JPH049060A - Manufacture of dustproof body high in light transmittance - Google Patents

Manufacture of dustproof body high in light transmittance

Info

Publication number
JPH049060A
JPH049060A JP2110965A JP11096590A JPH049060A JP H049060 A JPH049060 A JP H049060A JP 2110965 A JP2110965 A JP 2110965A JP 11096590 A JP11096590 A JP 11096590A JP H049060 A JPH049060 A JP H049060A
Authority
JP
Japan
Prior art keywords
film
light transmittance
sol
dustproof body
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2110965A
Other languages
Japanese (ja)
Inventor
Tetsuya Miyazaki
哲也 宮崎
Mayumi Kawasaki
川崎 まゆみ
Hideo Hama
秀雄 浜
Masato Karaiwa
唐岩 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP2110965A priority Critical patent/JPH049060A/en
Publication of JPH049060A publication Critical patent/JPH049060A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof

Abstract

PURPOSE:To obtain a dustproof body high in light transmittance and not causing photodecomposition even when it is irradiated with short wavelength light for a long time by heat treating a thin gel film obtained by developing sol on the surface of a liquid by the casting method, and forming an inorganic film high in light transmittance. CONSTITUTION:The sol is developed on the surface of the liquid rendered in specific weight and surface tension higher than the sol, the obtained thin gel film is scooped, and dried with hot air or the like, the obtained thin dry gel film is fixed to a holder 2 made of a metal or ceramics, and heat treated to form the inorganic film 3 high in light transmittance. At the time of drying, the gel film may be fixed to another base plate, and after drying the obtained inorganic film may be fixed to another holder 2, thus permitting the obtained dustproof body 1 high in light transmittance to prevent opacification of the film 3 due to photodecomposition caused by long time exposure to short wave- length light and deterioration of mechanical strength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、 IC,LSI等の半導体素子の製造工程に
おけるフォトリソグラフィ工程で使用するフォトマスク
やレチクル等に、塵埃等の異物が付着することを防止す
るために使用する防塵体の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is intended to prevent foreign matter such as dust from adhering to photomasks, reticles, etc. used in the photolithography process in the manufacturing process of semiconductor devices such as ICs and LSIs. The present invention relates to a method of manufacturing a dustproof body used to prevent dust.

〔従来の技術〕[Conventional technology]

半導体素子の製造工程における露光処理では、ガラス板
の表面にクロム等の蒸着遮光膜で回路をパターンニング
したマスクを用いて、この回路パターンをレジスト等の
感光剤が塗布されたシリコンウェハ上に転写する作業が
行われている。
In the exposure process in the manufacturing process of semiconductor devices, a mask is used to pattern a circuit with a vapor-deposited light-shielding film such as chromium on the surface of a glass plate, and this circuit pattern is transferred onto a silicon wafer coated with a photosensitive agent such as resist. Work is being done to

このとき、マスク上に塵埃等の異物が付着した状態で露
光処理が行われると、この塵埃の陰影がそのままウェハ
上にも転写されてしまうこととなり、製品不良を生じ、
いわゆる歩留りを低下させる要因となる。特に、マスク
としてレチクルを用いてウェハ上のチップ領域に順次回
路パターンを転写する縮小投影露光処理においては、大
半のヂツブの製品良否を左右することとなり、塵埃付着
の問題は深刻である。
At this time, if exposure processing is performed with foreign matter such as dust attached to the mask, the shadow of this dust will be transferred onto the wafer as it is, resulting in product defects.
This becomes a factor that reduces so-called yield. In particular, in reduction projection exposure processing in which circuit patterns are sequentially transferred onto chip areas on a wafer using a reticle as a mask, the problem of dust adhesion is serious, as it determines the quality of most products.

そこで、返歌 前記マスクの回路パターン上の所定距離
位置にニトロセルロース等の有機物からなる透明防塵体
(ペリクル)を張設して、回路パターン上に塵埃が直接
付着するのを防止することが知られている。
Therefore, it is known that a transparent dustproof material (pellicle) made of organic material such as nitrocellulose is placed at a predetermined distance above the circuit pattern of the mask to prevent dust from directly adhering to the circuit pattern. ing.

また、 J、Membrane  5cience、3
9(1988)P213−P220の、L、 C,KL
EIN、 D、 GALLAGHERによる”PORE
STRUCTURES OF 5QL−GEL 5IL
ICA MEMBRANES” と題された文献では、
厚さ100μmのシリカゲルシートの作製について報告
されているハ 係る技術は前記ペリクルにおける光線透
過性膜としては利用できない厚さであり、しかも熱処理
を行っておらずに、膜内には数十μmの直径を有する球
状の空隙が無数に存在しているものである。
Also, J. Membrane 5science, 3
9 (1988) P213-P220, L, C, KL
“PORE” by EIN, D, GALLAGHER
STRUCTURES OF 5QL-GEL 5IL
In the document entitled ``ICA MEMBRANES'',
It has been reported that the production of a silica gel sheet with a thickness of 100 μm has been reported. This technology is too thick to be used as a light-transmitting film in the pellicle, and furthermore, without heat treatment, the film has a thickness of several tens of μm. There are countless spherical voids with different diameters.

