回路
は第2図と同様であって、かつ同じ素子は同一の記号を
使用している。新しい構成要素として6の抵抗素子が信
号6と負極電源8の間に配置されている。更に、第2図
に於けるN型MOS−FET9は削除した構成となって
いる。
In order to solve the above-mentioned problems, the fuse circuit of the present invention includes a resistive element, a cuttable resistive element, a latch circuit,
The signal wiring is connected to one power supply via the resistance element, and the signal wiring is connected to the other power supply via the cuttable resistance element. [Embodiment] An example of the present invention is characterized in that when a power supply voltage level on the side to which the resistance element is connected to the wiring is applied, the latch circuit latches the voltage level of the signal wiring. This is shown in the circuit diagram of FIG. The basic circuit is similar to that in FIG. 2, and the same elements are designated by the same symbols. Six resistance elements are placed between the signal 6 and the negative power source 8 as new components. Furthermore, the N-type MOS-FET 9 in FIG. 2 has been omitted.

2は切断可能な抵抗素子(ヒユーズ回路)で、信号配線
6と正極電源7の間に配置されている。
Reference numeral 2 denotes a cuttable resistance element (fuse circuit), which is arranged between the signal wiring 6 and the positive power supply 7.

3は抵抗素子で信号配線6と負極電源8の間に配置され
ている。N型MOS−FET4とインバータ5はラッチ
回路を構成していて、切断可能な抵抗素子2が切断され
ていると、信号配線6は抵抗素子5を介して負極電源8
の電圧レベル(“L”レベル)トナリ、インバータ5 
カ″H″レベルを出力し、N型MOS−FET4がオン
する事により、信号配線6を1L″レベルにラッチする
。切断可能な抵抗素子2は、ボロン(B)や!/7(P
)などの不純物をドーピングした多結晶シリコンで、数
十Ω〜数百0の比抵抗を有する。抵抗素子6は不純物を
ドーピングしていない真性多結晶シリコンで、数十ギガ
Ωの比抵抗を有する。従って切断可能な抵抗素子2の抵
抗値R2とR3の関係は以下のように構成されている。
Reference numeral 3 denotes a resistive element arranged between the signal wiring 6 and the negative electrode power supply 8. The N-type MOS-FET 4 and the inverter 5 constitute a latch circuit, and when the disconnectable resistance element 2 is disconnected, the signal wiring 6 is connected to the negative power supply 8 via the resistance element 5.
voltage level (“L” level), inverter 5
The signal wiring 6 is latched to the 1L" level by outputting the "H" level and turning on the N-type MOS-FET 4. The cuttable resistive element 2 is made of boron (B) or !/7 (P).
) is doped with impurities such as polycrystalline silicon, and has a specific resistance of several tens of ohms to several hundred ohms. The resistance element 6 is made of intrinsic polycrystalline silicon that is not doped with impurities, and has a specific resistance of several tens of giga-ohms. Therefore, the relationship between the resistance values R2 and R3 of the cuttable resistance element 2 is configured as follows.

R2<<R5・・・・・・0 次に書き込み動作について説明する。切断可能な抵抗素
子2が非切断の場合、信号配線6の電圧レベルは、切断
可能な抵抗素子2の抵抗値R2と抵抗素子6の抵抗値R
3との比で決まるが、抵抗R2とR5の関係は上述0式
であるので、信号配線6はほぼ″′H#レベルとなる。
R2<<R5...0 Next, the write operation will be explained. When the cuttable resistance element 2 is not cut, the voltage level of the signal wiring 6 is equal to the resistance value R2 of the cuttable resistance element 2 and the resistance value R of the resistance element 6.
3, and the relationship between the resistors R2 and R5 is the above-mentioned equation 0, so the signal wiring 6 is approximately at the ``H# level.

一方、切断可能な素子2が切断されている場合は、信号
配線6は抵抗素子5により′L”レベルとなる。更に、
ラッチ回路のインバータ5とN型MOS−FET4とに
より信号配線6の′L”レベルはラッチされる。
On the other hand, when the cuttable element 2 is cut, the signal wiring 6 becomes 'L' level due to the resistance element 5.Furthermore,
The 'L' level of the signal line 6 is latched by the inverter 5 and the N-type MOS-FET 4 of the latch circuit.

