JPH04182935A - Optical disk reproducing method - Google Patents

Optical disk reproducing method

Info

Publication number
JPH04182935A
JPH04182935A JP2313505A JP31350590A JPH04182935A JP H04182935 A JPH04182935 A JP H04182935A JP 2313505 A JP2313505 A JP 2313505A JP 31350590 A JP31350590 A JP 31350590A JP H04182935 A JPH04182935 A JP H04182935A
Authority
JP
Japan
Prior art keywords
signal
reflected light
light
groove
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2313505A
Other languages
Japanese (ja)
Inventor
Michiyoshi Nagashima
道芳 永島
Fumiaki Ueno
植野 文章
Toshinori Kishi
貴志 俊法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2313505A priority Critical patent/JPH04182935A/en
Priority to CA002047606A priority patent/CA2047606C/en
Priority to US07/734,543 priority patent/US5268886A/en
Priority to KR1019910012677A priority patent/KR950005963B1/en
Priority to EP91112364A priority patent/EP0468468B1/en
Priority to DE69122452T priority patent/DE69122452T2/en
Publication of JPH04182935A publication Critical patent/JPH04182935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To diminish aberration of a laser spot converged on a disk surface by making a laser beam incident approximately parallel to an optical axis of an objective lens and receiving all the light transmitted through the objective lens out of reflected light from V-groove slant surfaces. CONSTITUTION:A spot position is controlled by a reflected beam 21a. In this case, a focus control is performed by a signal obtained by subtracting a sum signal of light receiving parts 32 and 34 from a sum signal of light receiving parts 31 and 32. That is, under the focus control of an astigmatic system, three reflected beams are rotated with their images on the surface of a photodetector by 90 deg., so that the image of a signal pit in the track direction on the photodetector is parallel to a line dividing the light receiving parts 31 and 34 or 32 and 33, and hence a tracking control of the V-grooved disk is performed by a signal obtained by subtracting a sum signal of the light receiving parts 33 and 34 from a sum signal of the light receiving parts 31 and 32. Reflected beams 22a and 23a are the reflected light from the adjacent V-groove slant surfaces, and all of them are received by the light receiving parts 35 and 36 to reproduce a signal. By this method, the aberration of the spot on the disk can be diminished.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ V溝刃式を用いた光ディスクの再生方法に
関すも 従来の技術 光ディスクの高密度化に対してV溝刃式が提案されてい
る(例えば 特開昭56−58144号公報 特開昭5
7−105828号公報 特開昭58−102339号
公報など)。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a method for reproducing an optical disc using a V-groove blade type. Conventional technology The V-groove blade type has been proposed for increasing the density of optical discs. (For example, JP-A-56-58144, JP-A-56-58144,
7-105828, JP-A-58-102339, etc.).

第2図はV溝ディスクのレプリカ断面の斜視図を示して
いム 1は透明基板 2はV溝であり、その斜面上に信
号ビット3が形成されていも信号再生用のレーザーは透
明基板1側よりV溝表面に照射されると共く v溝表面
に形成された反射膜(図示せず)で透明基板1側へ反射
されも再生光学系を第3図を用いて簡単に説明すも半導
体レーザー11からの光は回折格子12、ハーフミラ−
13を通り、コリメートレンズ14で平行光になり、対
物レンズ15でV溝ディスク上に絞られも ディスクか
らの反射光は対物レンズ15、コリメートレンズ14を
再び通り、ハーフミラ−13で反射膜 シリンドリカル
レンズ16で非点収差を与えられて光検出器17に照射
されも この光検出器からの信号でディスク上のレーザースポッ
トの位置制御と記録信号の再生を行う。
Figure 2 shows a perspective view of a cross section of a replica of a V-groove disk. 1 is a transparent substrate, 2 is a V-groove, and even though the signal bit 3 is formed on the slope of the V-groove, the laser for signal reproduction is on the transparent substrate 1 side. The reproducing optical system will be briefly explained with reference to FIG. 3. The light from the laser 11 passes through a diffraction grating 12 and a half mirror.
13, becomes parallel light by the collimating lens 14, and is focused onto the V-groove disc by the objective lens 15.The reflected light from the disc passes through the objective lens 15 and the collimating lens 14 again, and is then turned into a parallel light by the half mirror 13. 16, the laser beam is given astigmatism and irradiated onto a photodetector 17, and the signal from this photodetector is used to control the position of the laser spot on the disk and reproduce the recorded signal.

