JPH0489636A - Optical pickup device - Google Patents

Optical pickup device

Info

Publication number
JPH0489636A
JPH0489636A JP2196710A JP19671090A JPH0489636A JP H0489636 A JPH0489636 A JP H0489636A JP 2196710 A JP2196710 A JP 2196710A JP 19671090 A JP19671090 A JP 19671090A JP H0489636 A JPH0489636 A JP H0489636A
Authority
JP
Japan
Prior art keywords
light
optical
semiconductor substrate
pickup device
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2196710A
Other languages
Japanese (ja)
Other versions
JP3137969B2 (en
Inventor
Satoshi Sugiura
聡 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP02196710A priority Critical patent/JP3137969B2/en
Priority to US07/652,814 priority patent/US5164930A/en
Priority to EP91301188A priority patent/EP0468612B1/en
Priority to DE69128290T priority patent/DE69128290T2/en
Priority to DE69121654T priority patent/DE69121654T2/en
Priority to EP95119137A priority patent/EP0708437B1/en
Publication of JPH0489636A publication Critical patent/JPH0489636A/en
Priority to US07/917,239 priority patent/US5247506A/en
Priority to JP10298703A priority patent/JPH11232688A/en
Application granted granted Critical
Publication of JP3137969B2 publication Critical patent/JP3137969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make machining work easy and to miniaturize the whole device by reflecting light from a light emitting means to the side of an optical information recording carrier on one side of a beam splitting means, making the reflected light incident to the other side by refracting and transmitting it on one side, and splitting this incident light into transmitted light and diffracted light. CONSTITUTION:The light from a light emitting means 1 is reflected to the side of the optical information recording carrier on one side 21 of a beam splitting means 2, and the light reflected from the side of the optical information recording carrier is made incident to another side 22 by refracting and transmitting it on the one side 21. This incident light is transmitted through the other side 22 and guided into an optical waveguide 4 by the diffracting operation of a light diffracting means 3. Thus, since the light can be made incident to the light diffracting means 3 and splitted into the transmitted light and the diffracted light by the reflection only on one side 21 of the light splitting means 2, the machining work can be easily executed when manufacturing the splitter 2, and the device can be miniaturized as a whole.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、記録媒体に記録された情報を光学的に再生し
、または、記録媒体に情報を光学的に記録する光ヘツド
装置に係り、特にCD (CompactDisc)プ
レーヤ、L V D (La+e+ ViSion D
iSc )プレーヤ等において光デイスク上に記録され
た情報を再生する光ピックアップ装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical head device that optically reproduces information recorded on a recording medium or optically records information on a recording medium. Especially CD (Compact Disc) players, L V D (La+e+ViSion D
iSc) relates to an optical pickup device for reproducing information recorded on an optical disc in a player or the like.

〔従来の技術〕[Conventional technology]

従来、この種の光ピックアップ装置としては、半導体レ
ーザ、偏光プリズム、集光レンズ、光検出器等の多くの
個別部品要素を組合せて構成されるものがあり、上記多
(の個別部品要素の位置調整が困難であった。
Conventionally, this type of optical pickup device has been constructed by combining many individual components such as a semiconductor laser, a polarizing prism, a condensing lens, and a photodetector. It was difficult to adjust.

近年、上記従来装置の他に対物レンズ以外を単一半導体
基板上に作成するタイプが種々開発されている。
In recent years, in addition to the conventional devices described above, various types have been developed in which components other than the objective lens are fabricated on a single semiconductor substrate.

このタイプの従来光ピックアップ装置として第15図、
第16図に示すものがあった(特開昭64−33734
号公報に記載)。この第15図は従来装置の概略斜視図
、第16図は要部側面図を示す。
This type of conventional optical pickup device is shown in Fig. 15.
There was one shown in Figure 16 (Japanese Unexamined Patent Publication No. 64-33734
(described in the issue). FIG. 15 is a schematic perspective view of the conventional device, and FIG. 16 is a side view of the main parts.

上記各図において従来の光ピックアップ装置は、半導体
基板10上に載置され、光ディスク20に対して照射す
るレーザ光を発光する半導体レーザ1と、上記半導体レ
ーザ1からのレーザ光を一側面21で光デイスク20側
に反射し、上記光ディスク20で反射された反射レーザ
光を上記一側面21で透過して他側面22へ入射し、当
該入射した反射レーザ光の一部が他側面22で反射する
と共に当該反射した一部反射レーザ光がその他の側面2
3で反射した後に再度他側面22へ入射する光分割器2
と、上記光分割器2の他側面22に当接する上記半導体
基板10面上に埋設され、上記他側面22に入射する光
デイスク反射光を受光する第1受光素子5と、上記第1
受光素子5と同様に半導体基板10面上に埋設され、上
記他側面22に入射する光ディスク一部反射光を受光す
る第2受光素子6とを備える構成である。
In each of the above figures, a conventional optical pickup device is mounted on a semiconductor substrate 10, and includes a semiconductor laser 1 that emits laser light to irradiate an optical disk 20, and a side surface 21 that emits the laser light from the semiconductor laser 1. The reflected laser light that is reflected toward the optical disk 20 side and reflected by the optical disk 20 is transmitted through the one side surface 21 and enters the other side surface 22, and a part of the incident reflected laser light is reflected on the other side surface 22. At the same time, the partially reflected laser beam is reflected on the other side 2.
The light splitter 2 enters the other side 22 again after being reflected at 3.
a first light-receiving element 5 that is embedded on the surface of the semiconductor substrate 10 that is in contact with the other side surface 22 of the light splitter 2 and receives the reflected light from the optical disk that is incident on the other side surface 22;
The structure includes a second light receiving element 6 which is buried on the surface of the semiconductor substrate 10 in the same way as the light receiving element 5 and receives the partially reflected light from the optical disk that is incident on the other side surface 22.

次に、上記構成に基づ〈従来装置の動作について説明す
る。まず、半導体レーザ1で発光出射されたレーザ光は
光分割器2の一側面21で反射され、対物レンズ(図示
を省略)を介して光デイスク20面へ投射される。この
投射されたレーザ光が光ディスク20で反射され、この
光情報としての反射レーザ光が上記光ディスク20へ投
射されるレーザ光と同一経路で上記一側面21に入射さ
れる。
Next, the operation of the conventional device will be explained based on the above configuration. First, a laser beam emitted by the semiconductor laser 1 is reflected by one side surface 21 of the light splitter 2, and is projected onto the surface of the optical disk 20 via an objective lens (not shown). This projected laser light is reflected by the optical disc 20, and the reflected laser light as optical information is incident on the one side surface 21 along the same path as the laser light projected onto the optical disc 20.

