JPH0470750A - Production of dustproof body - Google Patents

Production of dustproof body

Info

Publication number
JPH0470750A
JPH0470750A JP2183187A JP18318790A JPH0470750A JP H0470750 A JPH0470750 A JP H0470750A JP 2183187 A JP2183187 A JP 2183187A JP 18318790 A JP18318790 A JP 18318790A JP H0470750 A JPH0470750 A JP H0470750A
Authority
JP
Japan
Prior art keywords
film
substrate
light
inorg
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2183187A
Other languages
Japanese (ja)
Inventor
Masato Karaiwa
唐岩 正人
Tetsuya Miyazaki
哲也 宮崎
Mayumi Kawasaki
川崎 まゆみ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP2183187A priority Critical patent/JPH0470750A/en
Publication of JPH0470750A publication Critical patent/JPH0470750A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high ray transmittance by forming a ray transmittable film on the surface of an inorg. substrate, then etching away the inorg. substrate, thereby preventing the sticking of foreign matter and uniformizing the stress in the film. CONSTITUTION:The ray transmittable film which has 0.2 to 10mum film thickness and allows the transmission of 240 to 500nm light at >= 85% average ray transmittance is obtd. by forming an inorg. or dielectric thin film on the inorg. substrate, then etching away the inorg. substrate. Then, the inorg. substrate is etched away and the thin film formed on the surface thereof is made into a single film to obtain the ray transmittable film, by which the damage and deterioration of the film, such as scratch, are prevented without allowing stresses to exist unequally in the film as in the case of film peeling. The high ray transmittance is obtd. in this way. In addition, the adhesion of foreign matter to the thin film which is the case for electrification at the time of peeling is prevented by etching away the inorg. substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、IC,LSI等の半導体素子の製造工程にお
けるフォトリングラフィ工程で使用するフォトマスクや
レチクル(以下、単にマスクという)に、 塵埃等の異
物が付着することを防止するために使用する防塵体およ
びその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for removing dust from a photomask or reticle (hereinafter simply referred to as a mask) used in a photolithography process in the manufacturing process of semiconductor devices such as ICs and LSIs. The present invention relates to a dustproof body used to prevent foreign matter from adhering to the present invention, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

半導体素子の製造工程における露光処理で鷹ガラス板の
表面にクロム等の蒸着遮光膜で回路をパターンニングし
たマスクを用いて、この回路パターンをレジスト等の感
光剤が塗布されたシリコンウェハ上に転写する作業が行
われている。
Using a mask that patterns a circuit with a vapor-deposited light-shielding film of chromium, etc. on the surface of an eagle glass plate during exposure processing in the semiconductor device manufacturing process, this circuit pattern is transferred onto a silicon wafer coated with a photosensitive agent such as resist. Work is being done to

このとき、マスク上に塵埃等の異物が付着した状態で露
光処理が行われると、この塵埃の陰影がそのままウェハ
上にも転写されてしまうこととなリ、製品不良を生し 
いわゆる歩留りを低下させる要因となる。特に、マスク
としてレチクルを用いてウェハ上のチップ領域に順次回
路パターンを転写する縮小投影露光処理においては、大
半のチップの製品良否を左右することとなり、塵埃付着
の問題は深刻である。
At this time, if exposure processing is performed with foreign matter such as dust attached to the mask, the shadow of this dust will be transferred onto the wafer as it is, resulting in product defects.
This becomes a factor that reduces so-called yield. In particular, in reduction projection exposure processing in which circuit patterns are sequentially transferred onto chip areas on a wafer using a reticle as a mask, the problem of dust adhesion is serious, as it determines the quality of most chips.

そこで、返歌 前記マスクの回路パターン上の所定距離
位置にニトロセルロース等の有機物、あるいは無機物か
らなる透明防塵体(ペリクル)を張設して、回路パター
ン上に塵埃が直接付着するのを防止することが知られて
いる。
Therefore, a transparent dustproof material (pellicle) made of organic or inorganic material such as nitrocellulose is placed at a predetermined distance above the circuit pattern of the mask to prevent dust from directly adhering to the circuit pattern. It has been known.

ところで、前記防塵体の形成方法としては、平滑面を有
する有機物あるいは無機物からなる基板上にスピンコー
ド法等により所定の膜厚の薄膜を形成獣 その後に前記
基板よりこの薄膜を剥離して単独膜化し これを光線透
過性膜とする技術が一般的であった 〔発明が解決しようとする課題〕 ところ力;、前記従来技術における単独膜化方法におい
て+4  下記のような難点のあることが本発明者によ
って明らかにされた 第Iに、石英ガラス等の無機質基板を用いてこの表面に
有機質膜を形成した場合、この有機質膜を剥離する際に
、摩擦によって有機質膜が帯電しやすく、保持枠への張
設前に塵埃等が付着して製品の歩留りが低下してしまう
おそれがあったまた、無機質基板上に無機質膜を形成し
た場合には、無機質膜は前記有機質膜と比較して脆いた
め、剥離時に損傷したり、光透過性を劣化させる可能性
が高かった 有機質基板上に無機質膜を形成した場合に
は、有機質基板上の面精度が十分でないために、形成さ
れる無機質膜表面も粗面となり、十分な光透過性を確保
できなかった また、いずれの場合にも、物理的に基板
から薄膜を剥離する方法では、膜に対して応力が偏在的
に加わり、膜質が劣化してしまうことを防げなかった本
発明1)前記の点に鑑みてなされたものであり、その目
的は、異物の付着を防止して膜内の応力が均一となるよ
うにして、高い光線透過率を有する高光線透過性防塵体
を提供することにある。
By the way, the method for forming the dustproof body is to form a thin film of a predetermined thickness on a substrate made of an organic or inorganic material with a smooth surface by a spin code method, etc., and then peel this thin film from the substrate to form a single film. [Problem to be solved by the invention] However, the present invention has the following disadvantages in the method of forming a single film in the prior art. First, when an organic film is formed on the surface of an inorganic substrate such as quartz glass, when the organic film is peeled off, the organic film is easily charged due to friction, and the holding frame is damaged. In addition, when an inorganic film is formed on an inorganic substrate, the inorganic film is more brittle than the organic film. When an inorganic film is formed on an organic substrate, there is a high possibility that it will be damaged during peeling or deteriorate the optical transparency. The surface became rough, and sufficient light transparency could not be ensured.In addition, in both cases, the method of physically peeling off the thin film from the substrate applies stress unevenly to the film, resulting in deterioration of the film quality. The present invention was developed in view of the above points (1), and its purpose is to prevent the adhesion of foreign matter and make the stress within the film uniform, thereby achieving high light transmittance. An object of the present invention is to provide a dustproof body with high light transmittance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、マスクに装着される保持枠と、この保持枠に
取付けられる透明3光線透過性膜とを備えた防塵体にお
いて、無機質基板の表面に光線透過性膜を形成した後、
前記無機質基板をエツチング除去して前記光線透過性膜
を得ることを要旨とする。
The present invention provides a dustproof body including a holding frame attached to a mask and a transparent three-ray transparent film attached to the holding frame, after forming a light-transmitting film on the surface of an inorganic substrate.
The gist of the present invention is to obtain the light-transmitting film by etching away the inorganic substrate.

