JPH0492214A - Method for reproduction of optical disk - Google Patents

Method for reproduction of optical disk

Info

Publication number
JPH0492214A
JPH0492214A JP2207427A JP20742790A JPH0492214A JP H0492214 A JPH0492214 A JP H0492214A JP 2207427 A JP2207427 A JP 2207427A JP 20742790 A JP20742790 A JP 20742790A JP H0492214 A JPH0492214 A JP H0492214A
Authority
JP
Japan
Prior art keywords
reflected light
reflected
signal
disk
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2207427A
Other languages
Japanese (ja)
Inventor
Michiyoshi Nagashima
道芳 永島
Fumiaki Ueno
植野 文章
Toshinori Kishi
貴志 俊法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2207427A priority Critical patent/JPH0492214A/en
Priority to US07/734,543 priority patent/US5268886A/en
Priority to CA002047606A priority patent/CA2047606C/en
Priority to DE69122452T priority patent/DE69122452T2/en
Priority to EP91112364A priority patent/EP0468468B1/en
Priority to KR1019910012677A priority patent/KR950005963B1/en
Publication of JPH0492214A publication Critical patent/JPH0492214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To decrease the aberration of the spot on a disk and to reproduce high-quality signals of small strokes by averting the irradiation of the photodetecting part of a photodetector with a part of reflected light. CONSTITUTION:The laser beam reflected from the disk is separated from an incident optical path by a half mirror 6. While the reflected beam shape is changed by the astigmatism of a cylindrical lens 9, the three beams are separated and the photodetector 10 is disposed in the position where the beam shapes thereof are circular. The three reflected beams are increased in the central spacing of the three reflected light beams on the photodetector to prevent the incidence of a part of the reflected light from the slopes of V-grooves on the detecting part. Not the whole but over a half of the reflected light transmitting an objective lens is received and the optimum region is eventually reproduced. The high-quality reproduced signals of the small strokes are thus obtd.

Description

【発明の詳細な説明】 本発明ζ戴 ■溝方式を用いた光ディスクの再生方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reproducing an optical disc using the groove method.

従i台術 光ディスクの高密度化に対応して、例えば特開昭56−
58144号公報 特開昭57−105828号公報 
特開昭58−102339号公報などにおいてV漕力式
が提案されていも第3図は従来におけるV溝ディスクの
レプリカ断面の斜視図を示していも 1は透明基板で2
はV溝であり、その斜面上に信号ピット3が形成されて
いも 信号再生用のレーザーは透明基板1側より照射さ
れ 基板1の表面に形成された図示しない反射膜により
、透明基板1側へ反射される。
In response to the increasing density of conventional optical discs, for example,
Publication No. 58144 Japanese Patent Application Publication No. 57-105828
Although the V rowing force type has been proposed in Japanese Patent Application Laid-Open No. 58-102339, etc., Figure 3 shows a perspective view of a replica cross section of a conventional V-groove disk.
is a V-groove, and even if the signal pit 3 is formed on the slope thereof, the laser for signal reproduction is irradiated from the transparent substrate 1 side, and is reflected to the transparent substrate 1 side by a reflection film (not shown) formed on the surface of the substrate 1. reflected.

次に 従来における信号再生を第4図を用いて簡単に説
明すも 半導体レーザー4からの光は回折格子5、ハー
フミラ−6を通り、コリメートレンズ7で平行光になり
、対物レンズ8でV溝ディスク上に絞られも ディスクからの反射光は対物レンズ8、コリメートレン
ズ7を再び通り、ハーフミラ−6で反射跣 シリンドリ
カルレンズ9で非点収差を与えられて光検出器10に照
射されも この反射光の照射によって光検出器10から
得られる信号に基づきディスク上のレーザースポットの
位置制御と記録信号の再生を行う。
Next, conventional signal regeneration will be briefly explained using FIG. Even though the light is focused on the disk, the reflected light from the disk passes through the objective lens 8 and the collimating lens 7 again, is reflected by the half mirror 6, is given astigmatism by the cylindrical lens 9, and is irradiated to the photodetector 10. Based on the signal obtained from the photodetector 10 by the irradiation of light, the position of the laser spot on the disk is controlled and the recorded signal is reproduced.

なお実際に(友 回折格子5における回折により半導体
レーザーのビームは3つに分割され 第5図に示すよう
にディスク上にも3つのスポットを形成するのである方
丈 第4図で3表 図面を見やすくするためにこの3つ
のビームうちの一つのみを示していも 第5図に示すディスク上の3つのスポットのうち真中の
スポットIH1V溝の山または谷において絞られ焦点制
御やトラッキング制御を行う。
In reality, the semiconductor laser beam is split into three by diffraction in the diffraction grating 5, and three spots are formed on the disk as shown in Figure 5. In order to do this, even if only one of these three beams is shown, it is narrowed down at the peak or valley of the IH1V groove, which is the middle spot among the three spots on the disk shown in FIG. 5, to perform focus control and tracking control.

