JPH0491267A - Nonwoven fabric made of ultrafine fiber - Google Patents

Nonwoven fabric made of ultrafine fiber

Info

Publication number
JPH0491267A
JPH0491267A JP2206279A JP20627990A JPH0491267A JP H0491267 A JPH0491267 A JP H0491267A JP 2206279 A JP2206279 A JP 2206279A JP 20627990 A JP20627990 A JP 20627990A JP H0491267 A JPH0491267 A JP H0491267A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
polymer
tensile strength
fiber diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2206279A
Other languages
Japanese (ja)
Inventor
Shigeki Tanaka
茂樹 田中
Takashi Arimoto
有本 尚
Hideo Isoda
英夫 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2206279A priority Critical patent/JPH0491267A/en
Publication of JPH0491267A publication Critical patent/JPH0491267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To provide the subject product made of an ultrafine filament fiber having a small unevenness of fiber diameter, having specified physical properties, having a high tensile strength in both the longitudinal and transverse directions, excellent in dimensional stability and suitable for a filter, etc. CONSTITUTION:An objective nonwoven fabric made of an ultrafine filament fiber having <=5mum average fiber diameter and <=30% unevenness of fiber diameter and having >=40g/cm width.weight (g/m<2>) longitudinal tensile strength, >=20g/cm width.weight (g/m<2>) transverse tensile strength in the direction perpendicular to the longitudinal direction and <=10% dry heat shrinkage factor (160 deg.C for 15min). The above-mentioned nonwoven fabric product can be obtained recommendably using a fiber produced by carrying out spinning in the condition of a polymer temperature in the range of (melting point)-(melting point+45 deg.C), an air temperature in the range of 10-25 deg.C higher than the polymer temperature, 0-8 deg.C angle between an air knife and a polymer-discharging die and 0.3-0.5mm minimum distance from the air knife to the discharging die.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、繊維径斑の小さい極細繊維からなり、不織布
強度にすぐれ、寸法安定性にすぐれフィルターなどに好
適に用いられる極細繊維不織布に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an ultrafine fiber nonwoven fabric that is made of ultrafine fibers with small fiber diameter irregularities, has excellent nonwoven fabric strength, and excellent dimensional stability, and is suitable for use in filters and the like.

(従来の技術) 従来より、メルトブロー法による極細繊維の不織布につ
いて様々な検討がなされてきており、細いものでは平均
繊維径が0.5〜1.5μmといった極細繊維の不織布
の製造が可能となってきた。
(Prior art) Various studies have been conducted on nonwoven fabrics made of ultrafine fibers using the melt blow method, and it has become possible to produce nonwoven fabrics made of ultrafine fibers with an average fiber diameter of 0.5 to 1.5 μm. It's here.

しかし、かかる極細繊維の不織布は、糸切れによる玉状
物が発生しているためにその風合いやフィルターとして
の特性が著しく悪化するという欠点を有していた。また
、これにより繊維径斑は非常に大きくなり、現在市場に
でているメルトブロー法で作られた極細繊維不織布シー
トは繊維径斑が大きく30%をこえているものかはとん
とである。
However, such nonwoven fabrics made of ultrafine fibers have the disadvantage that beads are generated due to thread breakage, which significantly deteriorates the texture and properties as a filter. In addition, as a result, the fiber diameter unevenness becomes very large, and the ultrafine fiber nonwoven fabric sheets made by the melt-blowing method currently on the market have a large fiber diameter unevenness of more than 30%.

また、これらの不織布は、寸法安定性にも欠けていた。These nonwoven fabrics also lacked dimensional stability.

これらの欠点を解決するために第3成分ポリマーを加え
るなどの特別な手だてを加える試みもなされているが、
これらの異成分の付与によるものは極細繊維不織布の強
力が低下してしまう問題があった。
Attempts have been made to add special measures such as adding a third component polymer to solve these drawbacks, but
When these different components are added, there is a problem in that the strength of the ultrafine fiber nonwoven fabric decreases.

さらに、従来からのメルトブロー法により得られる不織
布を構成する繊維長は、平均してLowから数百能であ
り、玉状物の発生や繊維の糸切れが多いために繊維径の
分散が非常に大きく、用途により不都合を生じることが
あった。また、寸法安定性の点でも問題があった。
Furthermore, the average length of the fibers constituting nonwoven fabrics obtained by conventional melt blowing methods is from Low to several hundred, and the dispersion of fiber diameters is extremely low due to the occurrence of beads and fiber breakage. This is large and may cause inconvenience depending on the application. There was also a problem in terms of dimensional stability.