上述の説明では、切断可能な抵抗素子2を正極電源側で
、抵抗素子3を負極電源側に接続したが切断可能な抵抗
素子を負極側電源側、抵抗素子を正極電源側に接続して
も、インノ(−夕5の出力を受けるMOS−IPETを
P型MO8−XPgTとして正極電源7と信号配線6の
間に配置すれば、同様のヒユーズ回路を実現できる。ま
た、上述の説明では、ラッチ回路として、インバータ1
ケとMOS−FETIケの構成で説明したが、信号配線
6の電圧レベルをラッチできれば、どのようなラッチ回
路でもよい。
In the above explanation, the cuttable resistance element 2 was connected to the positive power supply side and the resistance element 3 was connected to the negative power supply side, but it is also possible to connect the cuttable resistance element 2 to the negative power supply side and the resistance element to the positive power supply side. A similar fuse circuit can be realized by placing a P-type MO8-XPgT MOS-IPET that receives the output of the inno(-5) between the positive power supply 7 and the signal wiring 6.In addition, in the above explanation, the latch As a circuit, inverter 1
Although the explanation has been made using the configurations of 1 and MOS-FETI, any type of latch circuit may be used as long as it can latch the voltage level of the signal wiring 6.

次に切断可能な抵抗素子2と、抵抗素子3について工C
上のレイアウトについて説明する。第6図は切断可能な
抵抗素子のレイアウトの一例を示すレイアウト図である
。11は多結晶シリフンであり、全体にボロン(B)や
リン(P)の不純物がドーピングされており、比抵抗は
数十Ω〜数百Ω程度である。12と16は金属配線層で
一方を電源、他の一方を信号配線に接続する。14と1
5は多結晶シリコン11と金属配線12と15を電気的
接続する為のコンタクト、16は工0を雰囲気の湿度℃
不純物などからの特性変化を防ぐために、工Cの表面を
覆っているシリコン酸化膜などのパシベーション膜の開
口部である。非切断として使用する場合は、外部から何
らの操作を加えず、上述の構成で使用する。切断状態で
使用する場合は、配線z2と配線130間に、例えば2
0■以上の高電圧を印加し、多結晶シリコン11に電流
を流す。すると、前記電流による発熱で、多結晶シリコ
ン11が溶解し、パシベーション開口16を介して雰囲
気中に蒸発し切断状態に切り換える。
Next, cut the resistor element 2 and the resistor element 3.
Let's explain the layout above. FIG. 6 is a layout diagram showing an example of the layout of a cuttable resistance element. 11 is polycrystalline silicon, the entire structure is doped with impurities such as boron (B) and phosphorus (P), and the specific resistance is about several tens of ohms to several hundred ohms. 12 and 16 are metal wiring layers, one of which is connected to a power supply and the other to a signal wiring. 14 and 1
5 is a contact for electrically connecting the polycrystalline silicon 11 and metal wirings 12 and 15; 16 is the temperature of the atmosphere (°C);
This is an opening in a passivation film such as a silicon oxide film that covers the surface of the substrate C to prevent changes in characteristics due to impurities. When used as a non-cutting device, the above-mentioned configuration is used without any external operation. When used in a disconnected state, for example, connect 2 wires between the wire z2 and the wire 130.
A high voltage of 0■ or more is applied to cause a current to flow through the polycrystalline silicon 11. Then, the polycrystalline silicon 11 is melted by the heat generated by the current and evaporated into the atmosphere through the passivation opening 16, thereby switching to the cutting state.