他の1次回折光と一1次回折光のスポット12.13は
V溝の隣接斜面において絞られ これらの反射光を受光
する事で斜面上の信号を再生する。
Spots 12 and 13 of the other first-order diffracted light and the first-order diffracted light are focused on the adjacent slopes of the V-groove, and by receiving these reflected lights, the signal on the slope is reproduced.

この様に7面の2斜面の信号を同時に独立に再生できる
ので転送レートを2倍にできる。
In this way, the signals on two slopes of the seven sides can be reproduced simultaneously and independently, so the transfer rate can be doubled.

第4図の光学系はV溝ディスクの再生だけではなく、C
Dやビデオディスクなどの従来の平板ディスクの再生に
も用いられており、その再生方法を以下に説明すも 従来の平板ディスク上には やはり、3つのレーザース
ポット11〜13を第6図の様に配置せしめも 第7図
に従来の平板ディスクの場合の光検出器の光検出部の構
成と、ディスクからの3つの反射ビームを示す。反射ビ
ームllaでスポット位置の焦点制御と信号再生を行う
。受光部14と16の和信号から受光部15と17の和
信号を差し引いた信号で焦点制御をし 受光部14、1
5、16、17の和で信号再生する。また 受光部18
と19の受光量を比較する事でトラッキング制御できも この様にして、平板ディスクの場合における再生が行な
われるのであム さて、■溝方式において、高密度化のためにはV溝の山
と山の間隔を狭くして、 トラックピッチ(隣接斜面の
中心間隔)を小さくしたl、%  その時でL 再生し
ているV溝斜面と隣り合った斜面からの漏れ信号(クロ
ストーク)を小さくする必要があり、このためのV溝デ
ィスクの再生方法がいくつか提案されていも その代表
的な3つを以下に述べておく。
The optical system shown in Fig. 4 is not only used for reproducing V-groove discs, but also for playing C-groove discs.
It is also used to play back conventional flat disks such as D and video disks, and the playback method will be explained below. FIG. 7 shows the configuration of the photodetecting section of a photodetector in the case of a conventional flat disk and three reflected beams from the disk. Focus control of the spot position and signal reproduction are performed using the reflected beam lla. Focus control is performed using a signal obtained by subtracting the sum signal of light receiving parts 15 and 17 from the sum signal of light receiving parts 14 and 16.
The signal is reproduced by the sum of 5, 16, and 17. Also, the light receiving section 18
Tracking can be controlled by comparing the amount of light received by Narrow the gap between the peaks and reduce the track pitch (distance between the centers of adjacent slopes) l, % At that time, L It is necessary to reduce the leakage signal (crosstalk) from the V-groove slope being regenerated and the slope adjacent to it. Although several methods for playing V-groove discs have been proposed for this purpose, three representative methods are described below.