本発明は、かかる従来の極細繊維からなる不織布の欠点
を解消し、繊維径斑が小さく、縦方向、横方向の引張強
力が大きく、寸法安定性にすぐれた極細繊維不織布を提
供することを目的とする。
The purpose of the present invention is to eliminate the drawbacks of conventional nonwoven fabrics made of ultrafine fibers, and to provide an ultrafine fiber nonwoven fabric with small fiber diameter irregularities, high tensile strength in the longitudinal and transverse directions, and excellent dimensional stability. shall be.

(課題を解決するための手段) 本発明は、前記課題を解決するために次のような手段を
とる。すなわち、本発明は、平均繊維径が5μm以下で
繊維径斑が30%以下であって実質的に連続した繊維よ
りなる極細繊維不織布であって、該極細繊維不織布の縦
方向の引張強度が40 g / cm幅・目付(g/F
)以上、縦方向に垂直な横方向の引張強度が20 g 
/ am幅・目付(g/l/)以上で、且つ前記不織布
の乾熱収縮率(160℃、15分)が10%以下である
ことを特徴とする極細繊維不織布である。
(Means for Solving the Problems) The present invention takes the following measures to solve the problems described above. That is, the present invention provides an ultrafine fiber nonwoven fabric made of substantially continuous fibers with an average fiber diameter of 5 μm or less and a fiber diameter unevenness of 30% or less, the ultrafine fiber nonwoven fabric having a longitudinal tensile strength of 40% or less. g/cm width/fabric weight (g/F
), the tensile strength in the horizontal direction perpendicular to the longitudinal direction is 20 g
/ am width/fabric weight (g/l/) or more, and the nonwoven fabric has a dry heat shrinkage rate (160° C., 15 minutes) of 10% or less.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

風合いに優れた不織布の特性を有するためには繊維径は
5μm以下である必要がある。それをこえると風合いも
硬くなりがちとなる。またフィルター特性においても粒
子径が10μm以下の物を70%以上補集するにはやは
り繊維径が5μm以下であることが望ましい。保温材に
ついても糸径か細いほど保温性能に優れるため該条件を
満たすことが必要である。糸径が太くなってくると従来
の織布やスパンボンド不織布とあまり差別化できない。
In order to have the characteristics of a nonwoven fabric with excellent texture, the fiber diameter needs to be 5 μm or less. If this is exceeded, the texture tends to become hard. Also, in terms of filter properties, it is desirable that the fiber diameter be 5 μm or less in order to collect 70% or more of particles with a particle size of 10 μm or less. The heat insulating material also needs to satisfy this condition because the thinner the thread diameter, the better the heat retaining performance. When the thread diameter becomes thicker, it is difficult to differentiate it from conventional woven fabrics or spunbond nonwoven fabrics.

次に繊維径斑は、用途によりその要求特性は異なるが3
0%以下好ましくは20%以下であることが良い。例え
ばフィルターや保温材として用いるには繊維径が平均値
より大きい方に外れた繊維の影響により濾過流体、保温
空気層にチャンネリングを生じる。また、太い繊維の存
在により風合いが硬くなるため好ましくない。
Next, regarding fiber diameter unevenness, the required characteristics differ depending on the application, but there are 3
It is preferably 0% or less, preferably 20% or less. For example, when used as a filter or heat insulating material, channeling occurs in the filtration fluid and heat insulating air layer due to the influence of fibers whose fiber diameters are larger than the average value. Further, the presence of thick fibers makes the texture hard, which is not preferable.