〔発明が解決しようとする課題〕 ところで、半導体素子の集積度の向上にともない、露光
時の光線波長がg線(436nm)からi線(365n
m)、さらにエキシマレーザ(248nm)へと短波長
側にシフトしてくると、従来の有機物からなる透明薄膜
を用いた防塵体では、分子の結合状態が弱く、薄膜内で
光分解を起こし、膜自体が不透明化してしまい、安定的
な光線透過率が得られないこと、および膜の機械的強度
の劣化が生じることが明らかにされた。
[Problems to be Solved by the Invention] Incidentally, as the degree of integration of semiconductor devices improves, the wavelength of the light beam during exposure has changed from the g-line (436 nm) to the i-line (365 nm).
m), as the wavelength shifts further to excimer lasers (248 nm), the conventional dustproof body using a transparent thin film made of organic matter has weak molecular bonding and photodecomposition occurs within the thin film. It was revealed that the film itself became opaque, making it impossible to obtain stable light transmittance, and that the mechanical strength of the film deteriorated.

本発明の目的は、前記の点に鑑みてなされたものであり
、基板上に無機物質を析出させて形成した薄膜を光線透
過性膜として用いることによって、g#&i線は勿論の
こと、エキシマレーザ等の短波長光を長期間にわたって
照射しても光分解をきたさない高光線透過性防塵体を提
供することにある。
The object of the present invention has been made in view of the above points, and by using a thin film formed by depositing an inorganic substance on a substrate as a light-transmitting film, it is possible to transmit not only g# & i-line but also excimer. It is an object of the present invention to provide a dustproof body with high light transmittance that does not cause photodecomposition even when irradiated with short wavelength light such as a laser for a long period of time.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、高光線透過性防塵体を製造する際に、ゾルを
、該ゾルよりも比重および表面張力が大となるように形
成された液面上に展開してゲル薄膜を得る工程と、 前記ゲル薄膜を熱処理して無機質膜を得る工程と、 前記熱処理の前または後に、前記ゲル薄膜または前記無
機質膜を保持枠に張設する工程とを含むことを要旨とす
るものである。
The present invention provides a step of obtaining a gel thin film by spreading a sol on a liquid surface formed to have a higher specific gravity and surface tension than the sol when manufacturing a highly light transmitting dustproof body; The gist of the present invention includes the steps of heat-treating the gel thin film to obtain an inorganic film, and stretching the gel thin film or the inorganic film on a holding frame before or after the heat treatment.

前記で得られる無機質膜としては、ケイ素の酸化物を主
成分とするものが好ましいハ ケイ素の酸化物の他に、
Li、  Na、  K、  Cs、  Mg。
The inorganic film obtained above is preferably one containing silicon oxide as a main component (c) In addition to silicon oxide,
Li, Na, K, Cs, Mg.

Ca、Sr、  Ba、  Y、  La  Ti  
Zr  HfV、  Nb、  Ta、  Cr、  
Fe、  Co、  Ni、Pd。
Ca, Sr, Ba, Y, LaTi
Zr HfV, Nb, Ta, Cr,
Fe, Co, Ni, Pd.

Au、  Zn、  Cd、  B、  AI、  I
n、  C,GeSn、  Pb、  N、  P、 
 As、  Sb、  O,S、  F等の元素や元素
酸化物を含有してもよい。
Au, Zn, Cd, B, AI, I
n, C, GeSn, Pb, N, P,
It may contain elements such as As, Sb, O, S, F, etc. or element oxides.

ゾルよりゲル薄膜を得る方法としては、いわゆるゾルゲ
ル法を用いることが可能である。
As a method for obtaining a gel thin film from a sol, a so-called sol-gel method can be used.

ゾルゲル法は、適当な溶媒に出発原料として金属アルコ
キシド等の有機金属化合物あるいは金属酸化物の微粒子
を、溶解あるいは分散して、ゾルを調製し、このゾルよ
りゲル薄膜を得て、これを乾燥した後、加熱処理して前
記ゲル薄膜をガラス状の無機質膜とする方法である。
In the sol-gel method, a sol is prepared by dissolving or dispersing fine particles of an organometallic compound such as a metal alkoxide or a metal oxide as a starting material in an appropriate solvent, and a thin gel film is obtained from this sol, which is then dried. Thereafter, the gel thin film is heated to form a glass-like inorganic film.