第1へ 特開昭56−58144号公報に番戴V溝の傾
斜面に垂直にレーザービームを照射して、その反射光の
すべてを受光する方法が提案されていも この場合 0
. 5以上の高NAの対物レンズではレーザービームの
入射角度は1度か2度以内でなければならず、それ以上
では収差の影響でレーザビームを十分に絞れず再生信号
品質は劣化すム またV溝の斜面の傾斜角度は少なくと
も5度以上必要であり、この方法は実用面の使用は極め
て限定されも 第2へ 特開昭57−105828号公報に提案された
ものがあa これ代 レーザービームは対物レンズの光
軸に略平行に入射させ、収差を小さくV溝上にレーザー
スポットを絞る事ができもここで、略平行とは対物レン
ズの光軸に1度以内とす、kV溝斜面は傾斜しているの
で、その反射光の方向は対物レンズの光軸から偏る。再
生するV溝斜面上にはレーザースポットの中心をトラッ
キングするので、大部分の光は再生斜面上に照射され 
その反射光の大部分も対物レンズの半内部分に返ってく
る。また 再生斜面と隣接する斜面からの反射光も対物
レンズの反対側の半内部分に偏る力(その隣接斜面には
レーザースポットの周辺だけが照射されているので、反
射光量も小さ(℃そこで、第8図(B)のV溝2の斜面
上のレーザースポットからの反射光が対物レンズ8を通
った後の分布は同図(A)の曲線りの様になる。この反
射光分布りは斜面上に信号ピットがない所にレーザース
ポットが照射された場合の例であって、大きな強度の反
射光部分と小さな強度の反射光部分に分かれる。この大
きい方の反射光部分は再生斜面からの反射光に相当し 
対物レンズの半分以上に広がっている。
First, even though JP-A-56-58144 proposes a method of irradiating a laser beam perpendicularly to the inclined surface of the V-groove and receiving all of the reflected light, in this case 0
.. For an objective lens with a high NA of 5 or more, the incident angle of the laser beam must be within 1 or 2 degrees; if it is greater than that, the laser beam cannot be narrowed down sufficiently due to the effects of aberrations, and the quality of the reproduced signal will deteriorate. The angle of inclination of the slope of the groove must be at least 5 degrees, and the practical use of this method is extremely limited. The laser spot can be focused on the V-groove by making it approximately parallel to the optical axis of the objective lens to minimize aberrations. Here, approximately parallel means that it is within 1 degree to the optical axis of the objective lens, and the slope of the kV groove is Since it is tilted, the direction of the reflected light is deviated from the optical axis of the objective lens. Since the center of the laser spot is tracked on the V-groove slope to be regenerated, most of the light is irradiated onto the regenerated slope.
Most of the reflected light also returns to the inner half of the objective lens. In addition, the reflected light from the slope adjacent to the reproduction slope is also biased toward the inner half on the opposite side of the objective lens (only the periphery of the laser spot is irradiated on the adjacent slope, so the amount of reflected light is small (°C). After the reflected light from the laser spot on the slope of the V-groove 2 in FIG. 8(B) passes through the objective lens 8, the distribution becomes like the curve shown in FIG. 8(A).This reflected light distribution is This is an example of a case where a laser spot is irradiated on a slope where there is no signal pit, and the reflected light is divided into a large intensity reflected light portion and a small intensity reflected light portion.This larger reflected light portion is reflected from the reproduction slope. corresponds to reflected light
It extends over half of the objective lens.

また 斜面上に信号ビットがある時は第8図の分布りの
各々の山の部分が減少し 反射光分布はその減少分だけ
周辺に散らばる力(特に図示する事は省略すも 第8図の反射光分布D(ム 第4図の反射光路のレンズ
系でビーム径は縮小される方丈 分布の形状は相似的に
保たれたままで光検出器10上に照射されも 特開昭5
7−105828号公報で(よ光軸の中心より少し外側
(第8図の矢印Xの範囲)において、反射光の干渉効果
により再生信号のクロストークは小さくなる事が解析的
に示され その領域の反射光を再生する方法が提案され
ている。
In addition, when there is a signal bit on a slope, each peak in the distribution in Figure 8 decreases, and the reflected light distribution scatters around the area by the amount of the decrease (not shown in Figure 8). Reflected light distribution D (Fig. 4) The beam diameter is reduced by the lens system of the reflected optical path in Figure 4. Even when the beam is irradiated onto the photodetector 10 while the shape of the distribution remains similar.
In Publication No. 7-105828, it was analytically shown that the crosstalk of the reproduced signal decreases due to the interference effect of reflected light slightly outside the center of the optical axis (range of arrow X in Figure 8). A method of regenerating the reflected light has been proposed.

以上が特開昭57−105828号公報に示された概要
であも 第3へ 特開昭58−102339号公報に提案された
方法耘 レーザービームを対物レンズの光軸に略平行に
入射させ、その反射光の多くもレンズの半分の部分に集
中する。その提案では対物レンズを透過する反射光につ
いては半円部分を受光する方法であり、ある程度クロス
トークを小さくできるが最適ではなl、% 発明が解決しようとする課題 従来において(よ レーザー光はいつも完全にコヒーレ
ンス(可干渉性)であるとの仮定に立脚している。
The above is the outline shown in JP-A No. 57-105828, and now on to the third method: The method proposed in JP-A-58-102339: Injecting a laser beam approximately parallel to the optical axis of an objective lens; Much of the reflected light is also concentrated on half of the lens. In that proposal, the reflected light that passes through the objective lens is received in a semicircular area, which can reduce crosstalk to some extent, but it is not optimal. It is based on the assumption of complete coherence.

確かに 相変化による記録すなわちV溝斜面上に信号ビ
ットを形成しない記録方式゛にお0て(よ斜面上には凹
凸がないのでコヒーレンスの仮定番よある程度成立つ。
It is true that in recording by phase change, that is, a recording method in which signal bits are not formed on the slope of the V-groove (since there are no irregularities on the slope, the assumption of coherence holds true to some extent).