シートの引張強度については、シートの繊維自身の配向
状態や融着状態により異なるが、マシン方向で40g/
cm幅・目付は以上、横方向で20 g / am幅・
目付けである必要がある。メルトブロー法により作られ
たシートは強力が低いために用途の展開が妨げられてき
た。特にフィルター用途では流体による圧力損失に耐え
るだけの強力がなかった。また、保温材に於いても着用
時にかかる圧力により繊維がへたり、シートがつぶされ
るために非着用時の(最初の)性能を維持できないと言
う欠点があった。本発明においては、配向結晶化した高
モジニラスの繊維が不織布を構成しているので引張強度
が高くなっている。単糸のモジュラスの測定は繊維径が
細く単糸での測定は精度が低いためシートの評価ではあ
るがマシン方向引っ張り強度が40g/c璽幅・目付は
以上、横方向引っ張り強度が20g/cm幅・目付は以
上であれば単糸のモジュラスは充分大きく一般に考えら
れる用途への適用に問題はない。
The tensile strength of the sheet varies depending on the orientation and fusion state of the fibers in the sheet, but it is approximately 40g/in the machine direction.
cm width/fabric weight is 20 g/am width in the horizontal direction/
It needs to be eye-catching. Sheets made by the melt-blown method have low strength, which has hindered the development of other applications. Especially in filter applications, they were not strong enough to withstand the pressure loss caused by fluids. In addition, heat insulating materials also have the disadvantage that they cannot maintain their (initial) performance when not worn because the fibers are weakened and the sheets are crushed by the pressure applied when worn. In the present invention, since the nonwoven fabric is composed of oriented crystallized high modinilus fibers, the tensile strength is high. Measuring the modulus of a single yarn is a sheet evaluation because the fiber diameter is small and measuring a single yarn has low accuracy, but the tensile strength in the machine direction is 40 g/cm or more, and the width and area weight is 20 g/cm or more in the transverse direction. If the width and basis weight are above, the modulus of the single yarn is sufficiently large and there is no problem in applying it to commonly thought of uses.

また単糸のモジュラスが大きいことにより、従来のメル
トブロー法で作られた極細繊維不織布シートにみられる
シートのへたりも観察されなくなる。このように繊維の
モジュラスが高いことにより紡糸工程における糸切れの
発生が防止でき、そのため玉状物の発生も著しく低下す
るため繊維がほぼ連続的なフィラメントとなる。
Furthermore, due to the large modulus of the single yarn, sheet sag that is observed in ultrafine fiber nonwoven fabric sheets made by conventional melt blowing methods is not observed. The high modulus of the fibers prevents the occurrence of yarn breakage during the spinning process, thereby significantly reducing the occurrence of beads, so that the fibers become almost continuous filaments.

さらに、繊維が配向結晶化していることにより、後処理
を行わなくても繊維の乾熱収縮率が小さく、従って不織
布の乾熱収縮率も低い。本発明においては乾熱収縮率は
160℃、15分で10%以下とする。これは寸法安定
性のためである。
Furthermore, since the fibers are oriented and crystallized, the dry heat shrinkage rate of the fibers is small even without post-treatment, and therefore the dry heat shrinkage rate of the nonwoven fabric is also low. In the present invention, the dry heat shrinkage rate is 10% or less at 160° C. for 15 minutes. This is for dimensional stability.

