JPH0490610A - Frequency adjusting method for combination piezoelectric porcelain resonators - Google Patents

Frequency adjusting method for combination piezoelectric porcelain resonators

Info

Publication number
JPH0490610A
JPH0490610A JP20738290A JP20738290A JPH0490610A JP H0490610 A JPH0490610 A JP H0490610A JP 20738290 A JP20738290 A JP 20738290A JP 20738290 A JP20738290 A JP 20738290A JP H0490610 A JPH0490610 A JP H0490610A
Authority
JP
Japan
Prior art keywords
piezoelectric
resonator
substrate
vibrating electrode
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20738290A
Other languages
Japanese (ja)
Inventor
Takashi Yamamoto
隆 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP20738290A priority Critical patent/JPH0490610A/en
Publication of JPH0490610A publication Critical patent/JPH0490610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To easily perform the adjustment of a resonance frequency without the deterioration of electric performance by forming the recessed part of prescribed depth while cutting the surface of a piezoelectric master substrate exposed near the part of a vibrating electrode. CONSTITUTION:After a vibrating electrode 3 formed on the surface of a piezoelectric master substrate 2 is protected by covered with a protect mask 6 composed of a metallic plate, the surface of the piezoelectric master substrate 2 exposed to the near part of this vibrating electrode 3 is cut by a sandblast method. In this way, since a recessed part 5 of the prescribed depth is formed on the surface of the piezoelectric master substrate 2 exposed to the near part of the vibrating electrode 3, the width of the substrate in these parts is thinning according to the depth of the recessed part 5. Thus, since the resonance frequency is not adjusted by adding mass on the vibrating electrode 3, the deterioration of the electric performance is not caused and the adjustment of resonance frequency can be easily performed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、圧電磁器共振子連の周波数調整方法に関する
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a frequency adjustment method for a piezoelectric ceramic resonator chain.

〈従来の技術〉 従来から、通信用機能部品や音響部品などに用いられる
圧電磁器共振子の一例としては、第5図で示すような厚
みすべり振動共振子(以下、共振子というN、が知られ
ている。そして、この共振子10は、所定厚みの短冊状
とされた圧電基板2゜を備えており、その両面それぞれ
には互いに対向し合うことによってエネルギーを閉じ込
める振動電極3゜53゜が形成されている。
<Prior Art> Conventionally, as an example of a piezoelectric ceramic resonator used for communication functional parts, acoustic parts, etc., a thickness-shear vibration resonator (hereinafter referred to as a resonator) is known as a thickness-shear vibration resonator as shown in Fig. The resonator 10 includes a rectangular piezoelectric substrate 2° with a predetermined thickness, and vibrating electrodes 3° and 53° that confine energy by facing each other are provided on each of both sides of the substrate. It is formed.

ところで、この最終製品である共振子10は、これらの
複数が互いに並列形成されてなる第6図で示すような半
製品としての厚みすべり振動共振子連(以下、共振子連
という)1を製作したのち、この共振子連lを切断する
ことによって個別化されるのが一般的である。そこで、
この第6図に基づき、共振子連1の製作手順を説明する
By the way, this final product, the resonator 10, is produced by manufacturing a thickness-shear vibration resonator chain (hereinafter referred to as a resonator chain) 1 as a semi-finished product, as shown in FIG. 6, in which a plurality of these resonators are formed in parallel with each other. Thereafter, it is common to separate the resonator chains 1 by cutting them. Therefore,
Based on this FIG. 6, the manufacturing procedure of the resonator chain 1 will be explained.

まず、チタン酸鉛やチタン酸ジルコン酸鉛などのような
圧111M!器材料を成型、焼結及び分極することによ
り、複数の共振子10、・・・に対応しうる大きさの圧
電親基板2を製作する。そして、この圧電親基板2に研
磨処理を施して基板厚みを調整したのち、この圧!親基
板2の両面それぞれに、振動電極3.3を蒸着もしくは
スパッタリングによって形成する。さらに、このように
して製作された共振子連1を所定の大きさごとに切断す
れば、最終製品である共振子10が得られることになる
First, the pressure is 111M, such as lead titanate and lead zirconate titanate! By molding, sintering, and polarizing the vessel material, a piezoelectric parent substrate 2 having a size that can accommodate a plurality of resonators 10, . . . is manufactured. Then, after polishing the piezoelectric parent substrate 2 to adjust the substrate thickness, this pressure! Vibrating electrodes 3.3 are formed on each of both surfaces of the parent substrate 2 by vapor deposition or sputtering. Furthermore, by cutting the resonator chain 1 manufactured in this manner into pieces of predetermined size, the resonator 10 as a final product can be obtained.