回折格子12により半導体レーザー11のビームは3つ
に分割され 第4図に示す様にディスク上にも3つのス
ポットが形成されも 第3図に(上図を見やすくするた
めに 1つのビームのみを示していも 第4図の真中のスポット21はV溝の山または谷位置に
絞られ焦点制御やトラッキング制御のために用いられも 他の1次回折光と一1次回折光のスポ・ント22.23
はV溝の隣接斜面に絞られ これらの反射光を受光する
事で斜面上の信号を再生すム 2斜面の信号を同時に独
立に再生できるので転送レートを2倍にできも 第3図の光学系はV溝ディスクの再生だけではなく、C
Dやビデオディスクなどの従来の平板ディスクの再生に
も用いられているので、その再生方法を簡単に説明すも 従来のディスク上にも3つのレーザースポットを第5図
の様に配置すム 第6図に従来ディスクに対する光検出器17の光検出部
の構成と、ディスクからの3つの反射ビームを示す。
The beam of the semiconductor laser 11 is split into three by the diffraction grating 12, and three spots are formed on the disk as shown in Figure 4. Although the spot 21 in the middle of FIG. 4 is focused on the peak or valley position of the V-groove and is used for focus control and tracking control, it is also used as a spot 22 and 23 for other 1st-order diffracted light and 1st-order diffracted light.
is focused on the adjacent slopes of the V-groove, and by receiving these reflected lights, the signal on the slope is reproduced.Since the signals on the two slopes can be reproduced simultaneously and independently, the transfer rate can be doubled. The system not only plays V-groove discs, but also plays C-groove discs.
Since it is also used to play back conventional flat disks such as D and video disks, the playback method will be briefly explained. FIG. 6 shows the configuration of the photodetector section of the photodetector 17 for a conventional disk and three reflected beams from the disk.

ビーム21の反射ビーム21aでスポット位置の制御を
行う。受光部31と33の和信号から受光部32と34
の和信号を差し引いた信号で焦点制御をすa 受光部3
1、32、33、34の和で信号再生L  35と36
の受光量を比較する事でトラッキングすム さて、高密度化のためにV溝の山と山の間隔を狭くして
、 トラックピッチ(隣接斜面の中心間隔)を小さくし
たl、Xo  その時でL 再生しているV溝斜面と隣
り合った斜面からの漏れ信号(クロストーク)を小さく
する必要があり、■溝ディスクの再生方法がいくつか提
案されていも その代表的な3つを以下に述べておく。
The spot position is controlled by the reflected beam 21a of the beam 21. From the sum signal of the light receiving parts 31 and 33, the light receiving parts 32 and 34
Focus control is performed using the signal obtained by subtracting the sum signal of
Signal reproduction L with the sum of 1, 32, 33, 34 35 and 36
Tracking is accomplished by comparing the amount of light received by L, It is necessary to reduce leakage signals (crosstalk) from slopes adjacent to the V-groove slope being played, and although several methods have been proposed for playing the V-groove disc, three representative methods are described below. I'll keep it.