ここで、本発明の極細繊維不織布の製造法について説明
する。第1図は、本発明において用いられるメルトブロ
ーノズルの側面図であるが、第1図において、まず、ポ
リマー吐出孔1の直径D2は0.15■■から0.35
m11特に極細繊維を製造する際には0.15から0.
25■■の間が好ましい。吐出孔直径D2が0.35+
nより大きくなると最終糸条面積とオリフィス面積との
比であるドラフト比が大きくなるため糸条をより多く牽
引する必要を生じるため牽引エアーの流速をあげるかポ
リマーの粘度を下げる必要を生じる。しかし、前者の場
合には生産コストが上昇する上にレイノズル数が大きく
なって流れが不安定になり糸切れや紐状物の発生が急激
に増加したり、できたシートにしわが入ったりする。こ
こで紐状物とは繊維が何本か絡まってできたより糸状の
物をいう。また、後者は一般に糸切れを増やしたり、ポ
リマー固化時の配向結晶化の制御が難しくなるためにで
きたシートの乾熱収縮率が大きくなるという欠点がある
。特に繊維径が小さくなってくると牽引流体流れの乱れ
の影響を受けやすくなってくるため糸切れや紐状物の発
生が急激に増加する。他方0.15m−よりツノ八さく
なると穴にゴミ等が貯ったり洗浄が難しくなる上に加工
精度を要する。また、該ノズルの先端の幅D1はD2の
90%以下好ましくは30%以上、さらに好ましくは4
0%以上とする。このように加工することにより大面積
が増加し、牽引流体とポリマーとの接触面積を大きくす
ることが可能となる。また、バラス効果によるオリフィ
ス出口近傍のポリマー膨らみを側面から抑えることがで
きる。以後、これを先端切り欠き効果と呼ぶ。
Here, the method for producing the ultrafine fiber nonwoven fabric of the present invention will be explained. FIG. 1 is a side view of the melt blow nozzle used in the present invention. In FIG. 1, the diameter D2 of the polymer discharge hole 1 is from 0.15 to 0.35
m11, especially when manufacturing ultrafine fibers, from 0.15 to 0.
It is preferably between 25■■. Discharge hole diameter D2 is 0.35+
If it is larger than n, the draft ratio, which is the ratio of the final yarn area to the orifice area, will increase, making it necessary to pull more yarn, which will require increasing the flow rate of the pulling air or lowering the viscosity of the polymer. However, in the former case, the production cost increases, and the number of Ray nozzles increases, making the flow unstable, resulting in a rapid increase in the occurrence of thread breakage and string-like objects, and the resulting sheet becomes wrinkled. Here, the string-like material refers to a strand-like material made by entwining several fibers. In addition, the latter generally has the disadvantage of increasing yarn breakage and making it difficult to control oriented crystallization during solidification of the polymer, resulting in a high dry heat shrinkage rate of the resulting sheet. In particular, as the fiber diameter becomes smaller, the fibers become more susceptible to disturbances in the flow of the tractive fluid, and the occurrence of yarn breakage and string-like objects rapidly increases. On the other hand, if the diameter is smaller than 0.15 m, dirt may accumulate in the hole, making cleaning difficult and requiring high processing precision. Further, the width D1 of the tip of the nozzle is 90% or less of D2, preferably 30% or more, and more preferably 4
0% or more. By processing in this way, a large area is increased, and it becomes possible to increase the contact area between the traction fluid and the polymer. Additionally, polymer bulge near the orifice exit due to the ballast effect can be suppressed from the side. Hereinafter, this will be referred to as the tip notch effect.

またエアーナイフ面からダイ先端までの距離S1が0.
1Rから0.5■嘗奥に入り込んでいることが必要であ
る。これはエアーナイフから放射されたエアーは急速に
減速されるため、それ以前のエアーとポリマーの接触時
間を大きくするためである。逆に該距離が大きくなりす
ぎると溶融状態のポリマーがエアーナイフ面に付着し糸
切れの発生を助長するため好ましくない。この時エアー
ナイフの形状は平面でなくてもなんらかの曲率を持たせ
てもその効果は大きく変化をすることはない。
Also, the distance S1 from the air knife surface to the die tip is 0.
It is necessary to go 0.5 inch deep from 1R. This is because the air emitted from the air knife is rapidly decelerated, increasing the contact time between the air and the polymer. On the other hand, if the distance is too large, the molten polymer will adhere to the air knife surface, which will encourage yarn breakage, which is not preferable. At this time, even if the shape of the air knife is not flat, even if it has some kind of curvature, the effect will not change significantly.

ノズルの収束角θ*が30度より小さくなるとポリマー
の通過するオリフィスとダイ表面間の金属厚みが小さく
なりすぎるためノズルに圧力ヲかけると破裂する恐れを
生じる。他方0本が大きくなりすぎると先端切り欠き効
果が小さくなってしまうと同時にエアーの衝突による流
れの乱れが助長されるため好ましくない。
When the convergence angle θ* of the nozzle is smaller than 30 degrees, the metal thickness between the orifice through which the polymer passes and the die surface becomes too small, and there is a risk that the nozzle will burst if pressure is applied to it. On the other hand, if the number of zero lines becomes too large, the effect of notching the tip becomes small and, at the same time, flow turbulence due to air collision is promoted, which is not preferable.

エアーナイフの間隔S2は0.4mmから0.8mmの
間にあることが必要である。これより間隔が小さくなる
と溶融ポリマーがエアーナイフに接触する頻度が急増し
糸切れが発生したりする。S2が0.8mmより大きく
なるとエアーの乱れが急増する。これはエアーとポリマ
ーが最初に接触するところよりエアーナイフ間隔が太き
(なってしまうため、エアーが膨張するために乱れを生
じるためである。
The air knife spacing S2 must be between 0.4 mm and 0.8 mm. If the distance is smaller than this, the frequency of contact between the molten polymer and the air knife will increase rapidly, leading to thread breakage. When S2 becomes larger than 0.8 mm, air turbulence increases rapidly. This is because the air knife interval is wider than the point where the air and polymer first come into contact, causing turbulence as the air expands.