ところで、このようにして製作された複数の共振子連1
.・・・それぞれの有する共振周波数は各圧電親基板2
の厚みに応して定まることになるが、研磨処理によって
圧を親基板2.・・・相互の厚みを一致させるのは困難
である。また、振動電極33の形成前に施した研磨処理
によって定まる共振子連1.・・・それぞれの共振周波
数を、ある所要の目標値内に集中させるのは大変に難し
い。そこで、従来から、製作された複数の共振子連1.
・・・の共振周波数を目標値内に集中させるための平文
てとして、第6図中の仮想線で示すように、各共振子連
1の振動電極3.3上にソルダーレジストインクなどの
ような熱硬化性樹脂4.4を塗布して質量を付加し、こ
の質量付加によって共振周波数を低下させる方法が採用
されている。
By the way, a plurality of resonator chains 1 manufactured in this way
.. ...The resonant frequency of each piezoelectric parent substrate 2
Although the pressure will be determined depending on the thickness of the parent substrate 2. ...It is difficult to match the mutual thickness. Further, the resonator chain 1. which is determined by the polishing treatment performed before the formation of the vibrating electrode 33. ...It is very difficult to concentrate each resonant frequency within a certain required target value. Therefore, conventionally, a plurality of resonator chains 1.
As a plain text material for concentrating the resonance frequency within the target value, as shown by the imaginary line in FIG. A method is adopted in which a thermosetting resin 4.4 is applied to add mass, and the resonant frequency is lowered by this addition of mass.

〈発明が解決しようとする課題〉 しかしながら、前記従来例のように、振動電極3.3上
に熱硬化性樹脂4.4を塗布することによって共振周波
数を調整するには、つぎのような不都合があった。すな
わち、必要な共振周波数の調整量が大きくなればなるほ
ど熱硬化性樹脂44の塗布量を増やさなければならない
が、その塗布量を増やしていくと、QIMなどによって
表される電気的性能の劣化を招くことになり、自ずから
限界が生しる。また、塗布した熱硬化性樹脂4゜4が硬
化する前に共振子連1.・・・の有する共振周波数を確
認することはできないため、その硬化を待ったうえで周
波数確認を行わなければならず、それだけ余分な手間が
かかることになっていた。
<Problems to be Solved by the Invention> However, adjusting the resonant frequency by coating the thermosetting resin 4.4 on the vibrating electrode 3.3 as in the conventional example has the following disadvantages. was there. In other words, the greater the amount of adjustment of the resonant frequency required, the more the amount of thermosetting resin 44 applied must be increased, but increasing the amount of application will reduce the deterioration of electrical performance expressed by QIM etc. This naturally leads to limitations. Also, before the applied thermosetting resin 4°4 is cured, the resonator chain 1. Since it is not possible to confirm the resonant frequency of ..., it is necessary to wait for the material to harden before confirming the frequency, which requires extra effort.

本発明はかかる従来の不都合に鑑みて創案されたもので
あって、電気的性能の劣化を招くことなく、共振周波数
の調整を容易に行うことが可能な圧電磁器共振子連の周
波数調整方法を提供することを目的としている。
The present invention has been devised in view of such conventional disadvantages, and provides a method for adjusting the frequency of a piezoelectric ceramic resonator chain that can easily adjust the resonant frequency without causing deterioration of electrical performance. is intended to provide.

く課題を解決するための手段〉 本発明は、このような目的を達成するために、切断によ
って個別化される複数の圧電磁器共振子が並列形成され
た圧電磁器共振子連の周波数調整方法であって、圧′:
J、親基板の表面上に形成された振動電極の近傍部位に
露出した圧電親基板を削り取って所定深さの窪み部を形
成することを特徴とするものである。
Means for Solving the Problems> In order to achieve the above object, the present invention provides a method for adjusting the frequency of a piezoelectric resonator chain in which a plurality of piezoelectric resonators that are individualized by cutting are formed in parallel. There, pressure′:
J. The method is characterized in that the piezoelectric parent substrate exposed in the vicinity of the vibrating electrode formed on the surface of the parent substrate is scraped off to form a recessed portion of a predetermined depth.