上記入射された反射レーザ光が一側面21を屈折透過し
て光分割器2内を導波して他側面22人射し、この他側
面22下の第1受光素子5に受光検知されると共に、上
記反射レーザ光の一部が他側面22で反射され、この一
部反射レーザ光がその他の側面23で全反射されて他側
面22下の第2受光素子6に受光検知される。
The incident reflected laser beam is refracted and transmitted through one side 21, guided through the light splitter 2, and irradiated onto the other side 22, and is received and detected by the first light receiving element 5 below the other side 22. A portion of the reflected laser beam is reflected by the other side surface 22, and this partially reflected laser beam is totally reflected by the other side surface 23 and is received and detected by the second light receiving element 6 below the other side surface 22.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の光ピックアップ装置は以上のように構成されてい
たことから、光分割器2の3つの側面21.22.23
で反射する必要があり、この3つの側面21.22.2
3中の一側面21及びその他の側面23を平滑面とする
ために研磨しなければならず、さらにこの研磨平滑面の
一側面21を半透鏡とする誘電体多層膜等の蒸着を必要
とすると共に、研磨平滑面のその他の側面23に反射膜
を形成しなければならず、光分割器2の加工が複雑化し
、装置全体か大型化するという課題を有していた。
Since the conventional optical pickup device is configured as described above, the three sides 21, 22, and 23 of the optical splitter 2 are
These three sides 21.22.2
One side 21 and the other side 23 in 3 must be polished to make them smooth, and furthermore, it is necessary to evaporate a dielectric multilayer film or the like using this polished smooth surface 21 as a semi-transparent mirror. At the same time, a reflective film must be formed on the other side surface 23 of the polished smooth surface, which complicates the processing of the light splitter 2 and increases the size of the entire device.

本発明は上記課題を解消するためになされたもので、光
分割器の製造時における加工を容易にでき、装置全体を
小型化できる光ピックアップ装置を提供することを目的
とする。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide an optical pickup device in which processing during manufacturing of a light splitter can be facilitated and the entire device can be miniaturized.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理説明図を示す。 FIG. 1 shows a diagram explaining the principle of the present invention.

同図において本発明に係る光ピックアップ装置は、半導
体基板10で形成され、当該半導体基板10上に載置さ
れた発光手段1から発光した光を記録情報が記録された
光情報記録担体に対して照射すると共に、上記光情報記
録担体で反射された光を受光する光ピックアップ装置に
おいて、上記発光手段1からの光を一側面21で光情報
記録担体側に反射すると共に、上記光情報記録担体で反
射された光を上記一側面21で透過入射して他側面22
へ導波する光分割手段2と、上記光分割手段の他側面2
2から出射される光を透過光と回折光とに分離する光回
折手段3とを備えるものである。
In the figure, the optical pickup device according to the present invention is formed of a semiconductor substrate 10, and directs light emitted from a light emitting means 1 placed on the semiconductor substrate 10 to an optical information recording carrier on which recorded information is recorded. In an optical pickup device that emits light and receives light reflected by the optical information recording carrier, the light from the light emitting means 1 is reflected toward the optical information recording carrier by one side 21, and the light is reflected by the optical information recording carrier. The reflected light is transmitted through the one side surface 21 and enters the other side surface 22.
a light splitting means 2 for guiding the light to the light splitting means 2; and the other side surface 2 of the light splitting means
The light diffraction means 3 separates the light emitted from the light beam 2 into transmitted light and diffracted light.

〔作用〕[Effect]

本発明においては、発光手段1からの光を光分割手段2
の一側面21て光情報記録担体側へ反射すると共に、光
情報記録担体側から反射された光を一側面21で屈折透
過して他側面22へ入射する。この入射した光が他側面
22を透過して光回折手段3の回折作用により光導波路
4内へ導波されることから、光分割手段2の一側面21
のみでの反射により光回折手段(3)へ光を入射して透
過光と回折光とに分離できることとなり、分割器2の製
造時における加工作業を容易に行なえると共に、装置全
体を小型化できることとなる。
In the present invention, the light from the light emitting means 1 is split into the light dividing means 2.
The light is reflected from one side surface 21 to the optical information recording carrier side, and the light reflected from the optical information recording carrier side is refracted and transmitted through one side surface 21 and enters the other side surface 22 . Since this incident light passes through the other side surface 22 and is guided into the optical waveguide 4 by the diffraction action of the light diffraction means 3, one side surface 22 of the light splitting means 2
The light is incident on the light diffraction means (3) by reflection by the splitter 2, and can be separated into transmitted light and diffracted light, which facilitates processing work during the manufacture of the splitter 2 and allows the entire device to be miniaturized. becomes.

〔実施例〕〔Example〕

(a)本発明の一実施例 以下、本発明の一実施例を第2図ないし第4図に基づい
て説明する。この第2図は本実施例装置の全体側面図、
第3図は本実施例装置の要部構成図、第4図は第3図記
載要部構成の半導体基板平面図を示す。
(a) One Embodiment of the Present Invention An embodiment of the present invention will be described below with reference to FIGS. 2 to 4. This FIG. 2 is an overall side view of the device of this embodiment.
FIG. 3 is a diagram showing the configuration of the main parts of the device of this embodiment, and FIG. 4 is a plan view of a semiconductor substrate having the configuration of the main parts shown in FIG.