紡糸を行う条件としてはポリマー温度が融点(”C)か
ら融点(”C)プラス45℃の範囲にあることが必要で
ある。上限温度より高くなってしまうとポリマーの熱劣
化により玉状物の発生を生じてしまう。また繊維の配向
結晶化に必要な応力を付与することができなくなる。エ
アーの温度についても同様の理由からポリマー温度より
10℃〜25℃高い温度の範囲で紡糸する必要がある。
The spinning conditions require that the polymer temperature be in the range from the melting point ("C) to the melting point ("C) plus 45°C. If the temperature is higher than the upper limit temperature, beads will be generated due to thermal deterioration of the polymer. Moreover, it becomes impossible to apply stress necessary for oriented crystallization of fibers. Regarding the air temperature, it is necessary to perform spinning at a temperature in the range of 10 to 25 degrees Celsius higher than the polymer temperature for the same reason.

これらの条件を満たした上で、せん断速度やポリマー固
有粘度を選択することにより溶融粘度が300ポイズ以
上になるようにしてポリマーを細化させることが必要で
ある。
After satisfying these conditions, it is necessary to thin the polymer by selecting the shear rate and polymer intrinsic viscosity so that the melt viscosity becomes 300 poise or more.

つぎに、エアーナイフとポリマー吐出ダイのなす角度θ
はOから8度であることが必要である。
Next, the angle θ between the air knife and the polymer discharge die
must be 8 degrees from O.

θが負になるとエアー乱れが著しく大きくなるため糸切
れが多く発生し、他方、8度より大きくなると上流では
エアーが圧縮されるときの乱れの影響を下流が受けるた
めポリマーとエアーの接触するところでの乱れが増加す
るため不適当である。
When θ becomes negative, the air turbulence becomes extremely large, resulting in many thread breakages.On the other hand, when it becomes larger than 8 degrees, the downstream part is affected by the turbulence when the air is compressed in the upstream, so the fibers break where the polymer and air come into contact. This is unsuitable because it increases the disturbance.

エアーナイフとポリマー吐出ダイの最小距離S3は0.
3から0.5+nの間であることが好ましい。最小距離
が0.3m−より小さくなると境界層の発達のため該間
隔のエアー流速を上げることができなくなる。0.5m
mより大きくなるとエアー量は過大となりユーティリテ
ィコストが大きくなるだけでなくネットなどで不織布を
引き取る際にエアーとポリマーの分離が難しくなったり
、紐状物の発生を増加させたりする。
The minimum distance S3 between the air knife and the polymer discharge die is 0.
Preferably it is between 3 and 0.5+n. If the minimum distance is less than 0.3 m, it is no longer possible to increase the air flow velocity in the interval due to the development of a boundary layer. 0.5m
When the amount is larger than m, the amount of air becomes too large, which not only increases the utility cost but also makes it difficult to separate the air and polymer when taking up the nonwoven fabric with a net or the like, and increases the generation of string-like substances.

これらの条件を満足することにより、従来のメルトブロ
ー製糸技術では糸径斑が40%以上と非常に大きかった
のに対し、糸径斑が30%以下であって、糸条に切れ目
がないために強力がマシン方向で40 g / am幅
・目付は以上、横方向で20g / c++・目付以上
と特に優れた極細繊維不織布を得ることができる。
By satisfying these conditions, the yarn diameter unevenness is less than 30% and there is no break in the yarn, compared to the extremely large yarn diameter unevenness of 40% or more in the conventional melt-blown yarn spinning technology. It is possible to obtain a particularly excellent ultrafine fiber nonwoven fabric with a strength of 40 g/am width/fabric weight in the machine direction and a width/fabric weight of 20 g/c++/fabric weight in the transverse direction.

(実施例) 実施例1〜8、比較例1〜8 本実施例において採用した測定法は以下のとおりである
(Example) Examples 1 to 8, Comparative Examples 1 to 8 The measurement method adopted in this example is as follows.

肚m 10 c* X 2 c重のサンプルをテンシロンで試
長50で伸長破断させたときの最大強力を測定した。
The maximum strength was measured when a sample weighing 10 c* x 2 c was stretched to break with a test length of 50 mm using Tensilon.