まL v溝表面に光磁気材料を形成して記録により磁化
方向を変化させる時も同様であム しかLV溝溝面面上信号ピ・ントを形成する再生専用デ
ィスクの場合に(よ ディスク上の信号ビットは理想的
な形状に形成する事は困難であり、底面や周辺が少し乱
れている事もあり、反射光(よ完全にコヒーレンスとは
いえな(℃ 例えは 反射光の中には散乱によって乱された成分も多
く、コヒーレンスが部分的に破れ干渉性が低下する。散
乱光には特定の方向性(よなく、それら散乱によるクロ
ストークの成分は反射光全般に散らばり、むしろ均一に
近く含まれて0る。
The same is true when forming a magneto-optical material on the surface of the L-V groove and changing the magnetization direction by recording.In the case of a read-only disk in which a signal focus is formed on the surface of the L-V groove (Yo). It is difficult to form the signal bit in an ideal shape, and the bottom surface and the surrounding area may be slightly disordered, so the reflected light (although not completely coherent (℃)) There are many components that are disturbed by scattering, and the coherence is partially broken, resulting in a decrease in coherence.Scattered light has a specific direction (although the crosstalk components due to these scattering are scattered throughout the reflected light, and are rather uniform). Contains close to 0.

従って、反射光の一部分で特にクロスト−フカく最も小
さくなるという傾向は減少し むしろ反射光分布の一部
だけを受光する場合は再生信号は最大ではなくなり、高
い信号品質を得るには不利である。
Therefore, the tendency for cross-stiffness to be the smallest in a part of the reflected light distribution is reduced; on the contrary, when only a part of the reflected light distribution is received, the reproduced signal is no longer at its maximum, which is disadvantageous for obtaining high signal quality. .

そこで現実問題として斜面に信号ビットを形成したV溝
ディスクの最適な再生方法を提供する必要がある。
Therefore, as a practical matter, it is necessary to provide an optimal reproduction method for a V-groove disk in which signal bits are formed on the slope.

課題を解決するための手段 上記課題を解決するための手段(友 レーザービームを
対物レンズの光軸に略平行に入射させもそしてV溝斜面
からの反射光のう板 対物レンズを通過してくる全部分
ではないパ 対物レンズの手内部分以上通過してくる光
を受光する様になすことであム 作用 上記手段によれば レーザービームの入射方向は対物レ
ンズの光軸に略平行であり、ディスク面に絞られるレー
ザースポットの収差は小さくできる。
Means for solving the problem Means for solving the above problem (Friend) Even if the laser beam is made to be incident approximately parallel to the optical axis of the objective lens, the reflected light from the V-groove slope will pass through the objective lens. According to the above method, the incident direction of the laser beam is approximately parallel to the optical axis of the objective lens, The aberration of the laser spot focused on the disk surface can be reduced.

■溝斜面は傾斜しているので、その反射光の方向は対物
レンズの光軸から偏る。ディスク面からの反射光分布は
再生斜面からの大きな反射光部分と、再生斜面と隣接す
る斜面からの小さな反射光部分の2つに分かれも その
再生斜面からの反射光に相当する大きな反射光部分は対
物レンズの半分以上に広が4 斜面からの反射光の一部を光検出器の検出部に入射しな
い様に光学系を構成して、対物レンズを通過してくる反
射光の全部分ではないが対物レンズの手内部分以上を受
光する事により、再生斜面からの反射光に相当する部分
の殆どを受光する事になり、再生信号を最大に近くでき
る。その時にζよ クロストーク成分は反射光全般に均
一に含まれる傾向が高いので、再生信号の大きさに対す
るクロストークの量は相対的に低下し 再生信号の品質
を向上させる事ができるのであも 実施例 以下、実施例を図面と共に説明する。
■Since the groove slope is inclined, the direction of the reflected light is deviated from the optical axis of the objective lens. The distribution of reflected light from the disk surface can be divided into two parts: a large reflected light portion from the playback slope, and a small reflected light portion from the playback slope and the adjacent slope.A large reflected light portion corresponding to the reflected light from the playback slope spreads to more than half of the objective lens4.The optical system is configured so that a part of the reflected light from the slope does not enter the detection part of the photodetector, and the entire part of the reflected light that passes through the objective lens is However, by receiving light beyond the inner part of the objective lens, most of the part corresponding to the reflected light from the reproduction slope is received, and the reproduction signal can be maximized. At that time, the crosstalk component tends to be uniformly included in the overall reflected light, so the amount of crosstalk decreases relative to the size of the reproduced signal, and the quality of the reproduced signal can be improved. EXAMPLE Hereinafter, an example will be described with reference to the drawings.