〈作用〉 上記方法によれば、振動電極の近傍部位に露出した圧電
親基板の表面を削り取ることによって所定深さのIみ部
を形成するので、これらの部位における基板厚みは薄く
なり、その共振周波数は窪み部の深さに応して高くなる
。そこで、これらの部位の共振周波数が高くなった影響
を受け、圧電親基板を挟んで対向する振動電極間の部位
におけるエネルギー閉し込め効果が大きくなる結果、こ
の部位における共振周波数が高くなるとともに、その電
気的性能が向上することになる。
<Function> According to the above method, an I-groove portion of a predetermined depth is formed by scraping off the surface of the piezoelectric parent substrate exposed in the vicinity of the vibrating electrode, so the thickness of the substrate in these portions becomes thinner, and its resonance is reduced. The frequency increases with the depth of the recess. Therefore, under the influence of the increased resonance frequency of these parts, the energy confinement effect in the part between the vibrating electrodes facing each other with the piezoelectric parent substrate in between increases, and as a result, the resonance frequency in this part increases, Its electrical performance will be improved.

〈実施例〉 以下、本発明方法の実施例を図面に基づいて説明する。<Example> Hereinafter, embodiments of the method of the present invention will be described based on the drawings.

なお、本実施例においては、圧電磁器共振子が厚みすべ
り振動共振子であるものとしている。
In this embodiment, the piezoelectric ceramic resonator is a thickness-shear vibration resonator.

第1図は本発明方法によって得られた厚みすべり振動共
振子(以下、共振子という)の概略構成を示す外観斜視
図、第2図は半製品としての厚みすべり振動共振子連(
以下、共振子連という)の概略構成を示す外観斜視図で
あり、第3図及び第4図はその製作手順を示す工程断面
図である。なお、これらの図において、従来例を示す第
5図及び第6図と互いに同一もしくは相当する部分には
同一符号を付している。
Fig. 1 is an external perspective view showing the schematic structure of a thickness-shear resonator (hereinafter referred to as a resonator) obtained by the method of the present invention, and Fig. 2 is a series of thickness-shear resonators as a semi-finished product (
1 is an external perspective view showing a schematic configuration of a resonator chain (hereinafter referred to as a resonator chain), and FIGS. 3 and 4 are process cross-sectional views showing a manufacturing procedure thereof. In these figures, the same reference numerals are given to the same or corresponding parts as in FIGS. 5 and 6 showing the conventional example.

最終製品としての共振子10は、第1図で示すように、
所定厚みの短冊状とされた圧電基板2゜を備えており、
その両面それぞれには圧電基板2゜を挟んで対向するこ
とによってエネルギーを閉じ込める振動電極3゜、3゜
が形成されている。そして、これらの振動電極3゜、3
゜の近傍部位には、圧電基板2゜の表面を削り取って形
成された所定深さの窪み部5゜、5゜がそれぞれ設けら
れている。また、第2図で示す共振子連1は複数の共振
子10、・・・が並列形成されてなる半製品であり、こ
れを切断することによって個別化された複数の共振子1
0、・・・が得られることになる。
The resonator 10 as a final product, as shown in FIG.
It is equipped with a piezoelectric substrate 2° in the form of a strip with a predetermined thickness,
Vibrating electrodes 3° and 3° are formed on both sides of the piezoelectric substrate, respectively, to confine energy by opposing each other with a piezoelectric substrate 2° in between. And these vibrating electrodes 3°, 3
In the vicinity of the piezoelectric substrate 2°, recesses 5° and 5° each having a predetermined depth are formed by scraping the surface of the piezoelectric substrate 2°. Further, the resonator chain 1 shown in FIG. 2 is a semi-finished product in which a plurality of resonators 10, . . . are formed in parallel.
0,... will be obtained.

つぎに、この共振子連1の製作手順を、第3図及び第4
図に基づいて説明する。
Next, the manufacturing procedure of this resonator chain 1 is shown in Figures 3 and 4.
This will be explained based on the diagram.