ここで、無機質基板とは、たとえばケイ素基板、あるい
は石英ガラスであり、このような無機質基板の形状とし
て代 縮小投影露光装置におけるマスクに装着すること
を考慮すると、1辺が100mm程度の四角形状の平板
であることが望ましい。
Here, the inorganic substrate is, for example, a silicon substrate or quartz glass, and the shape of such an inorganic substrate is approximately 100 mm. Preferably it is a flat plate.

また、前記無機質基板上に成長される光線透過性膜とし
ては、有機質膜としてパーフルオロ非晶質樹脂、無機質
膜としてケイ素酸化物等が上げられる。
Further, as the light-transmitting film grown on the inorganic substrate, perfluoro amorphous resin may be used as an organic film, and silicon oxide may be used as an inorganic film.

さら1気 前記無機質膜として(戴 Li、Na。Furthermore, as the inorganic film (Li, Na).

K、  Cs、  Mg、  Ca、  Sr、  B
a、  Y、  La。
K, Cs, Mg, Ca, Sr, B
a, Y, La.

Ti、  Zr、  Hf、  V、  Nb、  T
a、  Cr、  Fe。
Ti, Zr, Hf, V, Nb, T
a, Cr, Fe.

Co、  Ni、  Pd、  Au、  Zn、  
Cd、  B、  AlIn、  C,Ge、  Sn
、  Pb   N   P   AsSb、  O,
S、  F等の元素あるいは元素酸化物を含有してもよ
い。
Co, Ni, Pd, Au, Zn,
Cd, B, AlIn, C, Ge, Sn
, PbNPAsSb, O,
It may contain elements such as S and F or element oxides.

前記無機質基板上への光線透過性膜の形成方法としては
、流動状態の膜材料を無機質基板上に滴下して回転塗布
するいわゆるスピンコーティング法、膜材料液中に無機
質基板を浸漬するディッピング法等がある。
Methods for forming the light-transmitting film on the inorganic substrate include a so-called spin coating method in which a film material in a fluid state is dropped onto the inorganic substrate and coated by rotation, a dipping method in which the inorganic substrate is immersed in a film material liquid, etc. There is.

また、無機質膜を形成する際には、金属アルコキシドを
出発原料として、ゾルゲル法により製造することもでき
る。
Moreover, when forming an inorganic film, it can also be manufactured by a sol-gel method using a metal alkoxide as a starting material.

ゾルゲル法は、適当な溶媒に出発原料として金属アルコ
キシド等の有機金属化合物あるいは金属酸化物の微粒子
を、溶解あるいは分散して、ゾルを調製し このゾルよ
りゲル薄膜を得て、これを乾燥した後、加熱処理して前
記ゲル薄膜をガラス状の無機質膜とする方法である。
In the sol-gel method, a sol is prepared by dissolving or dispersing fine particles of an organometallic compound such as a metal alkoxide or a metal oxide as a starting material in an appropriate solvent, and then a thin gel film is obtained from this sol, which is then dried. , a method in which the gel thin film is made into a glass-like inorganic film by heat treatment.

なお、前記ゾルを調製する際には、必要に応じて昶 触
仄 解膠剤等を添加してもよい。
In addition, when preparing the above-mentioned sol, a deflocculant or the like may be added as necessary.

本発明で使用する有機金属化合物としては、例えばテト
ラメトキシシラン(S i  (OCH3) A)テト
ラエトキシシラン(S i  (OC2Hs)、、  
アルミニウムイソプロポキシド (A l  (OCH[CH3] 2)3.  チタニ
ウムイソプロポキシド(T i  (OCR[CH3]
 2) −)、  ジルコニウムプロポキシド(Zr 
(QC3H,)、)等の金属アルコキシド瓜 オクチル
酸ケイ素(S 1  (C? H+ s COO) −
) −オクチル酸アルミニウム(A I  (Cv H
+ s COO) 3 )等の有機酸金属類等を例示で
きる。
Examples of the organometallic compound used in the present invention include tetramethoxysilane (S i (OCH3) A), tetraethoxysilane (S i (OCHs),
Aluminum isopropoxide (A l (OCH[CH3] 2) 3. Titanium isopropoxide (T i (OCR[CH3]
2) -), zirconium propoxide (Zr
Metal alkoxide melons such as (QC3H, ), ) Silicon octylate (S 1 (C? H+ s COO) −
) -aluminum octylate (A I (Cv H
Examples include organic acid metals such as + s COO) 3 ).

また、前記金属酸化物の微粒子としては、たとえば前記
金属アルコキシドの加水分解によって得られたケイ素酸
化物微粒子、金属塩化物の火炎加水分解によって製造さ
れたケイ素酸化物微粒子等が例示できる。
Examples of the metal oxide fine particles include silicon oxide fine particles obtained by hydrolysis of the metal alkoxide and silicon oxide fine particles produced by flame hydrolysis of metal chlorides.