なお、前記ゾルを調製する際には、必要に応じて木 触
媒、解膠剤等を添加してもよい。
In addition, when preparing the above-mentioned sol, a wood catalyst, a deflocculant, etc. may be added as necessary.

前記金属アルコキシドとしては、例えばテトラメトキシ
シラン(S i  (OCHa) 4)、  テトラエ
トキシシラン(S I (OC2Hs ) 4 ) 、
  アルミニウムイソプロポキシド (A l (OCR[CH3] 2) 3)、  チタ
ニウムイソプロポキシド(T i  (OCR[CH3
コp) 4)、  ジルコニウムプロポキシド(Z r
 (OC3H7) 4)等を例示できる。
Examples of the metal alkoxide include tetramethoxysilane (S i (OCHa) 4), tetraethoxysilane (S I (OC2Hs) 4),
Aluminum isopropoxide (A l (OCR[CH3] 2) 3), titanium isopropoxide (T i (OCR[CH3]
Cop) 4), Zirconium propoxide (Z r
(OC3H7) 4) etc. can be exemplified.

また、出発原料としては、前記金属アルコキシド以外に
、オクチル酸ケイ素 (S i(Cv H+ s COO) 4) 、オクチ
ル酸アルミニウム(A I (Cv HIs Co0)
3)等の有機酸金属類等を例示できる。
In addition to the metal alkoxides, starting materials include silicon octylate (S i (Cv H+ s COO) 4) and aluminum octylate (AI (Cv HIs Co0)).
Examples include organic acid metals such as 3).

また、前記金属酸化物の微粒子としては、たとえば前記
金属アルコキシドの加水分解によって得られたケイ素酸
化物微粒子、金属塩化物の火炎加水分解によって製造さ
れたケイ素酸化物微粒子等が例示できる。
Examples of the metal oxide fine particles include silicon oxide fine particles obtained by hydrolysis of the metal alkoxide and silicon oxide fine particles produced by flame hydrolysis of metal chlorides.

また前記溶媒は特に限定されず、通常のゾルゲル法で使
用可能な溶媒でよい。このような溶媒としては、たとえ
ばTert−ブタノール、インプロパツール、エタノー
ル、メタノール等のアルコール類、ホルムアミド、ジメ
チルホルムアミド等のアミド類、ベンゼン、 トルエン
、キシレン等の芳香族炭化水素類、ペンタン、ヘキサン
、ヘプタン、オクタン等の脂肪族炭化水素類、エチレン
グリコ・−ル、ジエチレングリコール、 トリエチレン
グリコール等のグリコール類、ジェタノールアミン、 
トリエタノールアミン等のアミン類、エチレングリコー
ルモノエチルエーテル、エチレングリコールモノエチル
エーテル等のニーデル類、アセトン、メチルエチルケト
ン等のケトン類、アセチルアセトン、ベンゾイルアセト
ン等のβ−ジケトン類等を例示できる。
Further, the solvent is not particularly limited, and any solvent that can be used in a normal sol-gel method may be used. Examples of such solvents include alcohols such as tert-butanol, impropatol, ethanol, and methanol, amides such as formamide and dimethylformamide, aromatic hydrocarbons such as benzene, toluene, and xylene, pentane, hexane, Aliphatic hydrocarbons such as heptane and octane, glycols such as ethylene glycol, diethylene glycol and triethylene glycol, jetanolamine,
Examples include amines such as triethanolamine, needles such as ethylene glycol monoethyl ether and ethylene glycol monoethyl ether, ketones such as acetone and methyl ethyl ketone, and β-diketones such as acetylacetone and benzoylacetone.

溶媒の使用量は、特に限定しないが、通常無機質膜を構
成する金属1モルに対して0.1〜20モルの範囲が好
ましい。
The amount of the solvent to be used is not particularly limited, but is preferably in the range of 0.1 to 20 moles per mole of metal constituting the inorganic membrane.

また、ゾルを調製する際に触媒を添加する場合には、触
媒として例えば塩酸、硝酸、酢酸、四塩化ケイ素、フッ
化水素酸、四塩化チタン、水酸化ナトリウム、アンモニ
ア水等を例示できる。触媒の添加量は、無機質膜を構成
する金属1モルに対しテ1. Ox 10−5〜1.0
モルの範囲が好ましい。
Further, when a catalyst is added when preparing a sol, examples of the catalyst include hydrochloric acid, nitric acid, acetic acid, silicon tetrachloride, hydrofluoric acid, titanium tetrachloride, sodium hydroxide, and aqueous ammonia. The amount of catalyst to be added is 1.1 to 1 mole of metal constituting the inorganic membrane. Ox 10-5~1.0
A molar range is preferred.