まず、従来例と同様の手順によって複数の共振子10、
・・・と対応しうる大きさとされた圧電親基板2を製作
し、この圧!親基板2に対してラッピングなどの研磨処
理を施したのち、その両面それぞれに振動電極3.3を
蒸着もしくはスパッタリングによって形成する。そして
、第3図で示すように、圧電親基板2の表面上に形成さ
れた振動電極3,3を、例えば、金属板からなる保護マ
スク6.6で覆うことによって保護したのち、この振動
電極3,3の近傍部位に露出した圧電親基板2の表面を
サンドブラスト法で削り取る。
First, a plurality of resonators 10,
A piezoelectric main board 2 is manufactured to have a size that corresponds to..., and this pressure! After a polishing process such as lapping is performed on the parent substrate 2, vibrating electrodes 3.3 are formed on each of its surfaces by vapor deposition or sputtering. As shown in FIG. 3, after the vibrating electrodes 3, 3 formed on the surface of the piezoelectric parent substrate 2 are protected by covering them with a protective mask 6.6 made of a metal plate, for example, the vibrating electrodes 3, the surface of the piezoelectric parent substrate 2 exposed in the vicinity of 3 is scraped off by sandblasting.

すると、第4図で示すように、振動電極3.3の近傍部
位に露出した圧電親基板2の表面には、所定深さの窪み
部5.5を形成する。そこで、これらの部位における基
板厚みは、窪み部5.5の深さに応じて薄くなる。さら
に、このようにして製作された共振子連1を所定の大き
さごとに切断すれば、最終製品である共振子1.が得ら
れることになる。
Then, as shown in FIG. 4, a recess 5.5 of a predetermined depth is formed on the surface of the piezoelectric parent substrate 2 exposed in the vicinity of the vibrating electrode 3.3. Therefore, the substrate thickness at these portions becomes thinner depending on the depth of the recessed portion 5.5. Furthermore, by cutting the resonator chain 1 manufactured in this way into pieces of predetermined size, the final product, the resonator 1. will be obtained.

なお、圧電基板2の表面を削り取る作業は両面同時に行
いうるちのであり、かつ、保護マスク66を介して共振
周波数をモニタしながら削り取り作業を行うことが可能
となるため、共振周波数の調整に要する手間を削減する
とともに、その確実な調整を図ることができるという利
点がある。また、圧を親基板2の削り取り作業はサンド
ブラスト法を採用して行わなければならないものではな
く、例えば、グラインダなどを用いることによって圧電
基板2の表面それぞれを逐次削り取る方法を採用しても
よい。
Note that the work of scraping the surface of the piezoelectric substrate 2 can be done simultaneously on both sides, and it is possible to perform the scraping work while monitoring the resonance frequency through the protective mask 66. This has the advantage of reducing labor and ensuring reliable adjustment. Further, the work of scraping off the pressure on the mother board 2 does not have to be carried out by employing a sandblasting method; for example, a method may be adopted in which each surface of the piezoelectric substrate 2 is successively scraped off by using a grinder or the like.

ところで、本実施例方法においては、振動電極3.3の
近傍部位に露出した圧電親基板2の表面を削り取ること
によって共振子連1の有する共振周波数を調整するもの
としているが、従来例による周波数調整方法を併用する
ことも可能である。
By the way, in the method of this embodiment, the resonant frequency of the resonator chain 1 is adjusted by scraping off the surface of the piezoelectric parent substrate 2 exposed in the vicinity of the vibrating electrode 3.3, but the frequency according to the conventional example is It is also possible to use the adjustment method in combination.

すなわち、本実施例方法による共振周波数の調整が大き
過ぎ、得られた共振子連1の有する共振周波数が所要の
目標値よりも高くなり過ぎた場合には、第2図中の仮想
線で示すように、各共振子連lの振動Ti極3.3上に
熱硬化性樹脂4.4を塗布することによって質量を付加
し、この質量付加によって共振周波数を低下させればよ
い。
In other words, if the adjustment of the resonant frequency by the method of this embodiment is too large and the resonant frequency of the obtained resonator chain 1 becomes too high than the required target value, the adjustment as shown by the imaginary line in FIG. As shown, mass is added by applying thermosetting resin 4.4 onto the vibrating Ti pole 3.3 of each resonator chain 1, and the resonant frequency is lowered by this addition of mass.