斜面に信号ビットが形成されたV溝ディスクを再生して
、C/Nやクロストーク等の信号品質を測定して反射光
の最適な受光部分を検討しk 以下、その結果について
説明すも 第1図(A)に示す円はV溝斜面からの反射光ビームの
断面を示すものである。■溝の再生斜面の信号を再生す
る時には隣接する斜面の信号も混じってくム 第8図の
様な右上がりの斜面からの信号を再生する場合には 第
8図の円内の左側の半内部分に反射光の大部分が集中す
る。そこで、第1図(A)の縦線りの左側の反射光()
飄ツチング領域)を再生すム 縦線りの位置を反射光の
中心Oを通るξ軸との交点で表し その縦線りの位置に
対する再生斜面の再生信号Sと隣接斜面の再生信号Cの
測定値を示したものが第1図(B)であム 再生斜面と
隣接斜面の再生信号の差がクロストークとなる。
We played back a V-groove disc with signal bits formed on the slope, measured the signal quality such as C/N and crosstalk, and examined the optimal receiving area for reflected light.The results are explained below. The circle shown in FIG. 1 (A) shows the cross section of the reflected light beam from the V-groove slope. ■ Reproduction of a groove When reproducing a signal from a slope, the signal from an adjacent slope is also mixed in. When reproducing a signal from a slope rising to the right as shown in Figure 8, within the left half of the circle in Figure 8. Most of the reflected light is concentrated in this area. Therefore, the reflected light () on the left side of the vertical line in Figure 1 (A)
The position of the vertical line is represented by the intersection with the ξ axis passing through the center O of the reflected light, and the reproduction signal S of the reproduction slope and the reproduction signal C of the adjacent slope are measured for the position of the vertical line. The values are shown in Figure 1 (B).The difference between the reproduced signals of the reproduced slope and the adjacent slope becomes crosstalk.

解析シミュレーションに基ず〈従来例で(よ 最適な受
光領域は第8図の矢印Xの範囲の様に半円より少し小さ
い反射光の部分であった すなわち第1図で言えば 直
線りは点Oの左側にある場合が再生特性は良好であ4 
と言うのが従来の思想であっち それに対し 第1図によれは 半円より少し大きい反射
光の部分を受光して信号再生する方が再生信号振幅も太
きいしクロストークも小さくなる事が分かる。この領域
は 第8図の2つの部分に分かれた反射光分布りの大き
い方の反射光部分の殆どを受光する事に相当する。
Based on analytical simulations, in the conventional example, the optimal light-receiving area was a portion of the reflected light that was slightly smaller than a semicircle, as shown by the arrow X in Figure 8.In other words, in Figure 1, the straight line was a point. If it is on the left side of O, the reproduction characteristics are good.4
This is the conventional thinking, but Figure 1 shows that if a portion of the reflected light that is slightly larger than a semicircle is received and the signal is reproduced, the amplitude of the reproduced signal will be thicker and the crosstalk will be smaller. . This area corresponds to receiving most of the reflected light portion of the two parts shown in FIG. 8, which have a larger reflected light distribution.

解析に基づ〈従来例との上記の相違について簡単に説明
する。
Based on the analysis, the above differences from the conventional example will be briefly explained.

従来の解析にはレーザー光は常に完全にコヒーレンス(
可干渉性)という仮定が含まれていた確かにV溝斜面上
に凹凸がない場合にはこの仮定はある程度成立つ。
Conventional analysis requires that laser light is always perfectly coherent (
This assumption is true to some extent if there are no irregularities on the V-groove slope.

しかLV溝溝面面上信号ピットを形成する再生専用ディ
スクの場合に(よ ディスク上の信号ピットは理想的な
形状に形成する事は困難であり、底面や周辺が少し乱れ
ている事もあり、反射光の中には散乱によって乱された
成分も多1.%  そのために この反射光は完全にコ
ヒーレンスとはいえず、コヒーレンスが部分的に破れ干
渉性が低下すも それら散乱によるクロストークの成分
は特定の反射方向を持たず、むしろ反射光全般に均一に
近く含まれていも 従って、反射光の一部分で特にクロ
ストークが最も小さくなるという傾向は減少すム むし
へ 反射光分布の一部だけを受光する場合ζよ 再生信
号は最大ではなく高い信号品質を得るには不利であも そこで、■溝斜面からの反射光分布には 第8図に示す
分布りの様jQ  再生斜面からの反射光に相当する大
きな部分と、再生斜面に隣接する斜面からの反射光に相
当する小さな部分があり、その大きい方の反射光部分の
殆どを受光する事で、再生信号を最大に近くできも そ
の時に(よ クロストーク成分は反射光全般に均一に含
まれる傾向が高いので、再生信号の大きさに対するクロ
ストークの量は相対的に低下し 再生信号の品質は向上
させる事ができも 即板 対物レンズを透過する反射光の全部ではない力(
対物レンズの半内部分より多くを受光すれば高い品質の
信号が得られるのである。
However, in the case of playback-only discs that form signal pits on the LV groove surface, it is difficult to form the signal pits on the disc in an ideal shape, and the bottom and surrounding areas may be slightly disordered. , there are many components in the reflected light that are disturbed by scattering. Therefore, this reflected light cannot be said to be completely coherent, and the coherence is partially broken and the coherence is reduced. Even though the component does not have a specific direction of reflection, and rather is almost uniformly included in the overall reflected light, the tendency for crosstalk to be lowest in a part of the reflected light is reduced. In the case of receiving only There is a large part corresponding to the reflected light and a small part corresponding to the reflected light from the slope adjacent to the reproduction slope, and by receiving most of the larger reflected light part, the reproduction signal can be maximized. At that time, crosstalk components tend to be uniformly included in the overall reflected light, so the amount of crosstalk decreases relative to the size of the reproduced signal, and the quality of the reproduced signal can be improved. Not all of the power of the reflected light passing through the objective lens (
If more light is received than in the inner half of the objective lens, a high quality signal can be obtained.