第1図における抵抗素子6についてのレイアウトの一例
を第4図のレイアウト図で説明する。17は多結晶シリ
コン、18と19は金属配線で一方を電源、他の一方を
信号配線に接続する。20と21は多結晶シリコン11
と金属配線18と19を電気的接続するコンタクト、2
2は工Cの製造工程中で多結晶シリコン17への不純物
ドーピングの際に、不純物がドーピングされない領域を
示す。−船釣に、領域22には、工C製造時フォトエツ
チング手法の素子選択に用いるレジスト(感光性樹脂)
を付けておき、その上方より不純物をドーピングする。
An example of the layout of the resistor element 6 in FIG. 1 will be explained with reference to the layout diagram in FIG. 4. 17 is polycrystalline silicon, and 18 and 19 are metal wirings, one of which is connected to a power supply and the other to a signal wiring. 20 and 21 are polycrystalline silicon 11
and a contact for electrically connecting the metal wirings 18 and 19, 2
Reference numeral 2 indicates a region where impurities are not doped when polycrystalline silicon 17 is doped with impurities during the manufacturing process of process C. - For boat fishing, area 22 contains a resist (photosensitive resin) used for element selection in the photoetching method during the manufacturing of process C.
is attached and then doped with impurities from above.

すると、領域22以外は不純物がドーピングされるが、
領域22に囲まれた多結晶シリコン17の部分は、不純
物がドーピングされない真性多結晶シリコンが得られる
。この真性多結晶シリコンにより比抵抗数十ギガΩの抵
抗素子を形成する。
Then, regions other than the region 22 are doped with impurities, but
In the portion of polycrystalline silicon 17 surrounded by region 22, intrinsic polycrystalline silicon that is not doped with impurities is obtained. This intrinsic polycrystalline silicon forms a resistance element with a specific resistance of several tens of giga-ohms.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、切断可能な抵抗素
子2(ヒユーズ素子)が切断されている場合に電源投入
しても、入力配線6は抵抗を介して電圧レベルが固定さ
れるので、工Cが誤動作する事がない。また、第2図従
来例におけるN型MOS−FET9が必要ないので、前
記N型MO3−FKT9が消費する電流が無(なり、低
消費電流化が達成できる。抵抗素子3に流れる電流は、
抵抗素子6の抵抗が数十ギガΩであるので、1.5V銀
電池を電源とする場合は1ナノ・アンペア以下となり、
通常無視できる値である。また、前記N型MOS−FE
T9を制御する信号も不必要となるので、工0内の回路
が簡略化され、チップ・サイズの縮少から工Cコストの
低減が達成できるまた、切断可能な抵抗素子3が切断さ
れている場所は、信号配線6の電圧レベルは高抵抗の抵
抗素子3・により与えられ、ノイズに影響され易い状態
となるが、前記信号配線6の電圧レベルはラッチ回路に
より、瞬時にラッチされるので、ノイズの影響も受けづ
らいという効果を有する。
As described above, according to the present invention, even if the power is turned on when the disconnectable resistance element 2 (fuse element) is disconnected, the voltage level of the input wiring 6 is fixed through the resistor. , Engineering C will not malfunction. Furthermore, since the N-type MOS-FET 9 in the conventional example shown in FIG.
Since the resistance of the resistive element 6 is several tens of giga ohms, when using a 1.5V silver battery as a power source, the resistance will be less than 1 nanoampere,
This is usually a negligible value. Moreover, the N-type MOS-FE
Since the signal to control T9 is also unnecessary, the circuit in the process 0 is simplified, and the cost of the process C can be reduced by reducing the chip size.Also, the resistive element 3, which can be cut, is cut. The voltage level of the signal wiring 6 is given by the high-resistance resistor 3 and is susceptible to noise, but the voltage level of the signal wiring 6 is instantaneously latched by the latch circuit. It also has the effect of being less susceptible to noise.