第1に 特開昭56−58144号公報に(よV溝の傾
斜面に垂直にレーザービームを照射して、その反射光の
すべてを受光する方法が提案されていも この場合、 0.5以上の高NAの対物レンズではレー
ザービームの入射角度は1度か2度以内でなければなら
ず、それ以上では収差が発生して十分に絞れず再生信号
品質は劣化すム −3v溝の斜面の傾斜角度は少なくとも5度以上必要で
あるた取 この方法の実現は極めて困難であム 第2に 特開昭57−105828号公報に提案された
方法を説明すも レーザービームは対物レンズの光軸に略平行に入射させ
、収差を小さくv溝上にレーザースポットを絞る事がで
きも ここで、略平行とは対物レンズの光軸に1度以内
とすa ■溝斜面は傾斜しているので、その反射光の方向は対物
レンズの光軸から偏る。再生する■溝斜面上にはレーザ
ースポットの中心をトラッキングするので、大部分の光
は再生斜面上に照射されその反射光の大部分も対物レン
ズの半内部分に返ってくム また 再生斜面と隣接する斜面からの反射光も対物レン
ズの反対側の半内部分に偏る力叉 その隣接斜面にはレ
ーザースポットの周辺だけが照射されているので、反射
光量も小さt〜 第7図にV溝斜面上のレーザースポットからの反射光が
対物レンズ15を通った後の分布りを示す。
First, Japanese Patent Application Laid-Open No. 56-58144 proposes a method in which a laser beam is irradiated perpendicularly to the inclined surface of a V-groove and all of the reflected light is received. With a high NA objective lens, the incident angle of the laser beam must be within 1 or 2 degrees; if it exceeds this angle, aberrations will occur and the reproduction signal quality will deteriorate due to insufficient focusing. The angle of inclination must be at least 5 degrees. However, it is extremely difficult to implement this method.Secondly, although the method proposed in JP-A-57-105828 is explained, the laser beam is aligned with the optical axis of the objective lens. It is also possible to focus the laser spot on the V groove with small aberrations by making the laser incident approximately parallel to the V groove. Here, approximately parallel means within 1 degree to the optical axis of the objective lens. The direction of the reflected light is deviated from the optical axis of the objective lens.Since the center of the laser spot is tracked on the reproducing groove slope, most of the light is irradiated onto the reproducing slope, and most of the reflected light is also directed toward the objective lens. Also, the reflected light from the slope adjacent to the reproducing slope is biased toward the inner half of the objective lens.Only the periphery of the laser spot is illuminated on the adjacent slope. , the amount of reflected light is also small. FIG. 7 shows the distribution of the reflected light from the laser spot on the V-groove slope after passing through the objective lens 15.

この反射光分布りは斜面上に信号ピットがない所にレー
ザースポットが照射された場合の例であり、大きな反射
光部分と小さな反射光部分に分かれも この大きい方の反射光部分は再生斜面からの反射光に相
当し 対物レンズの半分以上に広がっていも 斜面上に信号ピットがある時は第7図の分布りの各々の
山の部分が減少し 反射光分布はその減少分だけ周辺に
散らばる力丈 特に図示する事は省略すも 第7図の反射光分布Dζよ 第3図の反射光路のレンズ
系でビーム径は縮小される力(相似的な分布のまま光検
出器17上に照射されも 特開昭57−105828号公報でζよ 光軸の中心よ
り少し外側(第7図の矢印Xの範囲)において、反射光
の干渉効果により再生信号のクロストークは小さくなる
事が解析的に示され その領域の反射光を再生する方法
が提案されていも第3く 特開昭58−102339号
公報に提案された方法L レーザービームを対物レンズ
の光軸に略平行に入射させ、その反射光の多くもレンズ
の半分の部分に集中すも その提案では対物レンズを透
過する反射光については半内部分を受光する方法であム 発明が解決しようとする課題 従来の発明は レーザー光はいつも完全にコヒーレンス
(可干渉性)として考えられていム■溝斜面上には信号
ビットを作ら′¥ V溝表面に相変化材料薄膜を形成し
信号記録により記録部の反射率のみを変化させる場合に
ζよ 斜面上には凹凸はなくコヒーレンスの仮定はある
程度成立つ。
This reflected light distribution is an example of when a laser spot is irradiated to a place where there is no signal pit on the slope, and it is divided into a large reflected light part and a small reflected light part, but this larger reflected light part is from the reproduction slope. Even if the signal pit spreads over more than half of the objective lens, if there is a signal pit on the slope, each peak in the distribution in Figure 7 will decrease, and the reflected light distribution will be scattered around by the amount of the decrease. Although not shown in detail, the reflected light distribution Dζ in Fig. 7 is the force that reduces the beam diameter in the lens system of the reflected optical path in Fig. 3 (irradiation onto the photodetector 17 with a similar distribution). However, in Japanese Patent Application Laid-Open No. 57-105828, it is analytically shown that the crosstalk of the reproduced signal becomes small slightly outside the center of the optical axis (range of arrow X in Fig. 7) due to the interference effect of reflected light. The third method proposed in JP-A-58-102339 is method L, in which a laser beam is made approximately parallel to the optical axis of the objective lens. Most of the reflected light is concentrated in the half of the lens, but the proposed method is to receive the reflected light that passes through the objective lens in the inner half. It is always considered to be completely coherent. ■ A signal bit is created on the slope of the groove. A case in which a thin film of phase change material is formed on the V-groove surface and only the reflectance of the recorded area is changed by signal recording. There are no irregularities on the slope, and the assumption of coherence holds true to some extent.