さらに、本実施例においては圧電磁器共振子が厚みすべ
り振動共振子であるものとして説明したが、これに限定
されるものではなく、厚み縦振動や厚みねじり振動など
のような他の厚み振動モードを利用する圧tVA器共器
量振子いても本発明方法を適用することが可能であるこ
とはいうまでもない。
Further, in this embodiment, the piezoelectric ceramic resonator has been described as a thickness shear vibration resonator, but it is not limited to this, and other thickness vibration modes such as thickness longitudinal vibration and thickness torsional vibration can be used. It goes without saying that the method of the present invention can also be applied to a pressure tVA device using a reciprocal pendulum.

〈発明の効果〉 以上説明したように、本発明方法においては、振動電極
の近傍部位に露出した圧電親基板の表面を削り取ること
によって所定深さの窪み部を形成するので、これらの部
位における基板厚みは薄くなり、その共振周波数は窪み
部の深さに応じて高くなる。そこで、これらの部位の共
振周波数が高くなった影響を受けることになる結果、圧
電親基板を挟んで対向する振動電極間の部位における工
フルギー閉し込め効果が大きくなり、この部位における
共振周波数が高くなる方向での共振周波数の調整が行わ
れることになる。なお、このとき、エネルギー閉し込め
効果が大きくなる結果、電気的性能の向上も同時に図れ
ることになる。
<Effects of the Invention> As explained above, in the method of the present invention, recesses of a predetermined depth are formed by scraping off the surface of the piezoelectric parent substrate exposed in the vicinity of the vibrating electrode, so that the substrate in these areas is The thickness becomes thinner, and the resonant frequency becomes higher depending on the depth of the recess. Therefore, as a result of the increased resonant frequency of these parts, the mechanical confinement effect in the part between the vibrating electrodes facing each other with the piezoelectric parent substrate in between increases, and the resonant frequency in this part increases. The resonant frequency will be adjusted in the direction of increasing it. In addition, at this time, as a result of the energy confinement effect being increased, electrical performance can also be improved at the same time.

すなわち、本発明方法によれば、振動電極上に質量を付
加することによって共振周波数を調整していないので、
電気的性能の劣化を招くことはなくなり、共振周波数の
調整を容易かつ確実に行うことができるという効果が得
られる。
That is, according to the method of the present invention, the resonant frequency is not adjusted by adding mass to the vibrating electrode.
This eliminates the possibility of deterioration in electrical performance, and provides the advantage that the resonant frequency can be adjusted easily and reliably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本実施例にかかり、第1図は厚み
すべり振動共振子の概略構成を示す外観斜視図、第2図
は厚みすべり振動共振子連の概略構成を示す外観斜視図
であり、第3図及び第4図はその製作手順を示す工程断
面図である。また、第5図及び第6図は従来例にかかり
、第5図は厚みすべり振動共振子の概略構成を示す外観
斜視図、第6図は厚みすべり振動共振子連の概略構成を
示す外観斜視図である。 図における符号1.は厚みすべり振動共振子(圧′w、
Mi器共振子)、1は厚みすべり振動共振子連(圧電磁
器共振子連)、2は圧電親基板、3は振動電極、5は富
み部である。 なお、図中の同一符号は、互いに同一もしくは相当する
部品、部分を示している。
Figures 1 to 4 relate to this embodiment, where Figure 1 is an external perspective view showing a schematic configuration of a thickness-shear vibration resonator, and Figure 2 is an external perspective view showing a schematic configuration of a thickness-shear vibration resonator chain. 3 and 4 are process sectional views showing the manufacturing procedure. Furthermore, FIGS. 5 and 6 relate to conventional examples, and FIG. 5 is an external perspective view showing a schematic configuration of a thickness-shear vibration resonator, and FIG. 6 is an external perspective view showing a schematic configuration of a thickness-shear vibration resonator chain. It is a diagram. Reference numeral 1 in the figure. is the thickness-shear vibration resonator (pressure′w,
1 is a thickness-shear vibration resonator chain (piezoelectric ceramic resonator chain), 2 is a piezoelectric main substrate, 3 is a vibrating electrode, and 5 is a rich portion. Note that the same reference numerals in the figures indicate the same or corresponding parts and portions.