な耘 上記実施例における再生光学系を詳細に説明すも 上記実施例の光学系の構成図は第4図と同様である。The reproduction optical system in the above embodiment will be explained in detail. The configuration diagram of the optical system of the above embodiment is the same as that shown in FIG.

第4図で半導体レーザー4の波長をλ、その発光点と回
折格子5の間隔をdとし コリメートレンズ7の焦点距
離をfl、対物レンズ8の焦点距離をf2とすム 回折
格子のピッチをpとすれI′L回折格子を透過後の0久
 1次 −1次のレーザー光は A= (λ/ p )  ・d     ・・・(1)
の距離を隔てた点から発光するように分割されディスク
上には B= (f 2/f 1)  ・A   ・・・(2)
の間隔を隔ててスポット状に絞られる。
In Fig. 4, the wavelength of the semiconductor laser 4 is λ, the distance between its emission point and the diffraction grating 5 is d, the focal length of the collimating lens 7 is fl, the focal length of the objective lens 8 is f2, and the pitch of the diffraction grating is p. After passing through the I'L diffraction grating, the 0th -1st order laser beam is A = (λ/p) ・d...(1)
B = (f 2 / f 1) ・A ... (2)
It is squeezed into spots at intervals of .

ディスクから反射したレーザー光はハーフミラ−6で入
射光路から分離されも シリンドリカルレンズ9による
非点収差で反射ビーム形は変化する方丈 3つのビーム
が分離され かス それらのビーム形が円形になる位置
に光検出器10を配置すム 光検出器上の反射光ビーム
の直径は小さいのて その位置はコリメートレンズ7に
よる焦点位置に近くな43つの反射ビームの中心間隔は
ディスク上のスポット間隔のおよそ(fl/f2)倍で
あり、およそ(1)式のAの値になる。
The laser beam reflected from the disk is separated from the incident optical path by the half mirror 6, but the shape of the reflected beam changes due to astigmatism caused by the cylindrical lens 9.The three beams are separated and then moved to a position where their beam shapes become circular. Since the diameter of the reflected light beam on the photodetector is small, the distance between the centers of the 43 reflected beams is approximately the distance between the spots on the disk. fl/f2) times, which is approximately the value of A in equation (1).

光検出器上の反射光の中心間隔は 第2図の様に従来デ
ィスクより大きくなるように光学系を構成し 反射ビー
ム12a、 13aの一部が検出部に入射しない様にす
ム 焦点制御(友 従来の場合と同様に 反射ビーム11a
を用いて受光部14と16の和信号から受光部15と1
7の和信号を差し引いた信号で行う。
The optical system is configured so that the distance between the centers of the reflected light on the photodetector is larger than that of the conventional disk as shown in Fig. 2, and the focus control ( Friend: As in the conventional case, the reflected beam 11a
From the sum signal of the light receiving parts 14 and 16, the light receiving parts 15 and 1 are
This is done using the signal obtained by subtracting the sum signal of 7.

非点収差方式の焦点制御では3つの反射ビームは光検出
器面で像が90度回転するので、光検出器上での信号ピ
ットのトラック方向の像は受光部14と17、あるい1
i15と16を分割する線に平行であム 従って、■溝
ディスクのトラッキング制御は受光部14と15の和信
号から受光部16と17の和信号を差し引いた信号で行
う事ができる。
In the astigmatic focus control, the images of the three reflected beams are rotated by 90 degrees on the photodetector surface, so the image of the signal pit in the track direction on the photodetector is the same as that of the light receiving sections 14 and 17 or 1.
It is parallel to the line dividing i15 and 16. Therefore, tracking control of the groove disk can be performed using a signal obtained by subtracting the sum signal of light receiving sections 16 and 17 from the sum signal of light receiving sections 14 and 15.