上記各図において本実施例に係る光ピックアップ装置は
、半導体基板10上にレーザ光射出端面を傾斜させて載
置され、光ディスク20に照射するレーザ光を発光する
半導体レーザ1と、上記半導体レーザ1の前側端面から
のレーザ光を光ディスク20に対して一側面21で反射
し、上記光ディスク20で反射された反射レーザ光を一
側面21を透過して他側面22へ入射し、当該入射した
反射レーザ光を接着剤層24を介して半導体基板10側
へ出射する光分割器2と、上記半導体基板10のクラッ
ド層25下に形成され、上記光分割器2から半導体基板
10へ出射された反射レーザ光を透過光(放射光)と回
折導波光とに回折分離する回折格子3と、上記回折格子
3の下面に積層形成され、上記透過光を下方へ透過する
と共に、回折導波光を側方に導波する光導波路4と、上
記透過の反射レーザ光を受光してトラック信号、RF倍
信号の情報を読取る第1受光素子5と、上記回折導波光
を受光してフォーカス信号等の情報を読取る第2受光素
子6と、上記半導体レーザ1の後側端面から出射される
レーザ光を受光するモニタ受光素子7とを備える構成で
ある。
In each of the above figures, the optical pickup device according to the present embodiment includes a semiconductor laser 1 that is mounted on a semiconductor substrate 10 with its laser beam emitting end face inclined, and emits a laser beam that is irradiated onto an optical disk 20; The laser beam from the front end surface of the optical disk 20 is reflected by one side surface 21, and the reflected laser beam reflected by the optical disk 20 is transmitted through one side surface 21 and enters the other side surface 22, and the reflected laser beam that has entered is A light splitter 2 that emits light to the semiconductor substrate 10 side via the adhesive layer 24, and a reflective laser that is formed under the cladding layer 25 of the semiconductor substrate 10 and that is emitted from the light splitter 2 to the semiconductor substrate 10. A diffraction grating 3 that diffracts and separates light into transmitted light (radiated light) and diffracted waveguided light is laminated on the lower surface of the diffraction grating 3, and transmits the transmitted light downward and directs the diffracted waveguided light to the sides. An optical waveguide 4 that guides the wave, a first light receiving element 5 that receives the transmitted reflected laser light and reads information such as a track signal and an RF multiplied signal, and a first light receiving element 5 that receives the diffracted guided wave light and reads information such as a focus signal. This configuration includes a second light receiving element 6 and a monitor light receiving element 7 that receives laser light emitted from the rear end face of the semiconductor laser 1.

上記半導体レーザ1のチップは、ウェハから切出すとき
に臂開面に対して斜めに切出すことにより作成すること
ができる。
The chip of the semiconductor laser 1 can be manufactured by cutting the semiconductor laser 1 obliquely from the wafer when cutting it out from the wafer.

上記回折格子3は入射光を光ディスク20のトラックに
対して垂直方向に二分割するような二つの領域を持ち、
上記光分割器2を透過する際に発生した収差を取り除き
、フォーカス信号を生成する第2受光素子6の各々に集
光する格子パターンとする構成である。
The diffraction grating 3 has two regions that divide the incident light into two in the direction perpendicular to the track of the optical disk 20,
The configuration is such that aberrations generated when the light passes through the light splitter 2 are removed and the light is condensed into a lattice pattern on each of the second light receiving elements 6 that generate a focus signal.

上記半導体レーザ1及び光分割器2は、半導体基板10
上に基準となる取付マークを予め製作しておき、この取
付マークに基づいて取付けられることとなる。
The semiconductor laser 1 and the light splitter 2 are provided on a semiconductor substrate 10.
A reference mounting mark is prepared in advance on the top, and the product is mounted based on this mounting mark.

また、本実施例装置は半導体レーザ1、光分割器2及び
半導体基板10をピックアップボディ30内に収納固着
し、当該ピックアップボディ30の一側端に設けられた
対物レンズ31を光ディスク20に対向配置する構成で
ある。
In addition, in the device of this embodiment, the semiconductor laser 1, the light splitter 2, and the semiconductor substrate 10 are housed and fixed in a pickup body 30, and an objective lens 31 provided at one end of the pickup body 30 is arranged to face the optical disk 20. It is configured to do this.

次に、上記構成に基づく本実施例装置の動作について説
明する。
Next, the operation of the apparatus of this embodiment based on the above configuration will be explained.

まず、半導体レーザ1は前側及び後側の各端面からレー
ザ光を出射する。上記前側端面から出射されたレーザ光
は光分割器2の一側面21で約半分が反射し、対物レン
ズ31を介して光ディスク20の情報面に集光照射され
る。この照射されたレーザ光が光ディスク20の記録情
報で回折・反射し、この回折・反射した反射レーザ光は
上記レーザ光と同一経路で光分割器2の一側面21に入
射されて光分割器2内を透過して光分割器2の他側面2
2側へ導波する。
First, the semiconductor laser 1 emits laser light from each of its front and rear end faces. Approximately half of the laser light emitted from the front end face is reflected by one side 21 of the light splitter 2, and is condensed and irradiated onto the information surface of the optical disc 20 via the objective lens 31. This irradiated laser light is diffracted and reflected by the recorded information on the optical disk 20, and this diffracted and reflected reflected laser light is incident on one side 21 of the light splitter 2 along the same path as the laser light, and is incident on the one side 21 of the light splitter 2. The other side 2 of the light splitter 2
Guide the wave to the 2nd side.

また、上記半導体レーザ1のレーザ光のうち直接に光分
割器2の一側面21を透過した光は、光分割器2を半導
体基板10に接合する接着剤層24下のクラッド層25
の表面で臨界角以上の入射角度に設定されていることか
ら、上記他側面22を透過することなく全反射される。
Further, among the laser beams of the semiconductor laser 1, the light directly transmitted through one side 21 of the light splitter 2 is transmitted to the cladding layer 24 below the adhesive layer 24 that joins the light splitter 2 to the semiconductor substrate 10.
Since the incident angle is set to be equal to or greater than the critical angle on the surface of , the light is totally reflected without being transmitted through the other side surface 22 .

他方、上記光ディスク20の反射レーザ光は、一側面2
1を透過して上記クラッド層24で全反射されない角度
に設定されることから、不要な光が第1受光素子5に入
射することを防止すると共に、レーザ光の有効利用が図
られることとなる。
On the other hand, the reflected laser beam of the optical disc 20 is reflected from one side 2.
Since the angle is set at such an angle that the laser beam passes through the first light receiving element 5 and is not totally reflected by the cladding layer 24, unnecessary light is prevented from entering the first light receiving element 5, and the laser beam is effectively utilized. .