さらに、前記ゾルを調製する際に、解膠剤を添加する場
合には、例えば塩酸、硝酸、酢酸、フッ化水素酸、アン
モニア水 ポリビニルアルコール等を用いることができ
る。このような解膠剤の添加量は、調製するゾルの20
重量%以下が々イましい。
Furthermore, when a peptizing agent is added when preparing the sol, for example, hydrochloric acid, nitric acid, acetic acid, hydrofluoric acid, aqueous ammonia, polyvinyl alcohol, etc. can be used. The amount of such peptizer added is 20% of the sol to be prepared.
It is best if it is less than % by weight.

また、前記ゾルの調製の際に、水を添加する場合には、
この水の添加量は、無機質膜を構成する金属1モルに対
して0.1〜20モルの範囲とすることが好ましい。
In addition, when adding water during the preparation of the sol,
The amount of water added is preferably in the range of 0.1 to 20 moles per mole of metal constituting the inorganic membrane.

ゾルの調製は、有機金属化合物または金属の酸化物の微
粒子を溶媒に加えて、通常室温から溶媒の還流温度まで
の温度で攪拌するか、あるいは有機金属化合物または金
属酸化物の微粒子を、通常室温から溶媒の還流温度まで
の温度で攪拌しながら溶媒を添加していく。
A sol can be prepared by adding fine particles of an organometallic compound or metal oxide to a solvent and stirring the mixture at a temperature ranging from usually room temperature to the reflux temperature of the solvent, or by adding fine particles of an organometallic compound or metal oxide to a solvent, usually at room temperature. The solvent is added while stirring at a temperature ranging from 100 to reflux temperature of the solvent.

以上の過程で、ノK 触媒、解膠剤を添加する場合には
、その添加方法は特に限定されないが、あらかじめ溶媒
に添加しておき十分に混合しておくことが好ましい。
When adding the NoK catalyst and peptizer in the above process, the method of addition is not particularly limited, but it is preferable to add them to the solvent in advance and mix thoroughly.

前記のようにして得られたゾルからゲル薄膜を得る方法
としては、いわゆるキャスティング法を用いることがで
きる。
A so-called casting method can be used to obtain a gel thin film from the sol obtained as described above.

キャスティング法は、前記ゾルを液面上に展開し、液面
上にゾルの液膜を形成する方法である。
The casting method is a method in which the sol is spread on a liquid surface to form a liquid film of the sol on the liquid surface.

このキャスティング法で用いられる液面としては、ゾル
よりも比重が大きく、かつ表面張力が大きい液により形
成された液面である必要がある。
The liquid surface used in this casting method needs to be a liquid surface formed by a liquid having a higher specific gravity and higher surface tension than the sol.

これに適した液体としては、例えばアセチレンテトラブ
tffフィト(CHB N r 2 CHB r 2 
)を例示できる。なお、このときにゾルは、製膜し易い
ように、あらかじめエバポレータ等で粘度の調製を行っ
ておくことが好ましい。
Suitable liquids for this purpose include, for example, acetylenetetrabu tff phyto(CHB N r 2 CHB r 2
) can be exemplified. At this time, it is preferable that the viscosity of the sol is adjusted in advance using an evaporator or the like so that it can be easily formed into a film.

液面−Lに展開されたゾル液膜は一定時間静置するとゲ
ル薄膜となる。そしてこのゲル薄膜を液面1−からすく
い取り、熱風等で乾燥し、乾燥ゲル薄膜とする。
The sol liquid film developed on the liquid surface -L becomes a thin gel film when left standing for a certain period of time. Then, this gel thin film is scooped off from the liquid surface 1- and dried with hot air or the like to form a dry gel thin film.

このようにして得られた乾燥ゲル薄膜を、金属またはセ
ラミックス製の保持具に固定した後、加熱処理する。加
熱処理は、たとえば300〜1000℃で0.1〜5時
間継続して行わ汰 無機質膜からなる高光線透過性膜3
が完成する。このとき、熱処理雰囲気は大気中、または
酸素含有ガス中が好ましい。
The dry gel thin film thus obtained is fixed to a metal or ceramic holder and then heat-treated. The heat treatment is performed continuously for 0.1 to 5 hours at, for example, 300 to 1000°C.High light transmittance film 3 made of an inorganic film
is completed. At this time, the heat treatment atmosphere is preferably in the air or in an oxygen-containing gas.

なお、保持具への固定は前記のようにゲル薄膜の段階で
加熱処理の前に行ってもよいカ& 加熱の際はゲル薄膜
を別の基板に装着し、加熱終了後に得られた無機質膜を
別の保持具に装着してもよい。
Note that fixing to the holder may be done at the gel thin film stage before heat treatment as described above. During heating, the gel thin film is attached to another substrate, and the inorganic film obtained after heating is may be attached to a separate holder.