まt−■溝表面に光磁気材料を形成して記録により磁化
方向を変化させる時も同様であもしかLV溝溝面面上信
号ビットを形成する再生専用ディスクの場合には ディ
スク上の信号ビットは理想的な形状に形成する事は困難
であり、底面や周辺が少し乱れている事もあり、反射光
は完全にコヒーレンスとはいえなし−実際に斜面に信号
ビットを形成したV溝ディスクを再生して最適な再生方
法を検討する必要があム 反射光の中には散乱によって乱された成分も多く、コヒ
ーレンスが部分的に破れ干渉性が低下すも 散乱光には
特定の方向性はなく、それら散乱によるクロストークの
成分は反射光全般に散らばり、むしろ均一に近く含まれ
ていも 従って、反射光の一部分で特にクロストークが最も小さ
くなるという傾向は減少すも むしへ 反射光分布の一部だけを受光する場合は再生信
号は最大ではなくなり、高い信号品質を得るには不利で
あa 課題を解決するための手段 レーザービームを対物レンズの光軸に略平行に入射させ
、■溝斜面からの反射光の対物レンズを透過する全部を
受光すム 作用 レーザービームの入射方向は対物レンズの光軸に略平行
であり、ディスク面に絞られるレーザースポットの収差
は小さくできも ■溝斜面は傾斜しているので、その反射光の方向は対物
レンズの光軸から偏も ディスク面からの反射光分布は
再生斜面からの大きな反射光部分と、再生斜面と隣接す
る斜面からの小さな反射光部分の2つに分かれも その
再生斜面からの反射光に相当する大きな反射光部分は対
物レンズの半分以上に広がも 反射光の全部分を受光すれば 再生斜面と隣接する斜面
からの小さな反射光部分に含まれるクロストーク部分も
再生する事になる力丈 その部分の光量は小さいので、
ディジタル信号などの再生には許容できるクロストーク
であム 実施例 斜面に信号ビットが形成されたV溝ディスクを再生して
、信号品質(C/Nやクロストーク)を測定して反射光
の最適な受光部分を検討した その実験結果について説
明すも 再生斜面の信号を再生する時には隣接する斜面の信号も
混じってくん 第1図(a)の円はV溝斜面からの反射
光を示す。
The same is true when forming a magneto-optical material on the groove surface and changing the magnetization direction by recording.In the case of a read-only disk in which signal bits are formed on the LV groove surface, the signal bits on the disk. It is difficult to form it into an ideal shape, and the bottom surface and periphery may be slightly disordered, so the reflected light cannot be said to be completely coherent. It is necessary to reproduce the light and consider the optimal reproduction method.There are many components in the reflected light that are disturbed by scattering, and the coherence is partially broken and the coherence is reduced.However, the scattered light does not have a specific direction. However, the crosstalk components due to these scatterings are scattered throughout the reflected light, and even though they are almost uniformly included, the tendency for the crosstalk to be the smallest in a portion of the reflected light decreases. If only a portion of the light is received, the reproduced signal will not be at its maximum, which is disadvantageous for obtaining high signal quality.a Means for solving the problem Inject the laser beam approximately parallel to the optical axis of the objective lens, The direction of incidence of the laser beam is approximately parallel to the optical axis of the objective lens, and the aberration of the laser spot focused on the disk surface can be small. is tilted, so the direction of the reflected light is also offset from the optical axis of the objective lens.The distribution of reflected light from the disk surface consists of a large reflected light portion from the playback slope and a small reflected light portion from the slope adjacent to the playback slope. Even if it is divided into two parts, the large reflected light part corresponding to the reflected light from the reproduction slope will spread over more than half of the objective lens, but if the entire part of the reflected light is received, the small reflection from the reproduction slope and the adjacent slope will occur. This will also reproduce the crosstalk part included in the light part.The amount of light in that part is small, so
The crosstalk is acceptable for reproducing digital signals.Example: A V-groove disc with signal bits formed on the slope is played back, and the signal quality (C/N and crosstalk) is measured to optimize the reflected light. We investigated the light-receiving area and explained the experimental results.However, when reproducing the signal from the reproduction slope, the signal from the adjacent slope is also mixed.The circle in Fig. 1(a) shows the reflected light from the V-groove slope.