また、前記溶媒は特に限定されず、通常のゾルゲル法で
使用可能な溶媒でよい。このような溶媒としては、例え
ば、ブタノール、インプロパツール、エタノール、メタ
ノール等のアルコール類、ホルムアミド、ジメチルホル
ムアミド等のアミド類、ベンゼン、 トルエン、キシレ
ン等の芳香族炭化水素聚 ペンタン、ヘキサン、ヘプタ
ン、オクタン等の脂肪族炭化水素類、エチレングリコー
ル、ジエチレングリコール、 トリエチレングリコール
等のグリコール漿 ジェタノールアミン、 トリエタノ
ールアミン等のアミン類、エチレングリコールモノメチ
ルエーテル、エチレングリコールモノエチルエーテル等
のエーテル類、アセトン、メチルエチルケトン等のケト
ン類、アセチルアセトン、ベンゾイルアセトン等のβ−
ジケトン類等を例示できる。
Furthermore, the solvent is not particularly limited, and may be any solvent that can be used in a normal sol-gel method. Examples of such solvents include alcohols such as butanol, impropanol, ethanol, and methanol, amides such as formamide and dimethylformamide, aromatic hydrocarbons such as benzene, toluene, and xylene, pentane, hexane, heptane, Aliphatic hydrocarbons such as octane, glycols such as ethylene glycol, diethylene glycol and triethylene glycol, amines such as jetanolamine and triethanolamine, ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether, acetone, Ketones such as methyl ethyl ketone, β- such as acetylacetone, benzoylacetone, etc.
Examples include diketones.

溶媒の使用量は、特に限定しないが、通常無機質膜を構
成する金属1モルに対して0.1〜20モルの範囲が好
ましい。
The amount of the solvent to be used is not particularly limited, but is preferably in the range of 0.1 to 20 moles per mole of metal constituting the inorganic membrane.

また、 ゾルを調製する際に触媒を添加する場合には、
触媒として例えば塩酸、硝酸、酢酸、四塩化ケイ素、フ
ッ化水素酸、四塩化チタン、水酸化ナトリウム、アンモ
ニア水等を例示できる。触媒の添加量は、無機質膜を構
成する金属1モルに対して1.0X10−5〜1,0モ
ルの範囲が好ましい。
In addition, when adding a catalyst when preparing a sol,
Examples of the catalyst include hydrochloric acid, nitric acid, acetic acid, silicon tetrachloride, hydrofluoric acid, titanium tetrachloride, sodium hydroxide, and aqueous ammonia. The amount of the catalyst added is preferably in the range of 1.0×10 −5 to 1.0 mol per mol of metal constituting the inorganic membrane.

さらに、前記ゾルを調製する際に、解膠剤を添加する場
合には、例えば塩酸、硝酸、酢酸、フッ化水素酸、アン
モニア水 ポリビニルアルコール等を用いることができ
る。このような解膠剤の添加量は、調製するゾルの20
重量%以下が好ましい。
Furthermore, when a peptizing agent is added when preparing the sol, for example, hydrochloric acid, nitric acid, acetic acid, hydrofluoric acid, aqueous ammonia, polyvinyl alcohol, etc. can be used. The amount of such peptizer added is 20% of the sol to be prepared.
It is preferably less than % by weight.

また、前記ゾルの調製の際に、 水を添加する場合には
、この水の添加量は、無機質膜を構成する金属1モルに
対して0.1〜20モルの範囲とすることが好ましい。
Furthermore, when water is added during the preparation of the sol, the amount of water added is preferably in the range of 0.1 to 20 moles per mole of metal constituting the inorganic membrane.

ゾルの調製は、まず有機金属化合物または金属の酸化物
の微粒子を溶媒に加えて、室温から溶媒の還流温度まで
の温度で攪拌する。さらに有機金属化合物または金属酸
化物の微粒子を、室温から溶媒の還流温度までの温度で
攪拌しながら溶媒を添加していくことにより行う。
To prepare a sol, first, fine particles of an organometallic compound or metal oxide are added to a solvent, and the mixture is stirred at a temperature ranging from room temperature to the reflux temperature of the solvent. Further, a solvent is added to the fine particles of the organometallic compound or metal oxide while stirring the particles at a temperature ranging from room temperature to the reflux temperature of the solvent.

以上の過程で、木 触孤 解膠剤を添加する場合には、
その添加方法は特に限定されないが、あらかじめ溶媒に
添加しておき充分に混合しておくことが好ましい。
In the above process, when adding a deflocculant,
The method of addition is not particularly limited, but it is preferable to add it to the solvent in advance and mix thoroughly.

以上のようにして得たゾルを薄膜に製膜する方法として
は、スピンコーティング法を用いることができる。すな
わち、ケイ素基板あるいは石英ガラス等の無機質基板上
に、前記ゾルを滴下して、スピンコーターを用いて回転
塗布法により薄膜層を形成するものである。この薄膜層
を熱風等で乾燥処理する。1回の処理で目的とする膜厚
を得られない場合には、前記回転塗布および乾燥を繰り
返してもよい。複数回の塗布・乾燥工程を経ることでク
ラック等の発生が抑制される効果もある。
A spin coating method can be used to form a thin film from the sol obtained as described above. That is, the sol is dropped onto an inorganic substrate such as a silicon substrate or quartz glass, and a thin film layer is formed by spin coating using a spin coater. This thin film layer is dried with hot air or the like. If the desired film thickness cannot be obtained in one treatment, the spin coating and drying may be repeated. Multiple application and drying steps also have the effect of suppressing the occurrence of cracks and the like.

なお、製膜に供するゾルは、製膜処理が行い易いようへ
 エバポレータ等によって粘度の調整を予め行っておく
ことが好ましい。
Note that the viscosity of the sol used for film formation is preferably adjusted in advance using an evaporator or the like so that the film formation process can be easily performed.