この反射レーザ光は他側面22から接着剤層24、クラ
ッド層25を介して回折格子3に入射され、この回折格
子3で透過光と回折導波光とに回折分離される。上記反
射レーザ光の大部分が透過光となり、この透過光が下側
の第1受光素子5に入射してトラック信号、RF倍信号
に生成される。上記回折格子3により反射レーザ光の大
部分が透過光となることから、透過光量より回折導波光
量を少なくするための回折格子の条件、特に格子深さを
浅くできるため、設計製造の条件が厳しくなくなる。
This reflected laser light is incident on the diffraction grating 3 from the other side surface 22 via the adhesive layer 24 and the cladding layer 25, and is diffracted and separated by the diffraction grating 3 into transmitted light and diffracted guided light. Most of the reflected laser light becomes transmitted light, which enters the lower first light receiving element 5 and is generated into a track signal and an RF multiplied signal. Since most of the reflected laser light becomes transmitted light by the diffraction grating 3, the conditions for the diffraction grating, especially the depth of the grating, can be made shallower to reduce the amount of diffracted waveguide light than the amount of transmitted light, so the design and manufacturing conditions can be improved. It becomes less strict.

また、上記回折分離された回折導波光は光導波路4を導
波して端面に設けられた第2受光素子6に入射される。
Further, the diffraction-separated guided waveguide light is guided through the optical waveguide 4 and is incident on the second light receiving element 6 provided at the end face.

この第2受光素子6は一対の光検知部61・62.63
・64を二組備えて形成され、入射した回折導波光から
フォーカス信号等を生成する。
This second light receiving element 6 has a pair of light detecting parts 61, 62, 63.
・It is formed with two sets of 64, and generates a focus signal etc. from the incident diffraction guided wave light.

さらに、上記半導体レーザ2の後側端面から出射したレ
ーザ光は、半導体基板10表面に設けられたモニタ受光
素子7で受光されてAPC(Automatic Po
we「Control )信号として出力される。上記
半導体レーザ1が温度とともに光出力が変化した場合に
、APC信号に基づいて半導体レーザ1の駆動電流を制
御して光出力を一定値とする。
Further, the laser light emitted from the rear end facet of the semiconductor laser 2 is received by a monitor light receiving element 7 provided on the surface of the semiconductor substrate 10, and is converted into an APC (Automatic Point Pole).
When the optical output of the semiconductor laser 1 changes with temperature, the driving current of the semiconductor laser 1 is controlled based on the APC signal to maintain the optical output at a constant value.

第4図に示すように上記半導体基板10上には、半導体
レーザ1を塔載接続する取付用ランド11と、半導体レ
ーザ1を製造する時における最適点の動作状態に調整す
るレーザトリミング部14と、半導体レーザ1の出力制
御、各受光素子5.6.7の受光信号処理等を行なう電
気回路部13と、外部とのワイヤボンディング接続に用
いられるポンディングパッド12と、第1受光素子5を
形成する4分割の光検知部51〜54とが形成される。
As shown in FIG. 4, on the semiconductor substrate 10 there are a mounting land 11 for mounting and connecting the semiconductor laser 1, and a laser trimming section 14 for adjusting the operating state to the optimum point when manufacturing the semiconductor laser 1. , an electric circuit section 13 that performs output control of the semiconductor laser 1, processing of received light signals of each light receiving element 5, 6, 7, etc., a bonding pad 12 used for wire bonding connection with the outside, and a first light receiving element 5. Four divided photodetecting sections 51 to 54 are formed.

上記第1受光素子5の4分割光検知部51〜54で検出
された各トラック信号51a〜54aに基づいて上記電
気回路部13はプッシュプル法で信号の演算を行なう。
Based on the respective track signals 51a to 54a detected by the four-division light detection units 51 to 54 of the first light receiving element 5, the electric circuit unit 13 performs signal calculation using a push-pull method.

このプッシュプル法は(51a+53a)−(52a+
54a)の演算を行なうことによりなされる。
This push-pull method is (51a+53a)-(52a+
This is done by performing the calculation 54a).

また、上記第2受光素子6の光検知部61・62.63
・64で検出されたフォーカス信号61a・62 a 
s 63 a・64aに基づいて、上記電気回路部13
はフーコー法で信号の演算を行なう。このフーコー法は
(61a−62a)+(64a−63a)の演算を行な
うことによりなされる。
In addition, the light detection portions 61, 62, 63 of the second light receiving element 6
-Focus signals 61a and 62a detected at 64
Based on s 63 a and 64 a, the electric circuit section 13
calculates signals using the Foucault method. This Foucault method is performed by performing the calculation (61a-62a)+(64a-63a).

さらに、電気回路部13中のAPC回路は上記モニタ受
光素子7で受光されたAPC信号に基づいてレーザ出力
調整を行なう。
Furthermore, the APC circuit in the electric circuit section 13 adjusts the laser output based on the APC signal received by the monitor light receiving element 7.

上記取付用ランド11は半導体基板10上に設けられて
いることから、半導体レーザ11を直接に光集積回路の
半導体基板10にダイボンディングできることとなり、
従来行なわれていたワイヤボンディングやシリコンバッ
ト等の部品を削減でき、取付精度の向上が可能となる。
Since the mounting land 11 is provided on the semiconductor substrate 10, the semiconductor laser 11 can be directly die-bonded to the semiconductor substrate 10 of the optical integrated circuit.
The number of conventional parts such as wire bonding and silicone bats can be reduced, making it possible to improve mounting accuracy.

なお、半導体基板10の各層における設計例を以下に示
す。
Note that design examples for each layer of the semiconductor substrate 10 are shown below.

層厚      屈折率     材質接着剤層   
t= 10μm   n=1.51クラッド層  t=
0.5μm   n=1.38   MgF2光導波路
層  t=1.0μm   n=1.51  5i02
コア層    t=2.0μm   n=1.38  
 MgF2(b)本発明の一実施例の製造方法 第5図は本実施例に係る光ピックアップ装置における光
分割器2の製造方法説明図である。
Layer thickness Refractive index Material Adhesive layer
t= 10μm n=1.51 cladding layer t=
0.5μm n=1.38 MgF2 optical waveguide layer t=1.0μm n=1.51 5i02
Core layer t=2.0μm n=1.38
MgF2(b) Manufacturing method according to an embodiment of the present invention FIG. 5 is an explanatory diagram of a method for manufacturing the light splitter 2 in the optical pickup device according to the present embodiment.