Claims (1)

【特許請求の範囲】[Claims] (1)切断によって個別化される複数の圧電磁器共振子
(1_0)が並列形成された圧電磁器共振子連(1)の
周波数調整方法であって、 圧電親基板(2)の表面上に形成された振動電極(3)
の近傍部位に露出した圧電親基板(2)を削り取って所
定深さの窪み部(5)を形成することを特徴とする圧電
磁器共振子連の周波数調整方法。
(1) A method for adjusting the frequency of a piezoelectric ceramic resonator chain (1) in which a plurality of piezoelectric ceramic resonators (1_0) that are individualized by cutting are formed in parallel on the surface of a piezoelectric parent substrate (2). Vibrating electrode (3)
A method for adjusting the frequency of a piezoelectric ceramic resonator chain, characterized in that a piezoelectric parent substrate (2) exposed in the vicinity of the piezoelectric substrate (2) is scraped off to form a recessed portion (5) of a predetermined depth.
JP20738290A 1990-08-03 1990-08-03 Frequency adjusting method for combination piezoelectric porcelain resonators Pending JPH0490610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20738290A JPH0490610A (en) 1990-08-03 1990-08-03 Frequency adjusting method for combination piezoelectric porcelain resonators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20738290A JPH0490610A (en) 1990-08-03 1990-08-03 Frequency adjusting method for combination piezoelectric porcelain resonators

Publications (1)

Publication Number Publication Date
JPH0490610A true JPH0490610A (en) 1992-03-24

Family

ID=16538807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20738290A Pending JPH0490610A (en) 1990-08-03 1990-08-03 Frequency adjusting method for combination piezoelectric porcelain resonators

Country Status (1)

Country Link
JP (1) JPH0490610A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286608A (en) * 1988-05-13 1989-11-17 Alpine Electron Inc Updating method for preset station
JP2007189431A (en) * 2006-01-12 2007-07-26 Epson Toyocom Corp Piezoelectric vibration piece and piezoelectric device
JP2007189414A (en) * 2006-01-12 2007-07-26 Epson Toyocom Corp Piezoelectric vibration piece and piezoelectric device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286608A (en) * 1988-05-13 1989-11-17 Alpine Electron Inc Updating method for preset station
JP2007189431A (en) * 2006-01-12 2007-07-26 Epson Toyocom Corp Piezoelectric vibration piece and piezoelectric device
JP2007189414A (en) * 2006-01-12 2007-07-26 Epson Toyocom Corp Piezoelectric vibration piece and piezoelectric device

Similar Documents

Publication Publication Date Title
JP2001196883A (en) Frequency adjustment method for piezo-resonator
CN115276593A (en) Acoustic wave resonator and filter
US4218631A (en) Electrode structure for thickness mode piezoelectric vibrating elements
CN116599491A (en) Acoustic wave resonator, preparation method of acoustic wave resonator and filter
US7888849B2 (en) Piezoelectric resonator and method for producing the same
JPH02312310A (en) Piezoelectric parts and manufacture thereof
JPH0490610A (en) Frequency adjusting method for combination piezoelectric porcelain resonators
JPH04127709A (en) At cut crystal oscillator
JPS6357967B2 (en)
JPH09181556A (en) Piezoelectric vibrator
JPH0131728B2 (en)
JPH06224677A (en) Frequency adjusting method for piezoelectric resonator
JPH08125486A (en) Piezoelectric vibrator
JPH04294622A (en) Production of piezoelectric element
JPS60199211A (en) Piezoelectric resonator
JPH02264507A (en) Piezoelectric vibrator device
JP2003017978A (en) Piezoelectric vibrator
JPS6127929B2 (en)
JPS63100807A (en) Manufacture of piezoelectric ceramic resonator
JP2854581B2 (en) Piezoelectric vibrating element and its frequency adjustment method
JPH0325966B2 (en)
JPH03139009A (en) Miniature piezoelectric resonator
JP2636560B2 (en) Piezoelectric resonator
JP3439951B2 (en) Surface wave resonator
JPH01232812A (en) Method for forming lithium tantalate wafer polarized inverting layer