第7図の様な右上がりの斜面からの信号を再生する場合
に&友 第7図の円内の左側の半内部分に反射光の大部
分が集中すも そこで縦線りの左側の反射光(ハツチン
グ領域)を再生すも縦線りの位置を反射光の中心0を通
るξ軸との交点で表も その縦線りの位置に対する再生
斜面の再生信号Sと隣接斜面の再生信号Cの測定値を第
1図(b)に示す。再生斜面と隣接斜面の再生信号の差
がクロストークとなム 解析シミュレーションでζよ 最適な受光領域は第7図
の矢印Xの範囲の様に半円より少し小さい反射光の部分
であっ九 それに対し 実際の実験では半円より少し大きい反射光
の部分を受光して信号再生する方が再生信号振幅も大き
いしクロストークも小さくなる事が分かも この領域番
ヨ  第7図の2つの部分に分かれた反射光分布りの大
きい方の反射光部分の殆どを受光する事に相当すa 解析と実験結果が異なる理由について、簡単に説明すも 従来の解析にはレーザー光はいつも完全にコヒーレンス
(可干渉性)という仮定が含まれてい九■溝斜面上には
信号ビットを作らず、■溝表面に相変化材料を蒸着し信
号記録により記録部の反射率のみを変化させる場合に(
よ v溝斜面上にはコヒーレンスを乱す凹凸はないので
仮定はある程度成立板 解析結果は実験結果を説明でき
もしかLV溝溝面面上信号ビットを形成する再生専用デ
ィスクの場合に1よ ディスク上の信号ビットは理想的
な形状に形成する事は困難であり、底面や周辺が少し乱
れている事もあり、反射光の中には散乱によって乱され
た成分も多t〜 そのためへ 反射光は完全にコヒーレ
ンスとはいえず、コヒーレンスが部分的に破れ干澁性が
低下すムそれら散乱によるクロストークの成分は特定の
反射方向を持たず、むしろ反射光全般に均一に近く含ま
れていも 従って、反射光の一部分で特にクロストーク
が最も小さくなるという傾向は減少すも むしへ 反射光分布の一部だけを受光する場合は 再生
信号は最大ではなく高い信号品質を得るには不利であム V溝斜面からの反射光分布に(よ 再生斜面からの反射
光に相当する大きな部分と、再生斜面に隣接する斜面か
らの反射光に相当する小さな部分がある(第7図の分布
D)。
When reproducing a signal from a slope that slopes upward to the right as shown in Figure 7, most of the reflected light is concentrated in the left half of the circle in Figure 7. Therefore, the reflection on the left side of the vertical line To reproduce the light (hatched area), the position of the vertical line is also plotted at the intersection with the ξ axis passing through the center 0 of the reflected light.The reproduction signal S of the reproduction slope and the reproduction signal C of the adjacent slope for the position of the vertical line The measured values are shown in FIG. 1(b). The difference between the reproduced signal of the reproduced slope and the adjacent slope is considered to be crosstalk. According to the analysis simulation, the optimal light receiving area is the part of the reflected light that is slightly smaller than a semicircle, as shown by the arrow X in Figure 7. On the other hand, in actual experiments, it has been found that the amplitude of the reproduced signal is larger and the crosstalk is smaller when the signal is regenerated by receiving a portion of the reflected light that is slightly larger than a semicircle. This corresponds to receiving most of the reflected light portion of the larger reflected light distribution.A The reason why the analysis and experimental results differ is briefly explained, but in conventional analysis, laser light is always completely coherent ( (coherence).In the case where no signal bit is created on the slope of the nine-groove groove, and only the reflectance of the recorded area is changed by recording a signal by depositing a phase change material on the surface of the groove, (
Since there are no irregularities on the V-groove slope that disturb the coherence, the assumption holds true to some extent.The analysis results can explain the experimental results, and may be true in the case of a read-only disc that forms signal bits on the LV groove surface. It is difficult to form a signal bit into an ideal shape, and the bottom and surrounding areas may be slightly disordered, so there are many components in the reflected light that are disturbed by scattering. Therefore, the reflected light is perfect. It cannot be said that there is coherence, but the coherence is partially broken and the drying property is reduced.The crosstalk components due to these scatterings do not have a specific direction of reflection, but rather are almost uniformly included in the overall reflected light. The tendency for crosstalk to be lowest in a portion of the reflected light is decreasing.If only a portion of the reflected light distribution is received, the reproduced signal is not at its maximum, which is disadvantageous for obtaining high signal quality. The distribution of reflected light from the groove slope has a large portion corresponding to the reflected light from the reproducing slope and a small portion corresponding to the reflected light from the slope adjacent to the reproducing slope (distribution D in Fig. 7).