この様に構成された光学系では 前述した様に非点収差
方式の焦点制御では3つの反射ビームは光検出器面で像
が90度回転するので、光検出器上の3つの反射光の中
心間隔を第7図の従来ディスクより大きくして、■溝斜
面からの反射光(12a、 13a)の一部を検出部に
入射しない様にでき、対物レンズを透過する反射光の全
部ではないが半分以上受光して第1図に示した最適な領
域を再生する事になり、クロストークの小さい高い品質
の再生信号を得る事ができも 光検出器上の反射光の間隔(よ 前述した様番二半導体
レーザー4の波長λ、その発光点と回折格子5の間隔d
、回折格子のピッチpとして、およそ(λ/p)  ・
dとなるので、従って、半導体レーザー4の発光点と回
折格子5の間隔dを従来のディスクの光学系よりより大
きくするだけで大きくできる。しかL 第2図の構成で
も受光部18と19の受光量を比較して、従来のディス
クにもトラッキングできも 発明の効果 以上の通りであって、本発明によれ(戴 レーザービー
ムを対物レンズの光軸に略平行に入射させるので、ディ
スク上のスポットの収差を小さくでき、またクロストー
クの小さい高品質の信号を再生できる。
In an optical system configured in this way, as mentioned above, in astigmatic focus control, the images of the three reflected beams are rotated 90 degrees on the photodetector surface, so the center of the three reflected beams on the photodetector is By making the spacing larger than that of the conventional disk shown in Fig. 7, it is possible to prevent part of the reflected light (12a, 13a) from the groove slopes from entering the detection section, but not all of the reflected light that passes through the objective lens. By receiving more than half of the light and reproducing the optimal region shown in Figure 1, we can obtain a high quality reproduced signal with low crosstalk. The wavelength λ of the second semiconductor laser 4, the distance d between its light emitting point and the diffraction grating 5
, the pitch p of the diffraction grating is approximately (λ/p) ・
Therefore, the distance d between the light emitting point of the semiconductor laser 4 and the diffraction grating 5 can be increased simply by making the distance d larger than that of the conventional disk optical system. However, even with the configuration shown in FIG. 2, the amount of light received by the light receiving sections 18 and 19 is compared, and it is found that even though the conventional disk can be tracked, the effect is more than the effect of the invention. Since the beam is incident approximately parallel to the optical axis of the disk, it is possible to reduce the aberration of the spot on the disk and to reproduce a high quality signal with low crosstalk.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例におけるV溝ディスクからの反
射光の再生領域と信号レベルの関係医第2図は実施例に
おけるV溝ディスク用の光検出器の構成とその上への反
射光の照射状態を示す交第3図は実施例のV溝ディスク
の斜視医 第4図は実施例の再生光学系の構成医 第5
図は実施例のV溝ディスク上のレーザースポットの配置
1第6図は従来の平板ディスク上のレーザースポットの
分布医 第7図は従来の光検出器の構成とその上の反射
光の照射状態を示す医 第8図は従来におけるV溝斜面
からの反射光分布を用いた再生方法の説明図である。 1・・・透明基板 2・・・VIL  3・・・ピット
、 4・・・半導体レーザ、 5・・・回折格子、 8
・・・対物レンX10・・・光検出器 第1図 S−a本 ター イ寡 号 C−・−浅札(を号 //L 12a、 /3L−Tc Jt光74.1!、
 16.77.1B、 /9・・・受矢部第 図 第 図 第 図 第 図 ○ ○ ○ ○ ○ ○ ○ ○
FIG. 1 shows the reproduction area and signal level of the reflected light from the V-groove disk in an embodiment of the present invention. FIG. 2 shows the configuration of a photodetector for the V-groove disk in the embodiment and the light reflected thereon. Fig. 3 shows the perspective view of the V-groove disc of the embodiment. Fig. 4 shows the configuration of the reproduction optical system of the embodiment.
The figure shows the arrangement of the laser spot on the V-groove disk of the embodiment.1 Figure 6 shows the distribution of the laser spot on the conventional flat disk.Figure 7 shows the configuration of the conventional photodetector and the irradiation state of the reflected light on it. FIG. 8 is an explanatory diagram of a conventional reproduction method using the distribution of reflected light from the V-groove slope. 1... Transparent substrate 2... VIL 3... Pit 4... Semiconductor laser 5... Diffraction grating 8
...Objective lens
16.77.1B, /9...Year section diagram diagram diagram diagram diagram diagram ○ ○ ○ ○ ○ ○ ○ ○

Claims (2)