ここで、高光線透過性膜3の厚さは、好ましくは10μ
m未満であって、特に好ましくは0.2〜5、0 p 
mで240ないし500nmの光を平均光線透過率で8
5%以上透過するものである。ここで平均光線透過率と
は、240ないし500nmの間で起こる光線透過率の
干渉波の山部と谷部をとり平均した値である。
Here, the thickness of the highly light transmitting film 3 is preferably 10 μm.
m, particularly preferably 0.2 to 5.0 p
The average light transmittance for light between 240 and 500 nm is 8.
It transmits 5% or more. Here, the average light transmittance is the average value of peaks and valleys of interference waves of light transmittance occurring between 240 and 500 nm.

膜厚としては、前記1107Jよりもさらに薄い方が好
ましいハ 一般に0.2μm未満の場合には十分な強度
が得られないことが多い。しかし、強度の点で問題がな
ければこの数値未満の膜厚であってもよいことは勿論で
ある。
It is preferable that the film thickness be even thinner than the above-mentioned 1107J. Generally, if the film thickness is less than 0.2 μm, sufficient strength cannot be obtained in many cases. However, it goes without saying that the film thickness may be less than this value if there is no problem in terms of strength.

一方、膜の厚さについても10μm以上であってもかま
わないハ 露光時の光収差の増大等を考慮すると、 1
101I以下であることが好ましい。
On the other hand, the thickness of the film may be 10 μm or more.C Considering the increase in optical aberration during exposure, etc., 1
It is preferably 101I or less.

高光線透過性膜3の厚さは、露光に使用する波長に対し
て透過率が高くなるように選択する。本発明において、
このような膜厚は、ゾルの粘度、ゾルの調製に用いる溶
媒の表面張力等による制御可能である。
The thickness of the highly light transmitting film 3 is selected so that the transmittance is high for the wavelength used for exposure. In the present invention,
Such film thickness can be controlled by the viscosity of the sol, the surface tension of the solvent used to prepare the sol, and the like.

ここで、高光線透過性膜の厚さをd4、屈折率をn4、
波長をλとした場合、 (ただしmは1以上の整数) のとき反射が防止さ札 透過率が最高になる。例えばn
、=1.5の場合は、g線(436nm)の透過率を高
くするには、膜厚d1  を0.87μmとし、エキシ
マレーザ(248nm)の透過率を高くするには、膜厚
d、を0.83または2.48μmにする。
Here, the thickness of the highly light transmitting film is d4, the refractive index is n4,
When the wavelength is λ (where m is an integer greater than or equal to 1), reflection is prevented and the transmittance is highest. For example n
, = 1.5, to increase the transmittance of the g-line (436 nm), the film thickness d1 should be 0.87 μm, and to increase the transmittance of the excimer laser (248 nm), the film thickness d, to 0.83 or 2.48 μm.

ここで、目的とする膜厚が得られないための透過率の低
下、あるいは波長の変動にともなう透過率の不安定化を
防止するためには、第2図に示すように、高光線透過性
膜3の上層にさらに反射防止層7を積層形成してもよい
Here, in order to prevent a decrease in transmittance due to the inability to obtain the desired film thickness or destabilization of transmittance due to wavelength fluctuations, high light transmittance is required as shown in Figure 2. An antireflection layer 7 may be further laminated on top of the film 3.

このような反射防止層7を積層形成した場合、高光線透
過性膜3の屈折率をnl、反射防止層7の屈折率をn2
、反射防止層7の厚さをd2 とした 場合、(p v’n + =n2、■d2=mλ/(4
n2)(7)両式を満たす屈折率と膜厚とを選択すると
反射が防止さ汰 透過率は最高となる。また反射防止層
7は、高光線透過性膜3の片面あるいは両面のいずれに
積層してもよい。
When such an anti-reflection layer 7 is laminated, the refractive index of the highly light transmitting film 3 is nl, and the refractive index of the anti-reflection layer 7 is n2.
, when the thickness of the antireflection layer 7 is d2, (p v'n + =n2, ■d2=mλ/(4
n2) (7) If the refractive index and film thickness are selected to satisfy both formulas, reflection will be prevented and the transmittance will be the highest. Further, the antireflection layer 7 may be laminated on either one side or both sides of the high light transmittance film 3.

このような高光線透過性膜3とした場合の屈折率n、は
1.5〜1.6である。したがって、n 2−V’n 
I は1.22〜1.26(7)屈折率を有する物質を
反射防止層7として積層すればよいことになる。
The refractive index n of such a highly light transmitting film 3 is 1.5 to 1.6. Therefore, n 2−V'n
This means that a material having a refractive index of 1.22 to 1.26 (7) may be laminated as the antireflection layer 7.

このような物質としては、たとえばフッ化カルシウム(
CaF2)をあげることができる。
Examples of such substances include calcium fluoride (
CaF2).