その大きい方の反射光部分の殆どを受光する事で、再生
信号を最大に近くできも その時には クロストーク成分は反射光全般に均一に含
まれる傾向が高いので、再生信号の大きさに対するクロ
ストークの量は相対的に低下し再生信号の品質は向上さ
せる事ができもしかし 反射光を部分的に再生するには
光学系が複雑になム 第1図から分かる様へ 反射光の
全部分を受光すれば 再生斜面と隣接する斜面からの小
さな反射光部分に含まれるクロストーク部分も再生する
事になる力交 その部分の光量は小さいので、ディジタ
ル信号などの再生には許容できるクロストークであも 即板 反射光全体を受光しても成る程度の品質の再生信
号が得られて、クロストークへの要求が厳格ではないデ
ィジタル信号の再生には利用できも 水圏 本発明の再生光学系を説明すム V溝斜面からの
反射光の対物レンズを透過する全部を受光するには 第
6図の光検出器を用いる事ができ、かつ、 その上の反
射光も第6図と同じ様に構成すればよし〜 第6図の反射ビーム21aでスポット位置の制御を行う
。受光部31と33の和信号から受光部32と34の和
信号を差し引いた信号で焦点制御をすa 非点収差方式の焦点制御でζよ 3つの反射ビームは光
検出器面で像が90度回転するので、光検出器上の信号
ビットのトラック方向の像は受光部31と34、あるい
は 32と33を分割する線に平行になり、従って、■
溝ディスクのトラッキング制御は受光部31と32の和
信号から受光部33と34の和信号を差し引いた信号で
行う。
By receiving most of the larger reflected light portion, the reproduced signal can be brought close to the maximum, but at that time, the crosstalk component tends to be uniformly included in the overall reflected light, so the crosstalk relative to the magnitude of the reproduced signal However, the optical system would be complicated to partially reproduce the reflected light. If the light is received, the crosstalk part included in the small reflected light part from the reproduction slope and the adjacent slope will also be reproduced.The amount of light in that part is small, so the crosstalk is acceptable for reproduction of digital signals, etc. The reproduction optical system of the present invention can also be used for reproduction of digital signals in which a reproduction signal of a level of quality is obtained even if the entire reflected light is received, and the requirements for crosstalk are not strict. To receive all of the reflected light from the V-groove slope that passes through the objective lens, the photodetector shown in Figure 6 can be used, and the reflected light above it can also be configured in the same way as shown in Figure 6. That's fine. The spot position is controlled by the reflected beam 21a in FIG. Focus control is performed using a signal obtained by subtracting the sum signal of light receiving sections 32 and 34 from the sum signal of light receiving sections 31 and 33.a Focus control using the astigmatism method causes the three reflected beams to have an image of 90° on the photodetector surface. Because of the rotation, the image of the signal bit on the photodetector in the track direction becomes parallel to the line dividing the light receiving sections 31 and 34 or 32 and 33.
Tracking control of the grooved disk is performed using a signal obtained by subtracting the sum signal of the light receiving sections 33 and 34 from the sum signal of the light receiving sections 31 and 32.