11.17・・・・・・・・・多結晶シリコン12.1
5,18.19・・・・・・金属配線
11.17・・・・・・Polycrystalline silicon 12.1
5,18.19・・・Metal wiring

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図。 第2図は従来例の回路図。 第3図は切断可能な抵抗素子のレイアウト図。 第4図は抵抗素子のレイアウト図。 1−・・・・・・・パッド 2・・・・・・・・・ヒユーズ素子 5・・・・・・・・・抵抗素子 4・・・・・・・・・N型MOS−FET5・・・・・
・・・・インバータ 6・・・・・・・・・信号配線 7・・・・・・・・・正極電源 8・・・・・・・・・負極電源 9・・・・・・・・・N型MOS−FITlo・・・・
・・・・・制御信号
FIG. 1 is a circuit diagram showing an embodiment of the present invention. FIG. 2 is a circuit diagram of a conventional example. FIG. 3 is a layout diagram of a cuttable resistance element. FIG. 4 is a layout diagram of a resistance element. 1-...Pad 2...Fuse element 5...Resistance element 4...N-type MOS-FET5.・・・・・・
...Inverter 6... Signal wiring 7... Positive power supply 8... Negative power supply 9...・N-type MOS-FITlo・・・・
·····Control signal

Claims (1)

【特許請求の範囲】[Claims]  抵抗素子と、切断可能な抵抗素子と、ラッチ回路と、
信号配線とで構成され、前記信号配線は前記抵抗素子を
介して一方の電源へ接続され、更に前記信号配線は、前
記切断可能な抵抗素子を介して他の一方の電源へ接続さ
れ、前記信号配線に前記抵抗素子が接続した側の電源電
圧レベルが与えられた場合は、前記信号配線の電圧レベ
ルを前記ラッチ回路がラッチすることを特徴とするヒュ
ーズ回路。
A resistance element, a cuttable resistance element, a latch circuit,
The signal wiring is connected to one power supply via the resistance element, and the signal wiring is connected to the other power supply via the cuttable resistance element. A fuse circuit characterized in that the latch circuit latches the voltage level of the signal wiring when a power supply voltage level on the side to which the resistance element is connected to the wiring is applied.
JP2207742A 1990-08-06 1990-08-06 Fuse circuit Pending JPH0492296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2207742A JPH0492296A (en) 1990-08-06 1990-08-06 Fuse circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2207742A JPH0492296A (en) 1990-08-06 1990-08-06 Fuse circuit

Publications (1)

Publication Number Publication Date
JPH0492296A true JPH0492296A (en) 1992-03-25

Family

ID=16544784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2207742A Pending JPH0492296A (en) 1990-08-06 1990-08-06 Fuse circuit

Country Status (1)

Country Link
JP (1) JPH0492296A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7215176B2 (en) 2003-09-29 2007-05-08 Seiko Epson Corporation Analog value adjustment circuit, display driver circuit, and method of adjusting analog value

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7215176B2 (en) 2003-09-29 2007-05-08 Seiko Epson Corporation Analog value adjustment circuit, display driver circuit, and method of adjusting analog value

Similar Documents

Publication Publication Date Title
US4399372A (en) Integrated circuit having spare parts activated by a high-to-low adjustable resistance device
JPS5870493A (en) High speed prom device
JPH0774318A (en) Semiconductor integrated circuit
JPH0492296A (en) Fuse circuit
JP2001015687A (en) Semiconductor device
JP2000133778A (en) Fuse trimming circuit for lcd controller ic
JPH04292015A (en) Circuit for controlling high-output switching-transistor
JP2894900B2 (en) Semiconductor device
JPH05166934A (en) Circuit composition selecting device
JP4077240B2 (en) Semiconductor device including pull-up / pull-down option circuit and manufacturing method thereof
JPH07212197A (en) Clock generator and liquid crystal driving device using the clock generator
EP0685887B1 (en) A device for selecting design options in an integrated circuit
JP4357755B2 (en) Signal input circuit
TWI253649B (en) High speed flat cell structure with two-input/two-output reading path
KR100306992B1 (en) Output logic setting circuit in semiconductor integrated circuit
JPS6129485A (en) Memory circuit
JP2933814B2 (en) I / O module switching device
JPH04199541A (en) Mode switching circuit
JPS59219014A (en) Logical circuit
JPH0396253A (en) Semiconductor integrated circuit device
JP2003331593A (en) Prom integrated circuit
JPS6129487A (en) Semiconductor memory device
JPS61269362A (en) Semiconductor integrated circuit device
JPH06132804A (en) Semiconductor integrated circuit
JPH0525204B2 (en)