同図において、透明板体のA面又はB面のいずれか一面
を研磨して平滑面とし、この研磨した平滑面に誘電体多
層膜等を蒸着して半透鏡を形成する。この半透鏡が形成
された板体は図中鎖線で示すように各A、B面に対して
角度θで切断される。
In the figure, either the A side or the B side of the transparent plate is polished to make it a smooth surface, and a dielectric multilayer film or the like is deposited on the polished smooth surface to form a semi-transparent mirror. The plate on which the semi-transparent mirror is formed is cut at an angle θ with respect to planes A and B, as shown by chain lines in the figure.

このように、透明板体の単一の面のみを研磨して半透鏡
とするのみで光分割器2が形成される。
In this way, the light splitter 2 is formed by polishing only a single surface of the transparent plate to form a semi-transparent mirror.

この光分割器2は半透鏡とされた面(第3図においては
一側面21)に対して角度θで切断された切断面(第3
図においては他側面22)が半導体基板10上に載置さ
れ、上記切断面を半導体基板10に接着剤により接着固
定される。この接着剤は透明媒質であり、光分割器2と
同等の屈折率を有するもの例えばUV硬化タイプのもの
を選択する。従って、上記切断面を特に研磨しなくても
凹凸部分が接着剤で埋まり、切断面(他側面22)にお
ける光の散乱、反射がなくなる。
This light splitter 2 has a cut surface (a third side) cut at an angle θ with respect to a semi-transparent mirror surface (one side 21 in FIG. 3).
In the figure, the other side 22) is placed on the semiconductor substrate 10, and the cut surface is adhesively fixed to the semiconductor substrate 10 with an adhesive. This adhesive is a transparent medium, and is selected to have the same refractive index as the light splitter 2, for example, a UV curing type. Therefore, even if the cut surface is not particularly polished, the uneven portions are filled with adhesive, and light scattering and reflection on the cut surface (other side surface 22) is eliminated.

(C、)本発明の一実施例構成に係る発光素子の取付態
様 第6図は半導体レーザの概略斜視図を示す。この半導体
レーザ1を半導体基板10上に取付ける状態を第7図(
A)、(B)に示す。
(C) Mounting aspect of a light emitting element according to an embodiment of the present invention FIG. 6 shows a schematic perspective view of a semiconductor laser. FIG. 7 (
Shown in A) and (B).

上記各図において半導体レーザ1は半導体基板10上に
蒸着形成されるアルミ電極の取付用ランド11上に載置
され、側部電極1a、lbと取付用ランド11とがはん
だ付で接合固定される。このはんだ付がされた半導体レ
ーザ1と半導体基板10との間の間隙11bは、取付用
ランド11の突出により形成されるもので、半導体基板
10自体に半導体レーザ1が直接接触して短絡状態とな
ることを防止している。また、上記取付用ランド11の
突出以外に上記間隙11bに絶縁物質を蒸着して半導体
レーザの短絡状態を防止することもできる。
In each of the above figures, the semiconductor laser 1 is placed on the mounting land 11 of an aluminum electrode formed by vapor deposition on the semiconductor substrate 10, and the side electrodes 1a, lb and the mounting land 11 are bonded and fixed by soldering. . The gap 11b between the soldered semiconductor laser 1 and the semiconductor substrate 10 is formed by the protrusion of the mounting land 11, and the semiconductor laser 1 is in direct contact with the semiconductor substrate 10 itself to prevent a short circuit. It prevents it from happening. Further, in addition to the protrusion of the mounting land 11, an insulating material may be deposited in the gap 11b to prevent a short circuit of the semiconductor laser.

第8図は取付用ランド11上に取付ける半導体レーザ1
の取付位置を示すもので、アルミ電極を形成する取付用
ランド11は半導体レーザ1の接合・固定に要する面積
よりも大きく形成される。
Figure 8 shows the semiconductor laser 1 mounted on the mounting land 11.
The mounting land 11 forming the aluminum electrode is formed to have a larger area than the area required for bonding and fixing the semiconductor laser 1.

このように大きな面積で取付用ランド11を形成するこ
とにより、半導体レーザ1の放熱特性を向上させている
By forming the mounting land 11 with such a large area, the heat dissipation characteristics of the semiconductor laser 1 are improved.

第9図は半導体レーザ1を取付下面の半導体基板10の
平面図を示し、同図において半導体レーザ1の取付下面
にモニタ受光素子7を形成する構成である。
FIG. 9 shows a plan view of the semiconductor substrate 10 on the lower surface on which the semiconductor laser 1 is mounted, and in this figure, a monitor light receiving element 7 is formed on the lower surface on which the semiconductor laser 1 is mounted.

第10図(A)、(B)は第9図と同様に半導体基板1
0の平面図を示す。同図(A)において半導体レーザ1
の取付下面に回折格子3を形成し、また同図(B)にお
いて半導体レーザ1の取付下面に回折格子3及びモニタ
受光素子7を形成する構成である。
FIGS. 10(A) and 10(B) show the semiconductor substrate 1 in the same way as FIG. 9.
0 is shown. In the same figure (A), the semiconductor laser 1
In this configuration, a diffraction grating 3 is formed on the lower mounting surface of the semiconductor laser 1, and a diffraction grating 3 and a monitor light receiving element 7 are formed on the lower mounting surface of the semiconductor laser 1 in FIG.

第11図は半導体基板10への半導体レーザ1の要部取
付説明図を示し、同図において半導体基板10上に段差
部11aを有する取付用ランド11として形成される。
FIG. 11 shows an explanatory view for attaching the main parts of the semiconductor laser 1 to the semiconductor substrate 10, and in the same figure, it is formed as a mounting land 11 having a stepped portion 11a on the semiconductor substrate 10. As shown in FIG.

このように取付用ランド11の段差部11aにより、半
導体レーザ1を段差部11aに当接させて取付位置出し
が容易となり、高精度かつ迅速に取付作業を行なうこと
ができる。
In this way, the stepped portion 11a of the mounting land 11 makes it easy to locate the mounting position by bringing the semiconductor laser 1 into contact with the stepped portion 11a, allowing the mounting work to be performed quickly and with high precision.