【特許請求の範囲】[Claims] (1)光ディスク上にその半径方向の断面がV字形であ
る溝を設け、そのV溝の斜面に信号を記録し、対物レン
ズでディスク上にレーザーを照射して、その反射光を光
検出器で受光する事で信号を再生する方法において、前
記反射光の一部を前記光検出器の光検出部に照射させな
い事を特徴とする光ディスク再生方法。
(1) A groove whose radial cross section is V-shaped is provided on the optical disk, a signal is recorded on the slope of the V-groove, a laser is irradiated onto the disk with an objective lens, and the reflected light is detected by a photodetector. 1. An optical disc reproducing method characterized in that a part of the reflected light is not irradiated onto a photodetecting section of the photodetector.
(2)レーザーの光源と対物レンズとの間に回折格子を
挿入してディスク上に複数のスポットを形成し、光検出
器はその複数スポットの各々を受光する光検出部から成
り、V溝斜面からの反射光の一部を前記光検出部に照射
させない様に 回折格子と前記レーザー光源との距離を
設定する事を特徴とする請求項1記載の光ディスク再生
方法。
(2) A diffraction grating is inserted between the laser light source and the objective lens to form multiple spots on the disk, and the photodetector consists of a photodetecting section that receives light from each of the multiple spots. 2. The optical disk reproducing method according to claim 1, further comprising setting a distance between the diffraction grating and the laser light source so that a part of the reflected light from the laser beam is not irradiated onto the photodetecting section.
JP2207427A 1990-07-24 1990-08-03 Method for reproduction of optical disk Pending JPH0492214A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2207427A JPH0492214A (en) 1990-08-03 1990-08-03 Method for reproduction of optical disk
US07/734,543 US5268886A (en) 1990-07-24 1991-07-23 Method and apparatus for reproducing signals using an optical disk having V-shaped grooves
CA002047606A CA2047606C (en) 1990-07-24 1991-07-23 Optical disk reproducing method and optical disk reproducing apparatus
DE69122452T DE69122452T2 (en) 1990-07-24 1991-07-24 Optical disc reproducing method and optical disc reproducing apparatus
EP91112364A EP0468468B1 (en) 1990-07-24 1991-07-24 Optical disk reproducing method and optical disk reproducing apparatus
KR1019910012677A KR950005963B1 (en) 1990-07-24 1991-07-24 Method of reproducing for optical disk & optical detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2207427A JPH0492214A (en) 1990-08-03 1990-08-03 Method for reproduction of optical disk

Publications (1)

Publication Number Publication Date
JPH0492214A true JPH0492214A (en) 1992-03-25

Family

ID=16539578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2207427A Pending JPH0492214A (en) 1990-07-24 1990-08-03 Method for reproduction of optical disk

Country Status (1)

Country Link
JP (1) JPH0492214A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102339A (en) * 1981-12-10 1983-06-17 デイスコビジヨン・アソシエイツ Optically readable recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102339A (en) * 1981-12-10 1983-06-17 デイスコビジヨン・アソシエイツ Optically readable recording medium

Similar Documents

Publication Publication Date Title
US4905214A (en) Method for illuminating adjoining slants of an optical disk having a V-shaped groove
US6229771B1 (en) Method and apparatus for generating focus error signals in a multi-beam optical disk drive
US4949330A (en) Apparatus for pre-forming servo-track portions and sector addresses having the same predetermined width
KR950005963B1 (en) Method of reproducing for optical disk & optical detector
JPH0481816B2 (en)
JPH06274896A (en) Optical disk
JPH06195744A (en) Optical recording/reproducing apparatus, and optical recording medium
JPH0320911Y2 (en)
JPH0492214A (en) Method for reproduction of optical disk
JPH0520691A (en) Optical disk reproducing method and photodetector
JPH04182935A (en) Optical disk reproducing method
JPH0482018A (en) Optical disk reproducing method and photodetector
US5612937A (en) Optical pickup apparatus having a bisected optical receiving element for tracking control
JPS6066332A (en) Recording and reproducing method of optical disc and said optical disc
JPH0682473B2 (en) Optical information reproducing device
JPS5958639A (en) Optical disc
JPS63247920A (en) Optical information reader
JPS6018832A (en) Optical informaton disk and its recording and reproducing device
JP2522033B2 (en) Recordable and reproducible optical disc
JPS58155528A (en) Optical disc recording and reproducing system, optical disc and its manufacture
KR0165596B1 (en) Optic disk
JPS62177732A (en) Method and device for optical information recording and reproducing
JPH0644605A (en) Optical pickup
JPH04301221A (en) Optical recording disk and reproducing device
JPH0362326A (en) Optical recording/reproducing device