このような化合物を積層するには、真空蒸着法、スパッ
タリング法等を用いることができる。
In order to laminate such a compound, a vacuum evaporation method, a sputtering method, etc. can be used.

また、反射防止層77!l”、  第3図に示すように
、高屈折率層7aと低屈折率層7bとの2層構造となっ
ている場合、高光線透過性膜3の屈折率をnl、高屈折
率層7aの屈折率をn2、その膜厚をd2、低屈折率層
7bの屈折率をn3、その膜厚をd3 とした場合、 (D v’n’ + −n 2 / n3、■d2−m
λ/4n2.および■d3=mλ/4n3の3式を満た
す屈折率と膜厚とを選択すると反射が完全に防止さ汰 
高い透過率を得ることができる。
Also, anti-reflection layer 77! l", as shown in FIG. 3, in the case of a two-layer structure of a high refractive index layer 7a and a low refractive index layer 7b, the refractive index of the high light transmittance film 3 is nl, and the high refractive index layer 7a is When the refractive index of the low refractive index layer 7b is n2, its film thickness is d2, the refractive index of the low refractive index layer 7b is n3, and its film thickness is d3, (D v'n' + -n 2 / n3, ■d2-m
λ/4n2. Reflection can be completely prevented by selecting a refractive index and film thickness that satisfy the following three formulas: and ■d3=mλ/4n3
High transmittance can be obtained.

高屈折率層7aの素材となる物質として、たとえばフッ
化セリウム(CeF3)、臭化セシウム(C8Br)、
酸化マグネシウム(MgO)、フッ化鉛(PbF2)な
どの無機物をあげることができる。
Examples of materials for the high refractive index layer 7a include cerium fluoride (CeF3), cesium bromide (C8Br),
Examples include inorganic substances such as magnesium oxide (MgO) and lead fluoride (PbF2).

低屈折率層7bの素材となる物質としては、たとえばフ
ッ化リチウム(LiF)、フッ化マグネシウム(MgF
2)、フッ化ナトリウム(NaF)等の無機物をあげる
ことができる。また、前記高屈折率層7aおよび低屈折
率層7bを積層するには、スパッタリング法や真空蒸着
法等を用いることができる。
Examples of materials for the low refractive index layer 7b include lithium fluoride (LiF) and magnesium fluoride (MgF).
2), inorganic substances such as sodium fluoride (NaF) can be mentioned. Moreover, sputtering method, vacuum evaporation method, etc. can be used to laminate the high refractive index layer 7a and the low refractive index layer 7b.

前記高光線透過性膜3は、保持枠2に張設されて高光線
透過性防塵体が完成する。
The high light transmittance film 3 is stretched over the holding frame 2 to complete a high light transmittance dustproof body.

以上のようにして得られた高光線透過性防塵体1は、第
1図に示すように、両面粘着テープ等によりマスク4に
取付けられる。このような高光線透過性防塵体1で表面
が保護されたマスク4を用いることにより、露光時にお
ける、塵埃等の異物の陰影のウェハ上への転写が防止さ
れる。
The high light transmittance dustproof body 1 obtained as described above is attached to a mask 4 with double-sided adhesive tape or the like, as shown in FIG. By using the mask 4 whose surface is protected by such a high light transmittance dustproof body 1, the shadow of foreign matter such as dust is prevented from being transferred onto the wafer during exposure.

すなわち、マスク4の表面と、保持枠2の内側面と、高
光線透過性膜3の内面とで構成される保護空間Sにより
、マスク4の表面に直接塵埃が付着することが防止され
る構造となっている。このような構造により、たとえ塵
埃が高光線透過性腺3の外面側にイ」χjしたとしても
、この塵埃の隘影は、焦点ず汰 すなわちデッドフォー
カスとなり、塵埃の陰影がウェハ上に転写されることは
ない。
That is, a structure in which dust is prevented from directly adhering to the surface of the mask 4 due to the protective space S formed by the surface of the mask 4, the inner surface of the holding frame 2, and the inner surface of the high light transmittance film 3. It becomes. Due to this structure, even if dust falls on the outer surface of the highly transparent gland 3, the shadow of this dust becomes out of focus, that is, it becomes a dead focus, and the shadow of the dust is transferred onto the wafer. Never.

なお、前記高光線透過性防塵体1は、マスク4に対して
その片面のみならず両面に装着してもよい。
Note that the high light transmittance dustproof body 1 may be attached to the mask 4 not only on one side but also on both sides.