第12図(A)、(B)、(C)は半導体基板10側面
への半導体基板10の要部取付説明図を示す。同図(A
)に示すように半導体基板10側面に半導体レーザ1を
接着剤15で接続固定していたのに対して、同図(B)
、(C)に示すように半導体基板10側面まで電極とし
ての取付用ランド11を延出形成し、この延出形成した
取付用ランド11に半導体レーザ1の電極1a、lbを
当接固定する構成とすることもできる。
FIGS. 12A, 12B, and 12C are explanatory diagrams for attaching the main parts of the semiconductor substrate 10 to the side surface of the semiconductor substrate 10. FIG. The same figure (A
), the semiconductor laser 1 was connected and fixed to the side surface of the semiconductor substrate 10 with an adhesive 15, whereas in the same figure (B)
As shown in (C), a mounting land 11 as an electrode is formed to extend to the side surface of the semiconductor substrate 10, and the electrodes 1a and lb of the semiconductor laser 1 are abutted and fixed to the extended mounting land 11. It is also possible to do this.

第13図(A)、(B)は半導体レーザの取付基台概略
斜視図を示す。同図(A)、(B)において取付基台1
00は非導電性物質101を導電性物質101a、10
1.bで挟んで形成する。この取付基台100に半導体
レーザ1を載置し、又は挟込んではんだ付することによ
り接着固定する。
FIGS. 13(A) and 13(B) show schematic perspective views of a mounting base for a semiconductor laser. In the same figure (A) and (B), the mounting base 1
00 is a non-conductive substance 101 and a conductive substance 101a, 10
1. Form by sandwiching it with b. The semiconductor laser 1 is placed on this mounting base 100, or is sandwiched and soldered to be adhesively fixed.

このように取付基台100を介して半導体レーザ1を他
の部材、例えば半導体基板10に容易に取付けることが
できることとなる。
In this manner, the semiconductor laser 1 can be easily mounted to another member, for example, the semiconductor substrate 10, via the mounting base 100.

第14図は第13図記載取付基台100の変形取付態様
図を示し、半導体レーザ1の光出力方向により取付基台
100の非導電性物質101に貫通口101cを形成す
るか又は透明物質で形成し、矢印方向にレーザ光を射出
できることとなる。また、取付基台100の上面又は下
面を傾斜して形成してレーザ光出力を上下斜め方向に射
出できることとなる。
FIG. 14 shows a modified mounting mode of the mounting base 100 shown in FIG. This means that laser light can be emitted in the direction of the arrow. Further, by forming the upper surface or the lower surface of the mounting base 100 with an inclination, the laser light output can be emitted diagonally upward and downward.

(d)本発明の他の実施例 上記光分割器2は一側面21のみを研磨して半透鏡とす
る構成としたが、その他の側面23.26(第3図参照
)に反射防止膜を形成することもできる。この反射防止
膜は散乱光等の迷光を光分割器2の外部へ射出して不要
なレーザ光(光ディスク20からの反射光以外のレーザ
光)が第1受光素子5へ入射することを阻止し、レーザ
光の有効利用をより向上させる。
(d) Other embodiments of the present invention The light splitter 2 has a structure in which only one side surface 21 is polished to form a semi-transparent mirror, but the other side surfaces 23 and 26 (see FIG. 3) are coated with an antireflection film. It can also be formed. This anti-reflection film emits stray light such as scattered light to the outside of the light splitter 2 and prevents unnecessary laser light (laser light other than the reflected light from the optical disc 20) from entering the first light receiving element 5. , to further improve the effective use of laser light.

上記光分割器2、接着剤層24、クラッド層25及び回
折格子3の各層の関係は、次のようにすることもできる
The relationship among the light splitter 2, the adhesive layer 24, the cladding layer 25, and the diffraction grating 3 may be as follows.

n 2  > n 20 > n 24> n aここ
で、n2は光分割器2の屈折率、n2oは接着剤層の屈
折率、n24はクラッド層24の屈折率、n3は回折格
子の屈折率である。
n 2 > n 20 > n 24 > n a where n2 is the refractive index of the light splitter 2, n2o is the refractive index of the adhesive layer, n24 is the refractive index of the cladding layer 24, and n3 is the refractive index of the diffraction grating. be.

このように、反射レーザ光の入射方向に向って順次屈折
率が小さく設定することにより、各境界面における反射
を有効に防止して有効光線の透過効率をより向上させる
ことができる。
In this way, by sequentially setting the refractive index smaller in the direction of incidence of the reflected laser light, reflection at each boundary surface can be effectively prevented and the transmission efficiency of the effective light beam can be further improved.

上記各実施例において光回折手段を2つの領域から形成
される領域で構成したが、2以上の領域で構成すること
もできる。
In each of the above embodiments, the light diffraction means is constructed from two regions, but it can also be constructed from two or more regions.