以上のようにして得られた薄膜 すなわち光線透過性膜
の厚さは、好ましくは0.2〜10μmの範囲で、特に
好ましくは0.2〜5.0μmで、240ないし500
nmの光を平均光線透過率で85%以上透過するもので
ある。
The thickness of the thin film, i.e., the light-transmitting film, obtained as described above is preferably in the range of 0.2 to 10 μm, particularly preferably in the range of 0.2 to 5.0 μm, and in the range of 240 to 500 μm.
It transmits 85% or more of light of nm in average light transmittance.

ここで平均光線透過率とは、240ないし500nmの
間で起こる光線透過率の干渉波の山部と谷部をとり平均
した値である。
Here, the average light transmittance is the average value of peaks and valleys of interference waves of light transmittance occurring between 240 and 500 nm.

膜厚として(戴 前記10Pmよりもさらに薄い方が好
ましいが、一般に0.2μm未満の場合には十分な強度
が得られないことが多い。しかし、強度の点で問題がな
ければこの数値未満の膜厚であってもよいことは勿論で
ある。一方、膜の厚さが10μm以上であってもかまわ
ないが、露光時の光収差の増大等を考慮すると、10μ
m以下であることが好ましい。すなわち、膜厚が10μ
m以上の場合、エキシマレーザ等の短波長光を用いた露
光工程ではこの光線透過性膜が原因となる光収差を生ロ
 露光時において半導体ウェハ上への微細パターンの再
現に支障を来す可能性があるためである。
It is preferable that the film thickness be even thinner than the above 10 Pm, but in general, if it is less than 0.2 μm, sufficient strength cannot be obtained. However, if there is no problem in terms of strength, On the other hand, the thickness of the film may be 10 μm or more, but considering the increase in optical aberration during exposure, etc.
It is preferable that it is below m. That is, the film thickness is 10μ
m or more, optical aberrations caused by this light-transmitting film may occur during exposure processes using short wavelength light such as excimer lasers, which may interfere with the reproduction of fine patterns on semiconductor wafers during exposure. This is because of their gender.

具体的な光線透過性膜の厚さは、露光に使用する波長に
対して透過率が高くなるように選択する。
The specific thickness of the light-transmitting film is selected so that the transmittance is high for the wavelength used for exposure.

本発明において、このような膜厚+i、析出時間および
珪弗化水素酸水溶液の濃度等により制御可能である。
In the present invention, it is possible to control the film thickness +i, the deposition time, the concentration of the hydrosilicic acid aqueous solution, etc.

ここで、光線透過性膜の厚さをd2、屈折率をnl、波
長をλとした場合、 (ただしmは1以上の整数) のとき反射が防止さ札 透過率が最高になる。例えばn
、=1.5の場合は、g!(436nm)の透過率を高
くするには、膜厚d1  を0.87μmとし、エキシ
マレーザ(248nm)の透過率を高くするには、膜厚
d、を0.83または2.48μmにする。
Here, when the thickness of the light-transmitting film is d2, the refractive index is nl, and the wavelength is λ, (where m is an integer of 1 or more), reflection is prevented and the transmittance is the highest. For example, n
, = 1.5, then g! To increase the transmittance of (436 nm), the film thickness d1 is set to 0.87 μm, and to increase the transmittance of excimer laser (248 nm), the film thickness d is set to 0.83 or 2.48 μm.

ここで、目的とする膜厚が得られないための透過率の低
下、あるいは波長の変動にともなう透過率の不安定化を
防止するために、また光線透過性膜の膜厚の制御を容易
にするためしへ 第3図に示すように、光線透過性膜3
の上層にさらに反射防止層11を積層形成することが好
ましい。
Here, in order to prevent a decrease in transmittance due to the inability to obtain the desired film thickness or destabilization of transmittance due to fluctuations in wavelength, it is necessary to easily control the film thickness of the light-transmitting film. To do this, as shown in Figure 3, the light-transmitting film 3
Preferably, an antireflection layer 11 is further laminated on the upper layer.

このような反射防止層11を積層形成した場合、光線透
過性膜3の屈折率をn5、反射防止層11の屈折率をn
2、反射防止層11の厚さをd2 とした場合、 ■ 7n I :n 2 z の両式を満たす屈折率と膜厚とを選択すると反射が防止
さ汰 透過率は最高となる。また反射防止層11は、光
線透過性膜3の片面あるいは両面のいずれに積層しても
よい。
When such an antireflection layer 11 is laminated, the refractive index of the light transmitting film 3 is n5, and the refractive index of the antireflection layer 11 is n5.
2. If the thickness of the antireflection layer 11 is d2, then reflection will be prevented and the transmittance will be the highest if the refractive index and film thickness are selected that satisfy both the formulas: 7n I :n 2 z. Further, the antireflection layer 11 may be laminated on either one side or both sides of the light-transmitting film 3.

このようにして得られた光線透過性膜3の屈折率n1 
は無機質薄膜の場合1.4〜1.6である。
The refractive index n1 of the light transmitting film 3 obtained in this way
is 1.4 to 1.6 in the case of an inorganic thin film.

したがって、 n2 ”” %’nl は1.18〜1.26の屈折率
を有する物質を反射防止層11として積層すればよいこ
とになる。このような物質としてIL  たとえばフッ
化カルシウム(CaF2)や、パーフルオロ非晶質樹脂
などをあげることができる。
Therefore, n2 ``''%'nl may be obtained by laminating a material having a refractive index of 1.18 to 1.26 as the antireflection layer 11 . Examples of such substances include IL, for example, calcium fluoride (CaF2), perfluoro amorphous resin, and the like.

このような化合物を積層するには、真空蒸着法、スパッ
タリング法等を用いることができる。
In order to laminate such a compound, a vacuum evaporation method, a sputtering method, etc. can be used.