反射ビーム22aと23aは隣接するV溝斜面からの反
射光であり、受光部35、36でその全部を受光して信
号再生すも すなわ板 従来と同じ光学系を用Lx  V溝ディスク
の再生ができる様になム 発明の効果 レーザービームを対物レンズの先細に略平行に入射させ
るので、ディスク上のスポットの収差を小さくできも 
かつ、 従来と同じ光学系を用いてV溝ディスクを再生
する事ができも
The reflected beams 22a and 23a are reflected lights from adjacent V-groove slopes, and the light receiving sections 35 and 36 receive all of them and reproduce signals.The same optical system as the conventional one is used to reproduce the Lx V-groove disc. Effects of the Invention: Since the laser beam is incident on the tapered objective lens almost parallel to the objective lens, the aberration of the spot on the disk can be reduced.
Moreover, it is possible to play V-groove discs using the same optical system as before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)JA  本発明の光ディスク再生方法の一
実施例における光量分布医 同図(b)は信号特性医 
第2図はV溝ディスク断面の斜視医第3図はV溝ディス
クの再生光学系の構成医 第4図はV溝ディスク上のレ
ーザースポットの配置に 第5図は従来の再生方法にお
けるディスク上のレーザースポットの配置医 第6図は
従来のディスクに対応する光検出器の構成とその上の反
射光の説明医 第7図はV溝斜面からの反射光分布を用
いた従来の再生方法の説明図であムト・・透明基板 2・・・V溝 3・・・信号ピット 15・・・対物レンズ 17・・・光検出器 31〜36・・・光検出器 代理人の氏名 弁理士 小鍜治 明 ほか2名S−・算
11哀号 第1rlAQ・−機れ信号 /−jL明養頂 Z−V ヲ露 3−°−傷信号し0ツト 第2図 悪4図 亀6図 36        34     3/      
    、35117  図
FIG. 1(a) JA The light intensity distribution diagram in one embodiment of the optical disc reproducing method of the present invention is shown in FIG. 1(b).
Figure 2 shows a perspective view of a V-groove disc cross-section. Figure 3 shows the configuration of the V-groove disc playback optical system. Figure 4 shows the arrangement of a laser spot on a V-groove disc. Figure 5 shows a disc in a conventional playback method. Fig. 6 shows the configuration of a photodetector corresponding to a conventional disc and explains the reflected light on it. Fig. 7 shows a conventional reproducing method using the distribution of reflected light from the V-groove slope. In the explanatory diagram, there are... Transparent substrate 2... V groove 3... Signal pit 15... Objective lens 17... Photodetectors 31 to 36... Name of photodetector agent Patent attorney Small Akira Kaji and 2 others S-・San 11 Ai No. 1rlAQ・-Call signal/-jL Meiyocho Z-V wo Dew 3-°-Wound signal 0tsuto Figure 2 Evil Figure 4 Turtle 6 Figure 36 34 3 /
, 35117 Fig.