この値を単位幅、単位目付は当りに換算した。This value was converted into a unit width and a unit basis weight into a hit.

1に4 不織布を電子顕微鏡写真によって撮影し、拡大写真から
繊維100本をランダムに選択してその直径を測定し、
平均値を採用した。
1 to 4 The nonwoven fabric was photographed using an electron microscope, 100 fibers were randomly selected from the enlarged photograph, and their diameters were measured.
The average value was adopted.

11L 次式で計算した。11L It was calculated using the following formula.

繊維径斑(07%)=繊維径標準偏差X100/平均繊
維径 虹4L11 12cm角の矩形サンプルシートを160℃熱風下で1
5分間放置したときの縦方向と横方向の長さの変化率の
算術平均を採用した。
Fiber diameter unevenness (07%) = fiber diameter standard deviation
The arithmetic mean of the rate of change in length in the vertical and horizontal directions when left for 5 minutes was used.

第1図に示すノズルを用いて、メルトブロー法により第
1表の条件でポリエチレンテレフタレートのポリマーを
用いて不織布を製造し、その物性を測定した。その結果
は第1表に示すとおりである。第1表から明らかなよう
に本発明の不織布は繊維径斑が小さく、繊維径の小さい
極細繊維からなるもので寸法安定性にすぐれ、マシン方
向、横方向のweb強力の大なるものであった。
Using the nozzle shown in FIG. 1, a nonwoven fabric was produced using a polyethylene terephthalate polymer by the melt blow method under the conditions shown in Table 1, and its physical properties were measured. The results are shown in Table 1. As is clear from Table 1, the nonwoven fabric of the present invention had small fiber diameter irregularities, was made of ultrafine fibers with small fiber diameters, had excellent dimensional stability, and had high web strength in the machine direction and the transverse direction. .

これに対して比較例のものは、ノズルにおいて一部のノ
ズル条件が不満足なためウェブ強力、繊維径斑などに問
題があった。
On the other hand, the comparative examples had problems with web strength, fiber diameter unevenness, etc. because some nozzle conditions were unsatisfactory.

なお、不織布の目付は40g/rlで、糸切れの発生状
況は1分間のサンプリングで行なった。
The basis weight of the nonwoven fabric was 40 g/rl, and the occurrence of yarn breakage was determined by sampling for 1 minute.

(発明の効果) 本発明の不織布は、繊維径斑が小さい極細繊維からなる
もので、縦方向の引張強力、横方向の上張強力にすぐれ
、寸法安定性にすぐれたものであった。
(Effects of the Invention) The nonwoven fabric of the present invention was made of ultrafine fibers with small fiber diameter irregularities, and had excellent longitudinal tensile strength, transverse tensile strength, and dimensional stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いたノズルの側面図である。 1・・・ポリマー吐出孔 2・・・エアナイフ。 FIG. 1 is a side view of a nozzle used in the present invention. 1...Polymer discharge hole 2...Air knife.

Claims (1)

【特許請求の範囲】[Claims] 1.平均繊維径が5μm以下で繊維径斑が30%以下で
あって実質的に連続した繊維よりなる極細繊維不織布で
あって、該極細繊維不織布の縦方向の引張強度が40g
/cm幅・目付(g/m^2)以上、縦方向に垂直な横
方向の引張強度が20g/cm幅・目付(g/m^2)
以上で、且つ前記不織布の乾熱収縮率(160℃、15
分)が10%以下であることを特徴とする極細繊維不織
布。
1. An ultrafine fiber nonwoven fabric consisting of substantially continuous fibers with an average fiber diameter of 5 μm or less and a fiber diameter unevenness of 30% or less, the ultrafine fiber nonwoven fabric having a longitudinal tensile strength of 40 g.
/cm width/fabric weight (g/m^2) or more, tensile strength in the horizontal direction perpendicular to the longitudinal direction is 20g/cm width/fabric weight (g/m^2)
Above, and the dry heat shrinkage rate of the nonwoven fabric (160°C, 15
1. An ultrafine fiber nonwoven fabric characterized in that the fiber content (min) is 10% or less.
JP2206279A 1990-08-02 1990-08-02 Nonwoven fabric made of ultrafine fiber Pending JPH0491267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2206279A JPH0491267A (en) 1990-08-02 1990-08-02 Nonwoven fabric made of ultrafine fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2206279A JPH0491267A (en) 1990-08-02 1990-08-02 Nonwoven fabric made of ultrafine fiber