また、反射防止層11カ\ 第4図に示すように、高屈
折率層12aと低屈折率層12bとの2層構造となって
いる場合、光線透過性膜3の屈折率をnl  高屈折率
層12aの屈折率をn2、その膜厚をd2、低屈折率層
12bの屈折率をnl、その膜厚をd3 とした場合、 (D v’n + = n 2 / n3、■d2=m
λ/4n2、 ■d3=mλ/4n3 の3式を満たす屈折率と膜厚とを選択すると反射が完全
に防止さ机 高い透過率を得ることができる。
In addition, when the antireflection layer 11 has a two-layer structure of a high refractive index layer 12a and a low refractive index layer 12b as shown in FIG. When the refractive index of the index layer 12a is n2, its thickness is d2, the refractive index of the low refractive index layer 12b is nl, and its thickness is d3, (D v'n + = n 2 / n3, ■ d2 = m
If the refractive index and film thickness are selected to satisfy the following three equations: λ/4n2, d3=mλ/4n3, reflection can be completely prevented and high transmittance can be obtained.

高屈折率層12aの素材となる物質として、たとえばフ
ッ化セリウム(CeF3)、臭化セシウム(CsBr)
、酸化マグネシウム(MgO)、フッ化鉛(PbF2)
などの無機物をあげることができる。
Examples of materials for the high refractive index layer 12a include cerium fluoride (CeF3) and cesium bromide (CsBr).
, magnesium oxide (MgO), lead fluoride (PbF2)
Inorganic substances such as

低屈折率層12bの素材となる物質として(戴たとえば
フン化リチウム(LiF)、フン化マグネシウム(Mg
F2)、フッ化ナトリウム(NaF)等の無機物やパー
フルオロ非晶質樹脂などの有機物をあげることができる
。また、前記高屈折率層12aおよび低屈折率層12b
を積層するには、スハッタリング法や真空蒸着法等を用
いることができる。
As the material of the low refractive index layer 12b (for example, lithium fluoride (LiF), magnesium fluoride (Mg
F2), inorganic substances such as sodium fluoride (NaF), and organic substances such as perfluoro amorphous resin. Further, the high refractive index layer 12a and the low refractive index layer 12b
A shuttering method, a vacuum evaporation method, or the like can be used to stack the layers.

無機質基板のエツチング方法としては、フッ化水素酸水
溶江 水酸化カリウム水溶液等のエツチング液を用いて
無機質基板をエチング除去する方法が可能である。この
とき、エツチング液およびエツチング時間を制御するこ
とによって、薄膜に影響を与えずに無機質基板のみをエ
ツチング除去することができる。
As a method for etching the inorganic substrate, it is possible to remove the inorganic substrate by etching using an etching solution such as a hydrofluoric acid aqueous solution or a potassium hydroxide aqueous solution. At this time, by controlling the etching solution and etching time, only the inorganic substrate can be etched away without affecting the thin film.

また、エツチング処理を行う際に、フォトレジスト膜に
より枠状のマスクを形成して無機質基板の中央部分のみ
をエツチング除去することによって、保持枠をエツチン
グ処理と同時に形成してもよい。
Furthermore, when performing the etching process, the holding frame may be formed simultaneously with the etching process by forming a frame-shaped mask using a photoresist film and etching away only the central portion of the inorganic substrate.

このような保持枠の同時形成で1戴 光線透過性膜と保
持枠との密着性を高く維持できる。また、人手による張
設工程を経ないため、光線透過性膜の応力偏位もなく、
膜全体に均一な光透過性を確保できる。
By simultaneously forming the holding frame in this manner, it is possible to maintain high adhesion between the light-transmitting film and the holding frame. In addition, since there is no manual tensioning process, there is no stress deviation in the light-transmitting film.
Uniform light transmittance can be ensured throughout the film.

保持枠2に装着された光線透過性膜3からなる防塵体1
は、第2図に示すように、両面粘着テープ等によりマス
ク4に取付けられる。防塵体1で表面が保護されたマス
ク4を用いることにより、露光時における、塵埃等の異
物の陰影のウェハ上への転写が防止される。
Dustproof body 1 consisting of a light-transmitting film 3 attached to a holding frame 2
is attached to the mask 4 with double-sided adhesive tape or the like, as shown in FIG. By using the mask 4 whose surface is protected by the dustproof body 1, the shadow of foreign matter such as dust is prevented from being transferred onto the wafer during exposure.

すなわち、マスク4の表面と、保持枠2の内側面と、光
線透過性膜3の内面とで構成される保護空間Sにより、
マスク4の表面に直接塵埃が付着することが防止される
構造となっている。このような構造により、たとえ塵埃
が光線透過性膜3の外面側に付着したとしても、この塵
埃の陰影は、焦点ず汰 すなわちデッドフォーカスとな
り、塵埃の陰影がウェハ上に転写されることはない。
That is, the protected space S constituted by the surface of the mask 4, the inner surface of the holding frame 2, and the inner surface of the light-transmitting film 3,
The structure is such that dust is prevented from directly adhering to the surface of the mask 4. Due to this structure, even if dust adheres to the outer surface of the light-transmitting film 3, the dust shadow will be out of focus, that is, it will become a dead focus, and the dust shadow will not be transferred onto the wafer. .

なお、前記防塵体1は、マスク4に対してその片面のみ
ならず両面に装着してもよい。
Note that the dustproof body 1 may be attached to the mask 4 not only on one side but also on both sides.

〔作用〕[Effect]

前記した手段によれば、無機質基板をエツチング除去し
てその表面に形成された薄膜を単独膜化して光線透過性
膜を得ることで、膜剥離の場合のように膜内に応力を偏
在させることなく、クラック等の膜の損傷・劣化を防止
できる。このため、従来技術では困難であった膜厚が0
.2〜10μmで、240ないし500nmの光を平均
光線透過率で85%以上透過する光線透過性膜を得るこ
とができる。
According to the above-mentioned means, by etching away the inorganic substrate and converting the thin film formed on the surface into a single film to obtain a light-transmitting film, it is possible to unevenly distribute stress within the film as in the case of film peeling. Therefore, damage and deterioration of the film such as cracks can be prevented. For this reason, the film thickness can be reduced to 0, which was difficult with conventional technology.
.. A light transmitting film having an average light transmittance of 85% or more can be obtained with a thickness of 2 to 10 μm and a wavelength of 240 to 500 nm.