Claims (1)

【特許請求の範囲】[Claims] (1)光ディスク上にその半径方向の断面がV字形であ
る溝を設け、そのV溝の斜面に信号を記録し、対物レン
ズでディスク上にレーザーを照射して反射光を受光する
事で信号を再生する方法において、前記対物レンズの光
軸に略平行に前記レーザーを入射させ、かつ、前記反射
光の前記対物レンズを通過する全部分を受光する事を特
徴とする光ディスク再生方法。
(1) A groove whose radial cross section is V-shaped is provided on the optical disk, a signal is recorded on the slope of the V-groove, and a signal is generated by irradiating a laser onto the disk with an objective lens and receiving the reflected light. An optical disc reproducing method characterized in that the laser is made incident substantially parallel to the optical axis of the objective lens, and the entire portion of the reflected light that passes through the objective lens is received.
JP2313505A 1990-07-24 1990-11-19 Optical disk reproducing method Pending JPH04182935A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2313505A JPH04182935A (en) 1990-11-19 1990-11-19 Optical disk reproducing method
CA002047606A CA2047606C (en) 1990-07-24 1991-07-23 Optical disk reproducing method and optical disk reproducing apparatus
US07/734,543 US5268886A (en) 1990-07-24 1991-07-23 Method and apparatus for reproducing signals using an optical disk having V-shaped grooves
KR1019910012677A KR950005963B1 (en) 1990-07-24 1991-07-24 Method of reproducing for optical disk & optical detector
EP91112364A EP0468468B1 (en) 1990-07-24 1991-07-24 Optical disk reproducing method and optical disk reproducing apparatus
DE69122452T DE69122452T2 (en) 1990-07-24 1991-07-24 Optical disc reproducing method and optical disc reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2313505A JPH04182935A (en) 1990-11-19 1990-11-19 Optical disk reproducing method

Publications (1)

Publication Number Publication Date
JPH04182935A true JPH04182935A (en) 1992-06-30

Family

ID=18042120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2313505A Pending JPH04182935A (en) 1990-07-24 1990-11-19 Optical disk reproducing method

Country Status (1)

Country Link
JP (1) JPH04182935A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102339A (en) * 1981-12-10 1983-06-17 デイスコビジヨン・アソシエイツ Optically readable recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102339A (en) * 1981-12-10 1983-06-17 デイスコビジヨン・アソシエイツ Optically readable recording medium

Similar Documents

Publication Publication Date Title
US4905214A (en) Method for illuminating adjoining slants of an optical disk having a V-shaped groove
JPH05205295A (en) Optical information recording and reproducing device
JPH1055566A (en) Optical pickup device
KR950005963B1 (en) Method of reproducing for optical disk & optical detector
KR100678360B1 (en) Optical head, photodetector, optical information recording and reproducing apparatus and focus error detecting method
KR100224621B1 (en) OPTICAL PICK UP FOR RECORD PLAYING TO COMkpoIBILITY BETWEEN OTHER DISKS
US6370092B1 (en) Optical pickup and optical disk drive for use with a high-density optical disk
JPH1055565A (en) Optical pickup device
US5856959A (en) Method for generating a focus error signal due to astigmatism and optical pickup device using the same
US5483508A (en) Optical recording and reproducing apparatus using a hologram to detect and judge a plurality of pit patterns
KR910000213B1 (en) Reproducing method using optical disk
JPH0714242A (en) Double-beam optical head
JPH04182935A (en) Optical disk reproducing method
JPH0520691A (en) Optical disk reproducing method and photodetector
JPH0492214A (en) Method for reproduction of optical disk
JPH0482018A (en) Optical disk reproducing method and photodetector
US5612937A (en) Optical pickup apparatus having a bisected optical receiving element for tracking control
KR100213063B1 (en) Double focus optical pickup
JPS58155528A (en) Optical disc recording and reproducing system, optical disc and its manufacture
JP2537843B2 (en) Photodetector
JPH07114732A (en) Optical recording and reproducing method
JPH023112A (en) Method for detecting focus error
JPH02210625A (en) Optical pickup
JPS62202338A (en) Optical pickup device
JPH06124463A (en) Optical recording/reproduction device