Publications (1)

Publication Number Publication Date
JPH0491267A true JPH0491267A (en) 1992-03-24

Family

ID=16520688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2206279A Pending JPH0491267A (en) 1990-08-02 1990-08-02 Nonwoven fabric made of ultrafine fiber

Country Status (1)

Country Link
JP (1) JPH0491267A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1898265A3 (en) * 2006-09-11 2008-05-21 Ricoh Company, Ltd. Apparatus for producing toner precursor, and method for the same, fibrous toner precursor, apparatus for producing toner, and method for producing electrophotographic toner and fine resin particles
WO2011091251A3 (en) * 2010-01-22 2011-09-15 Fiber Web, Inc. Meltblown fiber spinning die
US9200392B2 (en) 2010-12-06 2015-12-01 Mitsui Chemicals, Inc. Melt-blown nonwoven fabric, and production process and apparatus for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1898265A3 (en) * 2006-09-11 2008-05-21 Ricoh Company, Ltd. Apparatus for producing toner precursor, and method for the same, fibrous toner precursor, apparatus for producing toner, and method for producing electrophotographic toner and fine resin particles
US7662534B2 (en) 2006-09-11 2010-02-16 Ricoh Company Ltd. Apparatus for producing toner precursor, and method for the same, fibrous toner precursor, apparatus for producing toner, and method for producing electrophotographic toner and fine resin particles
WO2011091251A3 (en) * 2010-01-22 2011-09-15 Fiber Web, Inc. Meltblown fiber spinning die
US9200392B2 (en) 2010-12-06 2015-12-01 Mitsui Chemicals, Inc. Melt-blown nonwoven fabric, and production process and apparatus for the same
US9404207B2 (en) 2010-12-06 2016-08-02 Mitsui Chemicals, Inc. Melt-blown nonwoven fabric, and production process and apparatus for the same

Similar Documents

Publication Publication Date Title
KR100249638B1 (en) Method of preparing a nonwoven web of poly(vinyl alcohol) fibers and a disposable absorbent product which includes the nonwoven web
EP1733086B1 (en) Aligned fiber web
US4434204A (en) Spun-bonded fabric of partially drawn polypropylene with a low draping coefficient
EP2065500B1 (en) Heat-resistant non-woven fabric
CA3103960C (en) Method for producing nonwoven fabric with improved filtration performance
JP6496009B2 (en) Nonwoven fabric and method for producing the same
EP2716800A1 (en) Polyphenylene sulfide fibers and nonwoven fabric
JPS6233343B2 (en)
WO2021132402A1 (en) Spun-bonded nonwoven fabric, filter laminate filter material, filter material for dust collector pleated filter, dust collector pleated filter, and medium-air-volume pulse-jet type dust collector
WO2020116569A1 (en) Long-fiber nonwoven fabric and filter reinforcing material using same
EP1044294B1 (en) Method for preparing non-woven web of superabsorbent fiber
JP7110795B2 (en) spunbond nonwoven fabric
ITMI960205A1 (en) PROCEDURE FOR THE PRODUCTION OF A VEIL TAPE IN THERMOPLASTIC POLYMER FILAMENTS
JPH0491267A (en) Nonwoven fabric made of ultrafine fiber
US3727292A (en) Method of fabricating a non-woven sheet from extruded metal filaments
JPH0814058B2 (en) Polyphenylene sulfide meltblown nonwoven fabric and method for producing the same
ITMI960048A1 (en) PROCEDURE FOR THE PRODUCTION OF A VEIL TAPE MADE OF THERMOPLASTIC POLYMER FILAMENTS
Renukarn et al. Melt-blowing conditions for preparing webs consisting of fine fibers
JP3578229B2 (en) Fine particle filter media
JPH01201567A (en) Production of bulky spun-bond nonwoven fabric
WO2019181827A1 (en) Long-fiber nonwoven fabric and filter reinforcing material using same
JP2019026954A (en) Polyethylene spun-bonded nonwoven fabric
JPH01201566A (en) Bulky spun-bond nonwoven fabric
WO2023008052A1 (en) Nonwoven production device and production method
JP2001089963A (en) High-strength nonwoven fabric