また、無機質基板をエツチング除去することにより、剥
離時の帯電が原因となる薄膜への異物の付着も防止でき
る。
Furthermore, by etching away the inorganic substrate, it is possible to prevent foreign matter from adhering to the thin film due to charging during peeling.

また、無機質基板のエツチング処理を行う際に、中央部
分のみをエツチング除去し 残部を保持枠として同時形
成することによって、工程を省略できるととも&電 光
線透過性膜と保持枠との密着性を高く維持できる。また
この場合には、人手による張設工程を経ないため、光線
透過性膜の応力偏位もなく、膜全体に均一な光線透過性
を確保できる。
In addition, when etching an inorganic substrate, by etching only the central part and simultaneously forming the remaining part as a holding frame, the process can be omitted and the adhesion between the lightning-transparent film and the holding frame can be improved. Can be maintained high. Further, in this case, since there is no manual tensioning process, there is no stress deviation in the light-transmitting film, and uniform light-transmitting properties can be ensured over the entire film.

く実 施 例〉 以下本発明の実施例を図に基づいて説明する。Example of implementation Embodiments of the present invention will be described below based on the drawings.

〔実施例1〕 第1図(a)〜(f)は、本発明の防塵体の製造方法を
順次示す断面図である。
[Example 1] FIGS. 1(a) to 1(f) are cross-sectional views sequentially showing a method for manufacturing a dustproof body of the present invention.

まず、基板を構成するケイ素基板5を用意しへ二のケイ
素基板5は、単結晶引き上げ法によって得られたインゴ
ットを500μmの厚さでスライスして得られるもので
あり、その−面は鏡面加工が施されている。なお、以下
の説明では、説明の便宜上、ケイ素基板5において、鏡
面側を表面、反鏡面側を裏面という。
First, a silicon substrate 5 constituting the substrate is prepared.The second silicon substrate 5 is obtained by slicing an ingot obtained by a single crystal pulling method to a thickness of 500 μm, and its surface is mirror-finished. is applied. In the following description, for convenience of explanation, the mirror surface side of the silicon substrate 5 will be referred to as the front surface, and the non-mirror surface side will be referred to as the back surface.

ケイ素基板5の全面に対して熱拡散装置等を用いた加熱
処理により1200℃で20時間の加熱処理を行い、シ
リコンウェハの両面に1μmの酸化シリコン層6を成長
させた(第1図(a))。
The entire surface of the silicon substrate 5 was heated at 1200° C. for 20 hours using a heat diffusion device, etc., and a 1 μm thick silicon oxide layer 6 was grown on both sides of the silicon wafer (see Fig. 1(a). )).

続いて、前記酸化シリコン層6の両面側にスピンコータ
ーを用いたフォトレジスト液の回転塗布および熱風乾燥
を行い、厚さ1〜10μmのフォトレジスト層7を形成
した(第1図(b))。
Subsequently, a photoresist solution was spin coated on both sides of the silicon oxide layer 6 using a spin coater and dried with hot air to form a photoresist layer 7 with a thickness of 1 to 10 μm (FIG. 1(b)). .

次に、前記ケイ素基板5の裏面側に遮光マスク9を位置
決めして遮光マスク9の外方より紫外線の照射を行った
 そして分解型のフォトレジスト層7を、紫外線の照射
部分によって化学的特性が変化させ、続く現像工程にお
いて照射部分のフォトレジスト層7を除去した(第1図
(C))。
Next, a light-shielding mask 9 was positioned on the back side of the silicon substrate 5, and ultraviolet rays were irradiated from the outside of the light-shielding mask 9.Then, the decomposable photoresist layer 7 was chemically characterized by the portions irradiated with the ultraviolet rays. The photoresist layer 7 in the irradiated area was removed in the subsequent development step (FIG. 1(C)).

そして、前記第1図(C)で説明した工程で残ったフォ
トレジスト層7をマスクとして、露出状態となっている
部分の酸化シリコン層6を30℃のフン化水素等のエツ
チング液によって除去し、ケイ素基板5の裏面側を露出
させた状態とした(第1図(d))。
Then, using the photoresist layer 7 remaining from the step explained in FIG. 1(C) as a mask, the exposed portion of the silicon oxide layer 6 is removed using an etching solution such as hydrogen fluoride at 30°C. , the back side of the silicon substrate 5 was exposed (FIG. 1(d)).

さらに、ケイ素基板5に対して50℃の水酸化カリウム
等の水溶液でエツチング処理を行い、前記露出部分、す
なわちケイ素基板5の中央部分を除去した(第1図(e
))。
Further, the silicon substrate 5 was etched with an aqueous solution such as potassium hydroxide at 50° C. to remove the exposed portion, that is, the central portion of the silicon substrate 5 (Fig. 1(e)
)).

そして最後に、残着しているフォトレジスト層7を全て
除去することによって、ケイ素基板5の残部が保持枠2
となり、酸化シリコン層6が単独膜化して光線透過性膜
3となった防塵体1を得た(第1図(f))。
Finally, by removing all the remaining photoresist layer 7, the remaining portion of the silicon substrate 5 is removed from the holding frame 2.
Thus, a dustproof body 1 in which the silicon oxide layer 6 became a single film and became a light-transmitting film 3 was obtained (FIG. 1(f)).