〔作用〕[Effect]

前記したL段によれば、ゾルをキャスティング法により
液面に展開して得たゲル薄膜を熱処理して無機質膜をイ
爪  これを高光線透過性膜とすることによって、短波
長光を長期間にわたって照射しても光分解による膜の不
透明化および膜の機械的強度の劣化を生じることのない
高光線透過性防塵体を提供することができる。
According to the above-mentioned L stage, a thin gel film obtained by spreading a sol on the liquid surface by a casting method is heat-treated to form an inorganic film. It is possible to provide a dustproof body with high light transmittance that does not cause the film to become opaque or deteriorate in mechanical strength due to photodecomposition even when irradiated over a long period of time.

〈実施例〉 〔実施例1〕 テトラエトギシシラン(Sl(○C2H3)4)を10
モル、水100モル、硝酸0.05モル、エタノール5
.0モルの混合物を室温で3時間攪拌した後、減圧蒸留
して粘度が1. Oc P sとなるまで濃縮して濃縮
液を得た。
<Example> [Example 1] 10% of tetraethogysilane (Sl(○C2H3)4)
mol, water 100 mol, nitric acid 0.05 mol, ethanol 5
.. The 0 mol mixture was stirred at room temperature for 3 hours and then distilled under reduced pressure until the viscosity was 1. A concentrated solution was obtained by concentrating the mixture to Oc P s.

次に、アセチレンテトラブロマイド (CHB r2CHBr2)により形成された液面1:
Next, liquid level 1 formed by acetylene tetrabromide (CHB r2CHBr2):
.

に前記濃縮液を展開して、アセチレンテトラブロマイド
液上に、前記濃縮液のゾル液膜を形成1−だ。
The concentrated solution is developed to form a sol film of the concentrated solution on the acetylene tetrabromide solution.

前記ゾル液膜を、室温で静置I7てゲル化させてゲル薄
膜とした このゲル薄膜を、アセチレンテトラブロマイ
ド液面上からすくい上げて、40℃で30分の温風乾燥
を行った。
The sol liquid film was left standing at room temperature I7 to gelate into a gel thin film. This gel thin film was scooped up from above the acetylene tetrabromide liquid surface and dried with hot air at 40° C. for 30 minutes.

このようにして乾燥して得られた乾燥ゲル膜を、直径9
0mmの石英ガラス枠に張り付けて固定した後、電気炉
内で600℃まで30時間にわたって昇温l−で、該温
度で2時間保持した後、さらに30時間かけて室温まで
冷却した。
The dried gel film obtained by drying in this way was
After pasting and fixing on a 0 mm quartz glass frame, the temperature was raised to 600° C. over 30 hours in an electric furnace, held at this temperature for 2 hours, and then cooled to room temperature over a further 30 hours.

以上のようにして得られた無機質膜(乾燥ゲル膜)は、
屈折率が1.53、膜厚が2.20μmであり、248
nmにおける透過率が98.9%、240−500nm
における平均光線透過率は92.0%であった。
The inorganic membrane (dry gel membrane) obtained as above is
The refractive index is 1.53, the film thickness is 2.20 μm, and 248
Transmittance in nm is 98.9%, 240-500nm
The average light transmittance was 92.0%.

〔実施例2〕 前記実施例1で得られた無機質膜の両面に、真空蒸着法
により反射防止層7としてCaF2を50nmの厚さに
コーティングした。
[Example 2] Both surfaces of the inorganic film obtained in Example 1 were coated with CaF2 to a thickness of 50 nm as an antireflection layer 7 by vacuum evaporation.

このようにして得られた反射防止層7を備えた無機質膜
は、230〜260nmの範囲にわたって99.8%の
高い光線透過率を示した。
The inorganic film provided with the antireflection layer 7 thus obtained exhibited a high light transmittance of 99.8% over the range of 230 to 260 nm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ゾルをキャスティング法により液面に
展開して得たゲル薄膜を熱処理して無機質膜を?水 こ
れを高光線透過性膜とすることによって、短波長光を長
期間にわたって照射しても光分解による膜の不透明化お
よび膜の機械的強度の劣化を生じることのない高光線透
過性防塵体を提供することができる。
According to the present invention, a thin gel film obtained by spreading a sol on a liquid surface by a casting method is heat-treated to form an inorganic film. Water By making this a highly light-transparent film, a highly light-transparent dustproof material that does not cause the film to become opaque due to photodecomposition or deteriorate its mechanical strength even when irradiated with short wavelength light for a long period of time. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によって得られる高光線透過性防塵体を
マスクに装着した断面図、第2図および第3図は高光線
透過性膜の構造を示す断面図であ1 高光線透過性防塵
体、 2・・保持枠、 3・・高光線透過性A
FIG. 1 is a cross-sectional view of a highly light-transparent dustproof body obtained by the present invention attached to a mask, and FIGS. 2 and 3 are cross-sectional views showing the structure of the highly light-transparent film. Body, 2. Holding frame, 3. High light transmittance A

Claims (3)