上記各実施例において光回折手段を回折格子で構成した
が、段階格子その他の回折手段又は入射光を光導波路及
び下面の第1受光素子に分岐出射する各種光学素子で構
成することもできる。
In each of the embodiments described above, the optical diffraction means is constituted by a diffraction grating, but it can also be constituted by a stepped grating or other diffraction means, or by various optical elements that branch and emit incident light to an optical waveguide and a first light receiving element on the lower surface.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明においては、発光手段からの
光を光分割手段の一側面で光情報記録担体側へ反射する
と共に、光情報記録担体側から反射された光を一側面で
屈折透過して他側面へ入射し、この入射した光が他の側
面を透過して光回折手段の回折作用により透過光と回折
光とに分離されることから、光分割手段の一側面のみで
の反射で光導波路内に光を導波できることとなり、光分
割器の製造時における加工作業を容易に行なえると共に
、装置全体を小型化できる効果を有する。
As explained above, in the present invention, the light from the light emitting means is reflected to the optical information recording carrier side by one side of the light splitting means, and the light reflected from the optical information recording carrier side is refracted and transmitted by one side. This incident light passes through the other side and is separated into transmitted light and diffracted light by the diffraction action of the light diffraction means. This allows light to be guided within the optical waveguide, which facilitates processing operations during the manufacture of the optical splitter and has the effect of making the entire device smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、 第2図は本発明の一実施例の全体側面図、第3図は本発
明の一実施例の要部構成図、第4図は第3図記載要部構
成の半導体基板平面図、 第5図は本発明の一実施例における光分割器の製造方法
説明図、 第6図は本発明の一実施例設置される半導体レーザの概
略斜視図、 第7図(A)、(B)は半導体レーザの取付状態説明図
、 第8図及び第9図は取付用ランド形成部分の半導体基板
平面図、 第10図(A)、(B)は半導体基板平面の形成説明図
、同図(A)は回折格子形成部分説明図、同図(B)は
回折格子、取付用ランド形成部分の半導体基板平面図、 第11図、第12図(A)、(B)、(C)は半導体基
板への半導体レーザ取付説明図、第13図(A)、(B
)、第14図は半導体レーザを取付ける取付基台説明図
、 第15図は従来の光ピックアップ装置の概略斜視図、 第16図は従来の光ピックアップ装置の要部側面図を示
す。 1・・・半導体レーザ(発光手段) 2・・・光分割器(光分割手段) 3・・・回折格子(光回折手段) 4・・・光導波路 5・・・第1受光素子 6・・・第2受光素子 7・・・モニタ受光素子 10・・・半導体基板 20・・・光ディスク 30・・・ピックアップボディ 31・・・対物レンズ
Fig. 1 is an explanatory diagram of the principle of the present invention, Fig. 2 is an overall side view of an embodiment of the invention, Fig. 3 is a configuration diagram of essential parts of an embodiment of the invention, and Fig. 4 is the description shown in Fig. 3. 5 is an explanatory diagram of a method of manufacturing a light splitter in an embodiment of the present invention; FIG. 6 is a schematic perspective view of a semiconductor laser installed in an embodiment of the present invention; Figures 7 (A) and (B) are explanatory diagrams of the mounting state of the semiconductor laser, Figures 8 and 9 are plan views of the semiconductor substrate of the mounting land forming part, and Figures 10 (A) and (B) are the semiconductor substrate 11, 12(A), 11(A), 12(A), 12(A), 11(A), 12(A), 12(A), 12(A), 12(A), 12(A), 12(A), 12(A), 12(A) (B) a plan view of the semiconductor substrate of the diffraction grating and mounting land forming part; (B) and (C) are explanatory diagrams for attaching a semiconductor laser to a semiconductor substrate, and Fig. 13 (A) and (B
), FIG. 14 is an explanatory diagram of a mounting base for mounting a semiconductor laser, FIG. 15 is a schematic perspective view of a conventional optical pickup device, and FIG. 16 is a side view of essential parts of a conventional optical pickup device. 1... Semiconductor laser (light emitting means) 2... Light splitter (light splitting means) 3... Diffraction grating (light diffraction means) 4... Optical waveguide 5... First light receiving element 6...・Second light receiving element 7...Monitor light receiving element 10...Semiconductor substrate 20...Optical disc 30...Pickup body 31...Objective lens

Claims (1)

【特許請求の範囲】 1、半導体基板(10)で形成され、当該半導体基板(
10)上に載置された発光手段(1)から発光出射した
光を記録情報が記録された光情報記録担体に対して照射
すると共に、上記光情報記録担体で反射された光を受光
する光ピックアップ装置において、 上記半導体基板(10)上に載置され、上記発光手段(
1)からの光を一側面(21)で光情報記録担体側に反
射すると共に、上記光情報記録担体で反射された光を上
記一側面(21)で透過入射して他側面(22)へ導波
する光分割手段(2)と、 上記半導体基板(10)内に形成され、上記光分割手段
(2)の他側面(22)から出射される光を透過光と回
折光とに分離する光回折手段(3)とを備えることを 特徴とする光ピックアップ装置。 2、上記請求項1記載の光ピックアップ装置において、 上記半導体基板(10)内のコア層と上記光回折手段(
3)との間に光導波路(4)を形成し、当該光導波路(
4)と隣接しないコア層の側面に第1受光素子を形成し
、上記光導波路(4)の端部に第2受光素子を形成し、 上記光回折手段(3)の透過光を第1受光素子で受光す
ると共に、光回折手段(3)の回折光を光導波路(4)
を介して第2受光素子で受光することを 特徴とする光ピックアップ装置。 3、上記請求項1記載の光ピックアップ装置において、 上記光分割手段(2)は、当該光分割手段(2)とほぼ
同じ屈折率の透明媒質からなる接着物質で他側面(22
)を半導体基板(10)上に接着固定することを 特徴とする光ピックアップ装置。 4、上記請求項1記載の光ピックアップ装置において、 上記光分割手段(2)を接合する接着剤の屈折率を光分
割手段(2)の屈折率と略等し、且つ半導体基板(10
)上に形成されるクラッド層の屈折率よりも大きくし、
上記発光手段(1)から出射されて直接に光分割手段(
2)の一側面(21)の表面を透過した光が上記クラッ
ド層の表面で全反射され、かつ上記光情報記録担体で反
射されて上記光分割手段(2)の一側面(21)の表面
を透過した光が上記クラッド層を透過することを特徴と
する光ピックアップ装置。 5、上記請求項1記載の光ピックアップ装置において、 上記光回折手段(3)は半導体基板(10)の光導波路
(4)層に隣接して形成される回折格子で構成すること
を 特徴とする光ピックアップ装置。 6、上記請求項1記載の光ピックアップ装置において、 上記光回折手段(3)は少なくとも2つの領域で形成さ
れ、透過光量が回折光量よりも多くなるようにしたこと
を 特徴とする光ピックアップ装置。 7、上記請求項1記載の光ピックアップ装置において、 上記半導体基板(10)上に載置される発光手段(1)
は、半導体基板(10)に当接載置する面から光を出射
すると共に、当該光を出射する面に隣接する両側面に電
極を設けて形成し、半導体基板(10)上に設けられた
ランド部に上記電極端部を直接接触接続することを 特徴とする光ピックアップ装置。
[Claims] 1. Formed of a semiconductor substrate (10), the semiconductor substrate (
10) Light that emits light emitted from the light emitting means (1) placed on the optical information recording carrier on which recorded information is recorded, and receives the light reflected by the optical information recording carrier. The pickup device is placed on the semiconductor substrate (10) and includes the light emitting means (
1) is reflected to the optical information recording carrier side by one side surface (21), and the light reflected by the optical information recording carrier is transmitted through the one side surface (21) and enters the other side surface (22). a light splitting means (2) for guiding waves; and a light splitting means (2) formed in the semiconductor substrate (10) for separating light emitted from the other side surface (22) of the light splitting means (2) into transmitted light and diffracted light. An optical pickup device comprising: an optical diffraction means (3). 2. The optical pickup device according to claim 1, further comprising a core layer in the semiconductor substrate (10) and the optical diffraction means (
An optical waveguide (4) is formed between the optical waveguide (3) and the optical waveguide (4).
A first light-receiving element is formed on a side surface of the core layer that is not adjacent to 4), a second light-receiving element is formed at the end of the optical waveguide (4), and the light transmitted through the light diffraction means (3) is received by the first light-receiving element. In addition to receiving the light with the element, the diffracted light of the optical diffraction means (3) is transmitted to the optical waveguide (4).
An optical pickup device that receives light through a second light receiving element. 3. In the optical pickup device according to claim 1, the light splitting means (2) is made of an adhesive material made of a transparent medium having approximately the same refractive index as the light splitting means (2) on the other side (22).
) is adhesively fixed onto a semiconductor substrate (10). 4. The optical pickup device according to claim 1, wherein the refractive index of the adhesive bonding the light splitting means (2) is approximately equal to the refractive index of the light splitting means (2), and the semiconductor substrate (10
) is made larger than the refractive index of the cladding layer formed thereon,
The light emitted from the light emitting means (1) is directly transmitted to the light dividing means (
2) The light transmitted through the surface of the one side surface (21) is totally reflected on the surface of the cladding layer, and is reflected by the optical information recording carrier to form the surface of the one side surface (21) of the light splitting means (2). An optical pickup device characterized in that the light transmitted through the cladding layer is transmitted through the cladding layer. 5. The optical pickup device according to claim 1, wherein the optical diffraction means (3) is constituted by a diffraction grating formed adjacent to the optical waveguide (4) layer of the semiconductor substrate (10). Optical pickup device. 6. The optical pickup device according to claim 1, wherein the light diffraction means (3) is formed of at least two regions, and the amount of transmitted light is greater than the amount of diffracted light. 7. The optical pickup device according to claim 1, further comprising a light emitting means (1) placed on the semiconductor substrate (10).
is formed by emitting light from a surface that is placed in contact with the semiconductor substrate (10) and providing electrodes on both sides adjacent to the surface from which the light is emitted, and is provided on the semiconductor substrate (10). An optical pickup device characterized in that the end portion of the electrode is directly contact-connected to the land portion.
JP02196710A 1990-07-25 1990-07-25 Optical pickup device Expired - Fee Related JP3137969B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP02196710A JP3137969B2 (en) 1990-07-25 1990-07-25 Optical pickup device
US07/652,814 US5164930A (en) 1990-07-25 1991-02-08 Optical pickup
DE69128290T DE69128290T2 (en) 1990-07-25 1991-02-14 Optical scanner
DE69121654T DE69121654T2 (en) 1990-07-25 1991-02-14 Optical scanner
EP91301188A EP0468612B1 (en) 1990-07-25 1991-02-14 Optical pickup
EP95119137A EP0708437B1 (en) 1990-07-25 1991-02-14 Optical pickup
US07/917,239 US5247506A (en) 1990-07-25 1992-07-23 Optical pickup for reproducing information from an optical information storage medium
JP10298703A JPH11232688A (en) 1990-07-25 1998-10-20 Optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02196710A JP3137969B2 (en) 1990-07-25 1990-07-25 Optical pickup device