このようにして得られた防塵体は、その光線透過性膜3
が屈折率が1.50、膜厚が1μmであり、248℃m
における透過率は98.0%、240〜500nmにお
ける平均光線透過率は92.0%であった 〔実施例2〕 テトラエトキシシラン(S 1(OC2H6) j)、
1.0モル、水1.0モル、硝酸0.05モル、イソプ
ロバール4.7モルの混合物を室温で2時間攪拌し室温
で静置して溶媒を蒸発させ、粘度が5cPとなるまで濃
縮しtユ 次に、直径2インチ、厚さ0.3 mmのケイ素基板上
に、上記の濃縮液約3 、0 m lを滴下し スピン
コーターを用いて11000rpで60秒間回転させて
、ケイ素基板上にシリカゾル膜を形成させr=  そし
て、この膜が形成されたケイ素基板をさらに熱風循環式
乾燥機内において、90℃で10分乾燥した 次に、前記実施例1同様に、前記ケイ素基板5の裏面側
に遮光マスク9を位置決めして遮光マスク9の外方より
紫外線の照射を行った そしてフォトレジスト層7を、
紫外線の照射部分によって化学的特性が変化させ、続く
現像工程において照射部分のフォトレジスト層7を除去
した(第1図(C))。
The dustproof body thus obtained has a light transmitting film 3
has a refractive index of 1.50, a film thickness of 1 μm, and a temperature of 248°C.
The transmittance was 98.0%, and the average light transmittance at 240 to 500 nm was 92.0% [Example 2] Tetraethoxysilane (S 1 (OC2H6) j),
A mixture of 1.0 mol of water, 1.0 mol of water, 0.05 mol of nitric acid, and 4.7 mol of isoprobal was stirred at room temperature for 2 hours, left to stand at room temperature to evaporate the solvent, and concentrated until the viscosity was 5 cP. Next, approximately 3.0 ml of the above concentrated solution was dropped onto a silicon substrate with a diameter of 2 inches and a thickness of 0.3 mm. Using a spin coater, the silicon substrate was spun at 11,000 rpm for 60 seconds. A silica sol film was formed on the silicon substrate 5. Then, the silicon substrate on which this film was formed was further dried at 90° C. for 10 minutes in a hot air circulation dryer. A light-shielding mask 9 was positioned on the back side, and ultraviolet rays were irradiated from the outside of the light-shielding mask 9, and the photoresist layer 7 was
The chemical properties were changed depending on the part irradiated with ultraviolet rays, and the photoresist layer 7 in the irradiated part was removed in the subsequent development process (FIG. 1(C)).

そして、前記の工程で残ったフォトレジスト層7をマス
クとして、露出状態となっている部分の酸化シリコン層
6を30℃のフン化水素等のエツチング液によって除去
し、ケイ素基板5の裏面側を露出させた状態とした(第
1図(d))。
Then, using the photoresist layer 7 remaining in the above step as a mask, the exposed portion of the silicon oxide layer 6 is removed with an etching solution such as hydrogen fluoride at 30° C., and the back side of the silicon substrate 5 is removed. It was left exposed (FIG. 1(d)).

さらに、ケイ素基板5に対して50℃の水酸化カリウム
等の水溶液でエツチング処理を行い、前記露出部分、す
なわちケイ素基板5の中央部分を除去した(第1図(e
))。
Further, the silicon substrate 5 was etched with an aqueous solution such as potassium hydroxide at 50° C. to remove the exposed portion, that is, the central portion of the silicon substrate 5 (Fig. 1(e)
)).

そして最後に、残着しているフォトレジスト層7を全て
除去することによって、ケイ素基板5の残部が保持枠2
となり、酸化シリコン層6が単独膜化して光線透過性膜
3となった防塵体1を得た(第1図(f))。
Finally, by removing all the remaining photoresist layer 7, the remaining portion of the silicon substrate 5 is removed from the holding frame 2.
Thus, a dustproof body 1 in which the silicon oxide layer 6 became a single film and became a light-transmitting film 3 was obtained (FIG. 1(f)).

このようにして得られた防塵体は、その光線透過性膜3
が屈折率が1.53、膜厚が1.05μmであり、24
80mにおける透過率は98.1%、240〜500n
mにおける平均光線透過率は92.1%であっ九 〔実施例3〕 直径8インチ、厚さ0.5 mmの石英ガラス基板上に
、厚さ5wt%のパーフルオロ非晶質フッ素樹脂溶液を
滴下し スピンコーターを用いて11000rpにて6
0秒回転させて、パーフルオロ非晶質フッ素樹脂膜を形
成し島 そしてこの膜が形成された基板を、さらに熱風
循環式乾燥器内で、 170℃で1時間乾燥し、放冷し
た この後、フン化水素酸等の水溶液でエツチング処理を行
い、非晶質フッ素樹脂膜を単独膜化して光線透過性膜と
した このようにして得られた防塵体は、その光線透過性膜が
屈折率が1.34、膜厚が1.1μmであり、248℃
mにおける透過率は96%、240〜500nmにおけ
る平均光線透過率は約90%であった 〔発明の効果〕 本発明によれIf、  無機質基板をエツチング除去し
て光線透過性膜を単独膜化することで、膜剥離の場合の
ように膜内に応力を偏在させることなく単独膜化が可能
となるため、クラック等の膜の損傷・劣化を来すことな
く高透過率の光線透過性膜を得ることができる。また、
無機質基板をエツチング除去することにより、剥離時の
帯電が原因となる薄膜への異物の付着も防止できる。
The dustproof body thus obtained has a light transmitting film 3
has a refractive index of 1.53, a film thickness of 1.05 μm, and 24
Transmittance at 80m is 98.1%, 240-500n
The average light transmittance at m was 92.1%. [Example 3] A perfluoro amorphous fluororesin solution with a thickness of 5 wt% was placed on a quartz glass substrate with a diameter of 8 inches and a thickness of 0.5 mm. Drop at 11000 rpm using a spin coater 6
After rotating for 0 seconds to form a perfluoro amorphous fluororesin film, the substrate on which this film was formed was further dried at 170°C for 1 hour in a hot air circulation dryer, and then left to cool. The dust-proof body thus obtained is subjected to etching treatment with an aqueous solution such as hydrofluoric acid to form a single amorphous fluororesin film into a light-transparent film, and the light-transparent film has a refractive index. is 1.34, the film thickness is 1.1 μm, and the temperature is 248°C.
The transmittance at m was 96%, and the average light transmittance at 240 to 500 nm was about 90% [Effects of the Invention] According to the present invention, If, the inorganic substrate is etched away to form a light transmitting film as a single film. This makes it possible to form a single film without unevenly distributing stress within the film as in the case of film peeling, so it is possible to create a light-transmitting film with high transmittance without causing damage or deterioration of the film such as cracks. Obtainable. Also,
By etching away the inorganic substrate, it is also possible to prevent foreign matter from adhering to the thin film due to charging during peeling.