【特許請求の範囲】[Claims] (1)ゾルを、該ゾルよりも比重および表面張力が大と
なるように形成された液面上に展開してゲル薄膜を得る
工程と、 前記ゲル薄膜を熱処理して無機質膜を得る工程と、 前記熱処理の前または後に、前記ゲル薄膜または前記無
機質膜を保持枠に張設する工程とを含む高光線透過性防
塵体の製造方法。
(1) A step of spreading a sol on a liquid surface formed to have a higher specific gravity and surface tension than the sol to obtain a thin gel film, and a step of heat-treating the thin gel film to obtain an inorganic film. . A method for manufacturing a highly light-transmitting dustproof body, including the step of stretching the gel thin film or the inorganic film on a holding frame before or after the heat treatment.
(2)前記ゾルは、有機金属化合物または金属酸化物の
微粒子を溶解あるいは分散した溶液であることを特徴と
する、請求項1記載の高光線透過性防塵体の製造方法。
(2) The method for producing a high light transmittance dustproof body according to claim 1, wherein the sol is a solution in which fine particles of an organometallic compound or a metal oxide are dissolved or dispersed.
(3)前記無機質膜は、膜厚が0.2μm〜10μmで
240nm〜500nmの光を平均光線透過率で85%
以上透過することを特徴とする請求項1記載の高光線透
過性防塵体の製造方法。
(3) The inorganic film has a film thickness of 0.2 μm to 10 μm and an average light transmittance of 85% for light of 240 nm to 500 nm.
2. The method of manufacturing a highly light-transmitting dust-proof body according to claim 1, wherein the dust-proof body has a high light transmittance.
JP2110965A 1990-04-26 1990-04-26 Manufacture of dustproof body high in light transmittance Pending JPH049060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2110965A JPH049060A (en) 1990-04-26 1990-04-26 Manufacture of dustproof body high in light transmittance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2110965A JPH049060A (en) 1990-04-26 1990-04-26 Manufacture of dustproof body high in light transmittance

Publications (1)

Publication Number Publication Date
JPH049060A true JPH049060A (en) 1992-01-13

Family

ID=14549001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2110965A Pending JPH049060A (en) 1990-04-26 1990-04-26 Manufacture of dustproof body high in light transmittance

Country Status (1)

Country Link
JP (1) JPH049060A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060465A1 (en) * 2006-11-10 2008-05-22 Advanced Micro Devices, Inc. Euv pellicle with increased euv light transmittance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060465A1 (en) * 2006-11-10 2008-05-22 Advanced Micro Devices, Inc. Euv pellicle with increased euv light transmittance
GB2456980A (en) * 2006-11-10 2009-08-05 Advanced Micro Devices Inc Euv pellicle with increased euv light transmittance
US7723704B2 (en) 2006-11-10 2010-05-25 Globalfoundries Inc. EUV pellicle with increased EUV light transmittance
GB2456980B (en) * 2006-11-10 2011-09-21 Advanced Micro Devices Inc Euv pellicle with increased euv light transmittance

Similar Documents

Publication Publication Date Title
KR950002949B1 (en) Highly light-transmitting dust protective film process for preparation thereof and dust protective member
US6574039B1 (en) Optical element with multilayer thin film and exposure apparatus with the element
EP0605966B1 (en) X-ray optical element
JP5142444B2 (en) Method for avoiding striae in EUV lithography mirrors
KR20130074066A (en) Euv pellicle and manufacturing method of the same
KR102375471B1 (en) An Integrated EVU Pellicle including Pellicle Frame and Pellicle Membrane And An Exposure Apparatus including the Integrated EUV pellicle
JP5800478B2 (en) Low thermal expansion glass for EUVL applications
US6576375B1 (en) Photomask
CA2005096C (en) High light-transmissive dust-proof body and method of preparing same
JPH0695363A (en) Photomask blank, its production and photomask
KR20050022291A (en) Pellicle for lithography
JPH049060A (en) Manufacture of dustproof body high in light transmittance
JP2000147750A (en) Pellicle
WO2007088862A1 (en) Pellicle for high numerical aperture exposure device
JP2733483B2 (en) Manufacturing method of high light transmitting dustproof body
JPH0470750A (en) Production of dustproof body
JPS63262651A (en) Photomask protective film
JPH1149532A (en) Low reflection glass article and its production
US20020154280A1 (en) Solid freeform fabrication of lightweight lithography stage
JPH04151664A (en) Manufacture of dustproof body
JPH07306306A (en) Fresnel lens and its production
JP2005302860A (en) Optical element for extremely short ultraviolet optical system and extremely short ultraviolet exposure device
JP3762108B2 (en) Antifogging and antireflection optical article
JPH07120607A (en) Optical element and manufacture thereof
JPH03276154A (en) Production of dustproof body having high light transmittance