Publications (2)

Publication Number Publication Date
JPH0489636A true JPH0489636A (en) 1992-03-23
JP3137969B2 JP3137969B2 (en) 2001-02-26

Family

ID=16362303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02196710A Expired - Fee Related JP3137969B2 (en) 1990-07-25 1990-07-25 Optical pickup device

Country Status (1)

Country Link
JP (1) JP3137969B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481515A (en) * 1992-06-02 1996-01-02 Hitachi, Ltd. Optical information storage medium control apparatus
JP2005244192A (en) * 2004-01-30 2005-09-08 Sharp Corp Semiconductor laser device and optical pickup device
US10139271B2 (en) 2015-06-09 2018-11-27 Panasonic Intellectual Property Management Co., Ltd. Light detection device including light detector, light coupling layer, and light shielding film, light detection system, and optical device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114442311A (en) * 2017-03-21 2022-05-06 奇跃公司 Low profile beam splitter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481515A (en) * 1992-06-02 1996-01-02 Hitachi, Ltd. Optical information storage medium control apparatus
JP2005244192A (en) * 2004-01-30 2005-09-08 Sharp Corp Semiconductor laser device and optical pickup device
US10139271B2 (en) 2015-06-09 2018-11-27 Panasonic Intellectual Property Management Co., Ltd. Light detection device including light detector, light coupling layer, and light shielding film, light detection system, and optical device

Also Published As

Publication number Publication date
JP3137969B2 (en) 2001-02-26

Similar Documents

Publication Publication Date Title
US6072607A (en) Optical pickup device
JP2002175642A (en) Optical output module and interchangeable optical pickup device using the same
EP0468612B1 (en) Optical pickup
JP2765793B2 (en) Mode separation element and pickup for magneto-optical disk
KR100479701B1 (en) Photoelectronic device
JP3662382B2 (en) Optical pickup device
JPH0630164B2 (en) Optical head device
JPS62117150A (en) Optical pickup
US5247506A (en) Optical pickup for reproducing information from an optical information storage medium
JPH0489636A (en) Optical pickup device
JPH06111362A (en) Mutichannel optical laser system, data reading method and multichannel beam deflector
JP2000215504A (en) Optical integrated device
JPH0489634A (en) Optical pickup device
JP2000235724A (en) Optical waveguide element and optical pickup
KR100437655B1 (en) An integrated optical disk pickup device
JPS6171430A (en) Optical information processor
JPH07161065A (en) Optical pickup device
JP2638039B2 (en) Optical integrated circuit device
JP2005158822A (en) Optical integration element, manufacturing method therefor and drive device
JPH07192299A (en) Optical pickup device
JPS6162024A (en) Optical information processor
US20070139647A1 (en) Laser-detector-grating-unit
JPH0836778A (en) Optical head
JPH10321898A (en) Optically integrated element, manufacture thereof, and optical information reader
JPH07262594A (en) Optical element and optical head using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees