JPH048925B2 - - Google Patents

Info

Publication number
JPH048925B2
JPH048925B2 JP57122193A JP12219382A JPH048925B2 JP H048925 B2 JPH048925 B2 JP H048925B2 JP 57122193 A JP57122193 A JP 57122193A JP 12219382 A JP12219382 A JP 12219382A JP H048925 B2 JPH048925 B2 JP H048925B2
Authority
JP
Japan
Prior art keywords
sio
molar ratio
less
comparative example
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57122193A
Other languages
Japanese (ja)
Other versions
JPS5913306A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57122193A priority Critical patent/JPS5913306A/en
Publication of JPS5913306A publication Critical patent/JPS5913306A/en
Publication of JPH048925B2 publication Critical patent/JPH048925B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はマグネトプランバイト型構造を有する
異方性ストロンチウムフエライト磁石の改良に関
するものである。 〔従来の技術〕 MO・6Fe2O3系酸化物磁石(MはBa,Sr,
Pb)はフイリツプス社において開発され、原料
ソースが豊富で、安価に入手できるため、他の永
久磁石材料に比べて経済性に優れている。また、
ウエスチングハウス社のCochardtらが、Srフエ
ライト磁石がBaフエライト磁石に比べて優秀な
特性をもつことを発表して以来、Srフエライト
磁石が注目を浴びた。その後更にフエライト磁石
の用途が広がるにつれて、高特性のフエライト磁
石が要求され、種々の改良がなされてきた。 従来、一般に異方性酸化物永久磁石の製造方法
は、Fe2O3とSrCO3(または熔焼してSrOとなるSr
化合物)を所定の割合で混合し、仮焼してフエラ
イト化した後、平均粒径が臨界直径以下となるよ
う粉砕し、磁界中成形し、2次焼成を行うもので
あつた。 この酸化物永久磁石の化学量論的な組成は
MO・6Fe2O3(MはSr,Ba,Pb)である。 〔発明が解決しようとする問題点〕 従来はこの組成(Fe2O3/MOモル比以下nと
する)が6をこえるとα・Fe2O3の析出により抗
磁力Hcが大幅に低下して(BH)maxの低下を
もたらすとされてきた。すなわち、マグネトプラ
ンバイト型の結晶構造はn=5.0〜6.0まで単一相
として現れ、残留磁束密度(Br)及び抗磁力
(Hc)の最大値はn=5.2〜5.8の間に存在すると
いわれてきた(ただしPbフエライトについては
n=4.5〜5.0でよい磁石特性が得られるといわれ
ている。)。これは、nが6.0を越えると、α−
Fe2O3が析出すると共に、フエライト化反応がす
すみにくくなるためといわれている。 しかしながら、これらの研究の多くはBaフエ
ライト磁石に関するものであり、また等方性酸化
物永久磁石に関するものも多く、異方性Srフエ
ライト磁石に係るものは少く、Baフエライト磁
石による知見をあてはめている場合が多い。 しかしながら、本発明者等は、ストロンチウム
フエライトにおいてのみは、nが6.0を越え6.5迄
のとき、nが6.0以下のときよりも磁石特性が著
しく向上することを発見した。本発明はこのよう
な発見に基づくものである。 〔問題点を解決するための手段〕 本発明は、一般式SrO・nFe2O3で示されるス
トロンチウムフエライト磁石の製造方法におい
て、酸化鉄および炭酸ストロンチウム(または酸
化ストロンチウムとなり得る化合物も含む)原料
を、nが6.0より大きく6.5以下を満足するように
秤量,混合し、更に、これにCaO,及びB2O3
うちの1種0.8wt%以下とSiO2を0.8wt%以下とを
添加混合し、これを仮焼(1300〜1350℃)後、湿
式粉砕して臨界粒径より小さな平均粒径(0.7〜
0.9μm)を有する粉末とし、該粉末を磁場中成形
した後、焼結して、(BH)maxが4.0
(MGaussOe)以上の磁石を得ることを特徴とす
る異方性ストロンチウムフエライト磁石の製造方
法である。 〔作用〕 酸化鉄および炭酸ストロンチウム(または酸化
ストロンチウムとなり得る化合物も含む)原料を
配合モル比が6.0より大きく6.5以下となるように
秤量混合したものに、CaO,およびB2O3のうち
の一種0.8wt%以下とSiO2を0.8wt%以下とを添加
混合することによつてBr,BHCを向上させること
ができる。 以下、本発明の比較例及び実施例について説明
する。 比較例 1 純度99.0wt%のFe2O3と純度97.1wt%のSrCO3
をモル比にて5.7,8.8,5.9,6.0,6.0,6.2,6.3,
6.4となるように配合し、ボールミルにて2時間
各々を混合した後1320℃で2時間仮焼し、これを
平均粒径が0.7μとなるよう湿式で微粉砕した。こ
のスラリーを8.0KOeの磁界中で500Kg/cm2で成形
し、1220℃で1時間焼成した。このときのFe2O3
とSrCO3のモル比及び磁気特性の関係を図及び第
1表に示す。
[Industrial Application Field] The present invention relates to an improvement of an anisotropic strontium ferrite magnet having a magnetoplumbite type structure. [Prior technology] MO・6Fe 2 O 3 based oxide magnet (M is Ba, Sr,
Pb) was developed by Philips Corporation and has abundant raw material sources and can be obtained at low cost, making it more economical than other permanent magnet materials. Also,
Ever since Cochardt et al. of Westinghouse Co. announced that Sr ferrite magnets have superior properties compared to Ba ferrite magnets, Sr ferrite magnets have attracted attention. Thereafter, as the uses of ferrite magnets expanded further, ferrite magnets with high characteristics were required, and various improvements were made. Conventionally, the general method for manufacturing anisotropic oxide permanent magnets has been to use Fe 2 O 3 and SrCO 3 (or Sr, which becomes SrO by sintering).
Compounds) were mixed in a predetermined ratio, calcined to form ferrite, then pulverized so that the average particle size was equal to or less than the critical diameter, molded in a magnetic field, and subjected to secondary firing. The stoichiometric composition of this oxide permanent magnet is
MO.6Fe 2 O 3 (M is Sr, Ba, Pb). [Problem to be solved by the invention] Conventionally, when this composition (n is below the Fe 2 O 3 /MO molar ratio) exceeds 6, the coercive force Hc decreases significantly due to the precipitation of α・Fe 2 O 3 . It has been said that this causes a decrease in (BH)max. In other words, it is said that the magnetoplumbite type crystal structure appears as a single phase when n = 5.0 to 6.0, and the maximum values of residual magnetic flux density (Br) and coercive force (Hc) exist between n = 5.2 and 5.8. (However, for Pb ferrite, it is said that good magnetic properties can be obtained when n=4.5 to 5.0.) This means that when n exceeds 6.0, α−
This is said to be because Fe 2 O 3 precipitates and the ferritization reaction becomes difficult to proceed. However, most of these studies are related to Ba ferrite magnets, and many are related to isotropic oxide permanent magnets, and few are related to anisotropic Sr ferrite magnets, applying the findings from Ba ferrite magnets. There are many cases. However, the present inventors have discovered that only in strontium ferrite, when n exceeds 6.0 and reaches 6.5, the magnetic properties are significantly improved compared to when n is 6.0 or less. The present invention is based on such a discovery. [Means for Solving the Problems] The present invention provides a method for producing a strontium ferrite magnet represented by the general formula SrO.nFe 2 O 3 in which iron oxide and strontium carbonate (or a compound that can become strontium oxide is also included) raw materials are used. , weighed and mixed so that n satisfies a value of greater than 6.0 and less than 6.5, and further mixed with 0.8 wt% or less of one of CaO and B 2 O 3 and 0.8 wt% or less of SiO 2 After calcining (1300-1350℃), this is wet-milled to obtain an average particle size smaller than the critical particle size (0.7-1350℃).
After forming the powder in a magnetic field and sintering it, the powder has a (BH)max of 4.0.
(MGaussOe) or more is a method for manufacturing an anisotropic strontium ferrite magnet. [Operation] Iron oxide and strontium carbonate (or compounds that can become strontium oxide are also included) raw materials are weighed and mixed so that the molar ratio is greater than 6.0 and less than or equal to 6.5, and one of CaO and B 2 O 3 is added to the mixture. Br and BHC can be improved by adding and mixing 0.8wt% or less of SiO 2 and 0.8wt% or less of SiO 2 . Comparative examples and examples of the present invention will be described below. Comparative Example 1 Fe 2 O 3 with a purity of 99.0wt% and SrCO 3 with a purity of 97.1wt%
The molar ratio is 5.7, 8.8, 5.9, 6.0, 6.0, 6.2, 6.3,
6.4, mixed in a ball mill for 2 hours, calcined at 1320°C for 2 hours, and wet-pulverized to have an average particle size of 0.7μ. This slurry was molded at 500 kg/cm 2 in a magnetic field of 8.0 KOe and fired at 1220° C. for 1 hour. Fe 2 O 3 at this time
The relationship between the molar ratio of SrCO 3 and magnetic properties is shown in the figure and Table 1.

【表】 Brの最大はモル比6.2〜6.4、BHCの最大は6.0〜
6.2付近で得られている。モル比6.0〜6.5において
は(BH)maxが4.0M・G・Oe以上を示してい
る。 比較例 2 比較例1と同様の原料を用いて、配合モル比を
5.7,6.3となるよう配合し、比較例1と同様に混
合、仮焼した。仮焼上りを微粉砕するときに、
SiO2をそれぞれに0.2wt%,0.6wt%添加し、平均
粒径が0.75μとなるよう湿式微粉砕した。このス
ラリーを比較例1と同様に成形、焼結したときの
磁石、磁気特性とモル比の関係を第2表に示す。
[Table] The maximum molar ratio of Br is 6.2 to 6.4, and the maximum of B H C is 6.0 to 6.4.
It is obtained around 6.2. At a molar ratio of 6.0 to 6.5, (BH)max is 4.0 M·G·Oe or more. Comparative Example 2 Using the same raw materials as Comparative Example 1, the blending molar ratio was
5.7 and 6.3, and mixed and calcined in the same manner as in Comparative Example 1. When finely pulverizing the calcined material,
SiO 2 was added at 0.2wt% and 0.6wt%, respectively, and wet pulverization was performed so that the average particle size was 0.75μ. Table 2 shows the relationship between the magnet, magnetic properties, and molar ratio when this slurry was molded and sintered in the same manner as in Comparative Example 1.

【表】 この結果から、Fe2O3/SrOモル比が、6.0より
大きい場合においてSiO2を添加したものの方が、
6.0より小さい場合にSiO2を添加したものより磁
気特性が優れている。また、比較例1との比較か
ら明らかなように、SiO2の単独添加ではBHCを除
いては磁石特性が劣化する。更にSiO2の添加量
が0.2%と0.6%との比較からしても添加量は少な
い方が磁石特性(BHCを除く)が良好である。 実施例 1 比較例1と同様の原料を用いて配合モル比を
6.15とし、比較例1と同様に混合、仮焼した。仮
焼上りを微粉時にCaCO3を0.5wt%(CaOとして
0.3wt%)とSiO2を0.2wt%及び0.6wt%,また
CaCO3を1.08wt%(CaOとして0.6wt%)とSiO2
を0.2wt%及び0.6wt%添加し、平均粒径が0.75μ
となるよう粉砕し、比較例1と同様に成形、焼結
した結果を第3表に示す。なおこの磁石の
Fe2O3/SrOモル比は6.30であつた。
[Table] From this result, when the Fe 2 O 3 /SrO molar ratio is greater than 6.0, the one with SiO 2 added is
When it is smaller than 6.0, the magnetic properties are better than those with SiO 2 added. Furthermore, as is clear from the comparison with Comparative Example 1, when SiO 2 is added alone, the magnetic properties deteriorate except for BHC . Furthermore, comparing the amount of SiO 2 added of 0.2% and 0.6%, the smaller the amount of SiO 2 added, the better the magnetic properties (excluding BHC ). Example 1 Using the same raw materials as in Comparative Example 1, the blending molar ratio was
6.15, and mixed and calcined in the same manner as in Comparative Example 1. 0.5wt% CaCO3 (as CaO)
0.3wt%) and SiO 2 at 0.2wt% and 0.6wt%, and
1.08wt% CaCO3 (0.6wt% as CaO) and SiO2
Added 0.2wt% and 0.6wt%, the average particle size was 0.75μ
Table 3 shows the results of pulverizing, molding and sintering in the same manner as in Comparative Example 1. Furthermore, this magnet
The Fe 2 O 3 /SrO molar ratio was 6.30.

【表】 この実施例から明らかなように、Fe2O3とSrO
の配合モル比を6.15とした場合において、
CaCO3,SiO2を添加した場合、無添加の場合に
比べるとBrまたはBHCが向上し、(BH)maxが
向上する。添加量は微量の方がBr,BHC共向上す
る。 また本実施例と比較例1と比べてみると、配合
モル比6.15でCaCO3を0.54wt%とSiO2を0.2wt%
で添加した場合の本実施例が比較例1のすべてに
比べBr,BHC,(BH)maxにおいて優れている。 又CaCO3を0.54wt%とSiO2を0.6wt%を添加し
た場合、Brで比較例1が配合モル比6.1の時のみ
優れており、その他はすべて本実施例が優れてい
る。 又CaCO3を1.08wt%とSiO2を0.2wt%で添加し
た場合BHCで比較例1が配合モル比6.2の時のみ優
れており、その他はすべて本実施例が優れてい
る。 又CaCO3を1.08wt%とSiO2を0.6wt%で添加し
た場合、本実施例が比較例1のすべてに比べて
Br,BHC(BH)maxにおいて優れている。 以上のことから、比較例1のFe2O3/SrOの
種々のモル比に対してCaCO3とSiO2を共同添加
することによつてBr,BHC,(BH)maxを向上で
きることがわかる。 また比較例2との比較において、CaCO3の添
加によつてBHCはほとんど変化しないが、Br,
(BH)maxが大幅に向上されていることが明ら
かである。 実施例 2 実施例1と同様の原料を実施例1と同様に配
合,混合,仮焼し、仮焼上りを微粉砕するとき
に、BaB2O4を0.3wt%とSiO2を0.2wt%添加した
ものを実施例1と同様に成形焼結した。この磁石
のFe2O3/SrOモル比は6.31であつた。このとき
の結果を第4表に示す。
[Table] As is clear from this example, Fe 2 O 3 and SrO
When the molar ratio of is set to 6.15,
When CaCO 3 and SiO 2 are added, Br or B H C is improved and (BH)max is improved compared to the case without addition. Adding a small amount improves both Br and BHC . Furthermore, when comparing this example with Comparative Example 1, the molar ratio of 6.15 was 0.54 wt% for CaCO 3 and 0.2 wt% for SiO 2.
This example is superior to all of Comparative Example 1 in terms of Br, BHC , and (BH)max . Further, when 0.54 wt% of CaCO 3 and 0.6 wt% of SiO 2 were added, Comparative Example 1 was superior in Br only when the molar ratio was 6.1, and this example was superior in all other respects. Furthermore, when CaCO 3 was added at 1.08 wt% and SiO 2 at 0.2 wt%, Comparative Example 1 was superior in B H C only when the blending molar ratio was 6.2, and this example was superior in all other cases. Also, when CaCO 3 was added at 1.08wt% and SiO 2 at 0.6wt%, this example was better than all of Comparative Example 1.
Excellent in Br, B H C (BH)max. From the above, it is possible to improve Br, BHC , and (BH)max by jointly adding CaCO 3 and SiO 2 to various molar ratios of Fe 2 O 3 /SrO in Comparative Example 1. Recognize. In addition, in comparison with Comparative Example 2, BHC hardly changes due to the addition of CaCO3 , but Br,
It is clear that (BH)max has been significantly improved. Example 2 The same raw materials as in Example 1 were blended, mixed, and calcined in the same manner as in Example 1, and when the calcined product was pulverized, 0.3 wt% of BaB 2 O 4 and 0.2 wt% of SiO 2 were added. The added material was shaped and sintered in the same manner as in Example 1. The Fe 2 O 3 /SrO molar ratio of this magnet was 6.31. The results at this time are shown in Table 4.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、Fe2O3/SrOのモル比が6.0よ
り大きく6.5より小さい範囲において、添加物と
してCaOおよびB2O3の一種とSiO2とを組合せる
ことにより、磁石の特性(Br,BHC,(BH)
max)を向上させることができる。
According to the present invention , the characteristics of the magnet ( Br, BHC , ( BH)
max) can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

図は磁石のFe2O3/SrOモル比とBr,BHC
(BH)maxの関係を示したものである。
The figure shows the Fe 2 O 3 /SrO molar ratio of the magnet and Br, B H C ,
This shows the relationship between (BH)max.

Claims (1)

【特許請求の範囲】[Claims] 1 一般式SrO・nFe2O3で示されるストロンチ
ウムフエライト磁石の製造法において、酸化鉄お
よび炭酸ストロンチウム(または炭酸ストロンチ
ウムとなり得る化合物も含む)原料を上記nが
6.0より大きく6.5以下を満足するように秤量混合
し、更に、これにCaOおよびB2O3のうちの一種
0.8wt%以下とSiO2を0.8wt%以下とを添加混合
し、これを仮焼後,湿式粉砕して臨界粒径より小
さな平均粒径を有する粉末とし、該粉末を磁場中
成形した後、焼結して、(BH)maxが4.0
(MGaussOe)以上の磁石を得ることを特徴とす
る異方性ストロンチウムフエライト磁石の製造方
法。
1. In a method for producing a strontium ferrite magnet represented by the general formula SrO.nFe 2 O 3 , the above n is
Weigh and mix so that the ratio is greater than 6.0 and less than or equal to 6.5, and then add one of CaO and B 2 O 3 to this.
Add and mix 0.8 wt% or less and SiO 2 with 0.8 wt% or less, calcinate this, wet grind it to a powder having an average particle size smaller than the critical particle size, and compact the powder in a magnetic field. Sintered, (BH)max is 4.0
(MGaussOe) or more.
JP57122193A 1982-07-15 1982-07-15 Anisotropic strontium ferrite magnet Granted JPS5913306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57122193A JPS5913306A (en) 1982-07-15 1982-07-15 Anisotropic strontium ferrite magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57122193A JPS5913306A (en) 1982-07-15 1982-07-15 Anisotropic strontium ferrite magnet

Publications (2)

Publication Number Publication Date
JPS5913306A JPS5913306A (en) 1984-01-24
JPH048925B2 true JPH048925B2 (en) 1992-02-18

Family

ID=14829868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57122193A Granted JPS5913306A (en) 1982-07-15 1982-07-15 Anisotropic strontium ferrite magnet

Country Status (1)

Country Link
JP (1) JPS5913306A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152009A (en) * 1984-01-19 1985-08-10 Daido Steel Co Ltd Oxide permanent magnet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4851293A (en) * 1971-11-01 1973-07-18
JPS5574107A (en) * 1978-11-18 1980-06-04 Dornier System Gmbh Hard ferrite powder and method of fabricating same
JPS5626769A (en) * 1979-08-07 1981-03-14 Hitachi Metals Ltd Manufacture of ferrite magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4851293A (en) * 1971-11-01 1973-07-18
JPS5574107A (en) * 1978-11-18 1980-06-04 Dornier System Gmbh Hard ferrite powder and method of fabricating same
JPS5626769A (en) * 1979-08-07 1981-03-14 Hitachi Metals Ltd Manufacture of ferrite magnet

Also Published As

Publication number Publication date
JPS5913306A (en) 1984-01-24

Similar Documents

Publication Publication Date Title
JP4367649B2 (en) Ferrite sintered magnet
JP4254897B2 (en) Magnetic oxide material
KR101515251B1 (en) Ferrite powder for bonded magnets, process for the production of the powder, and bonded magnets made by using the same
EP1365423B1 (en) Method for the preparation of ferrite calcined body
EP3473606B1 (en) Ferrite sintered magnet
JP2019172507A (en) Ferrite sintered magnet, and manufacturing method of ferrite sintered magnet
US5958284A (en) Ferrite magnet and method for producing same
WO2001035424A1 (en) Ferrite magnet powder and magnet using the magnet powder, and method for preparing them
JP3262109B2 (en) Magnet powder and method for producing the same
JP2001052912A (en) Ferrite magnet material, sintered magnet and bonded magnet
JPH048925B2 (en)
JPS58156575A (en) Manufacture of oxide permanent magnet
JPH1197227A (en) Ferrite magnet and rotating machine using the same
JP2004532524A (en) Manufacturing method of ferrite type magnet
JPH0766027A (en) Manufacture of strontium ferrite magnet
JPH11307331A (en) Ferrite magnet
JP2908631B2 (en) Manufacturing method of ferrite magnet
JPH01112705A (en) Manufacture of oxide permanent magnet
KR20070017466A (en) Ferrite sintered magnet
KR100538874B1 (en) High performance ferrite sintered magnet and producing method of the same
JPS589303A (en) Manufacture of oxide permanent magnet with high insulation resistance
JPS6050324B2 (en) Manufacturing method of oxide permanent magnet
JP3257536B2 (en) Composite ferrite magnet material
JP2001006912A (en) Hard ferrite magnet and its manufacture
JP2000173812A (en) Manufacture of anisotropic ferrite magnet