【図面の簡単な説明】 第1図(a)〜(f)は、本発明の防塵体の製造方法を
順次示す断面図であり、第2図はこのようにして得られ
た防塵体をマスクに装着した状態で示す断面は 第3図
は光線透過性膜の上層に反射防止層を形成した状態を示
す断面云 第4図は反射防止層を複数層で形成した状態
を示す断面図である。 保護空間、
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1(a) to (f) are cross-sectional views sequentially showing the method for manufacturing the dustproof body of the present invention, and FIG. 2 shows the dustproof body obtained in this way as a mask. Figure 3 is a cross-section showing a state in which an anti-reflection layer is formed on the top layer of a light-transmitting film, and Figure 4 is a cross-sectional view showing a state in which an anti-reflection layer is formed in multiple layers. . protected space,

Claims (4)

【特許請求の範囲】[Claims] (1)マスクに装着される保持枠と、この保持枠に取付
けられる透明な光線透過性膜とを備えた防塵体において
、無機質基板上に無機または有機質薄膜を形成した後、
前記無機質基板をエッチング除去することによって、膜
厚が0.2〜10μmで、240ないし500nmの光
を平均光線透過率で85%以上透過する光線透過性膜を
得ることを特徴とする防塵体の製造方法。
(1) In a dustproof body equipped with a holding frame attached to a mask and a transparent light-transmitting film attached to this holding frame, after forming an inorganic or organic thin film on an inorganic substrate,
A dustproof body characterized in that a light transmitting film having a film thickness of 0.2 to 10 μm and transmitting 85% or more of light of 240 to 500 nm at an average light transmittance is obtained by etching and removing the inorganic substrate. Production method.
(2)前記無機質基板をエッチング除去する際に、無機
質基板の中央部分のみをエッチングし、周囲の枠状残部
を保持枠とすることを特徴とする請求項1記載の防塵体
の製造方法。
(2) The method for manufacturing a dustproof body according to claim 1, characterized in that, when removing the inorganic substrate by etching, only the central portion of the inorganic substrate is etched, and the remaining frame-shaped portion around the inorganic substrate is used as a holding frame.
(3)前記薄膜の片面または両面に反射防止層を積層形
成したことを特徴とする請求項1記載の高光線透過性防
塵体の製造方法。
(3) The method for manufacturing a high light transmittance dustproof body according to claim 1, characterized in that an antireflection layer is laminated on one or both sides of the thin film.
(4)前記反射防止層は、高屈折率を有する第1の反射
防止層と、低屈折率を有する第2の反射防止層との多層
構造からなる請求項1記載の高光線透過性防塵体の製造
方法。
(4) The high light transmittance dustproof body according to claim 1, wherein the antireflection layer has a multilayer structure including a first antireflection layer having a high refractive index and a second antireflection layer having a low refractive index. manufacturing method.
JP2183187A 1990-07-11 1990-07-11 Production of dustproof body Pending JPH0470750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2183187A JPH0470750A (en) 1990-07-11 1990-07-11 Production of dustproof body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2183187A JPH0470750A (en) 1990-07-11 1990-07-11 Production of dustproof body

Publications (1)

Publication Number Publication Date
JPH0470750A true JPH0470750A (en) 1992-03-05

Family

ID=16131293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2183187A Pending JPH0470750A (en) 1990-07-11 1990-07-11 Production of dustproof body

Country Status (1)

Country Link
JP (1) JPH0470750A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248615A (en) * 1994-03-09 1995-09-26 Mitsui Petrochem Ind Ltd Dustproof film
JP2021056484A (en) * 2019-09-26 2021-04-08 エスアンドエス テック カンパニー リミテッド Pellicle for euv lithography and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248615A (en) * 1994-03-09 1995-09-26 Mitsui Petrochem Ind Ltd Dustproof film
JP2021056484A (en) * 2019-09-26 2021-04-08 エスアンドエス テック カンパニー リミテッド Pellicle for euv lithography and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP0605966B1 (en) X-ray optical element
EP0605961B1 (en) Method for repairing an optical element which includes a multilayer coating
KR20130074066A (en) Euv pellicle and manufacturing method of the same
TW201443548A (en) Planarized extreme ultraviolet lithography blank, and manufacturing and lithography systems therefor
JPH0555120A (en) Reflection-type mask and manufacture and correction thereof
EP0087582B1 (en) Optical lithography process for creating patterns in a silicon semiconductor substrate
CA2005096C (en) High light-transmissive dust-proof body and method of preparing same
JP2007250613A (en) Reflective mask blank, reflective mask, and exposure method of extremely short ultraviolet ray
US20090042107A1 (en) Pellicle for high numerical aperture exposure device
JP4900656B2 (en) Reflective mask blank, reflective photomask, and reflective photomask manufacturing method
JPH0470750A (en) Production of dustproof body
JP2000147750A (en) Pellicle
JPS6325658B2 (en)
JP4889135B2 (en) Antireflection film
JPS60237450A (en) Dust preventing cover for nonreflective photomask-reticle and its manufacture
JP2733483B2 (en) Manufacturing method of high light transmitting dustproof body
KR20160060200A (en) Method of manufacturing Pellicle for EUV Lithography
JPS63262651A (en) Photomask protective film
JPH049061A (en) Manufacture of dustproof body high in light transmittance
JPH049060A (en) Manufacture of dustproof body high in light transmittance
JPH04151664A (en) Manufacture of dustproof body
JP4371458B2 (en) Pellicle manufacturing method
JP2001194506A (en) Antireflection substrate in ultraviolet and vacuum ultraviolet region
JP2007101349A (en) Multilayer mirror, its reproducing method and exposure system
JPH07120607A (en) Optical element and manufacture thereof