JPH048887B2 - - Google Patents

Info

Publication number
JPH048887B2
JPH048887B2 JP58169193A JP16919383A JPH048887B2 JP H048887 B2 JPH048887 B2 JP H048887B2 JP 58169193 A JP58169193 A JP 58169193A JP 16919383 A JP16919383 A JP 16919383A JP H048887 B2 JPH048887 B2 JP H048887B2
Authority
JP
Japan
Prior art keywords
wire
superconducting
coating
compound
conducting metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58169193A
Other languages
Japanese (ja)
Other versions
JPS6062011A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58169193A priority Critical patent/JPS6062011A/en
Publication of JPS6062011A publication Critical patent/JPS6062011A/en
Publication of JPH048887B2 publication Critical patent/JPH048887B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Coating With Molten Metal (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はNb3SnあるいはV3Gaなどからなるイ
ンサイチユー型化合物超電導線に係り、特に長手
方向にわたつて超電導特性が均一な超電導線の製
造方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an in-situ compound superconducting wire made of Nb 3 Sn or V 3 Ga, and particularly to a method for manufacturing a superconducting wire with uniform superconducting properties in the longitudinal direction. Regarding.

Nb3SnあるいはV3Gaなどからなるインサイチ
ユー型化合物超電導線は高磁界における臨界電流
密度がすぐれた超電導線である。
In-situ compound superconducting wires made of Nb 3 Sn or V 3 Ga have excellent critical current density in high magnetic fields.

〔発明の背景〕[Background of the invention]

従来、この種の化合物超電導線の製造方法とし
て、展延性に富んだ常電導金属と超電導化合物を
構成する一方の金属とを共に溶解鋳造し、これを
伸線加工した後、超電導化合物を構成する他方の
元素を被覆し、ついで拡散熱処理を施こすことに
より超電導線を製造する方法が知られている。こ
の従来の方法を第1図を用いて一例としてNb3Sn
からなるインサイチユー型化合物超電導線の場合
を具体的に説明する。展延性に富んだ常電金属と
してCuを用い、超電導化合物を構成する一方の
金属としてNbを用い、たとえばCu−30at%Nb
の配合組成で、高周波溶解し水冷Cu鋳型に鋳造
する。NbはCu中にほとんど固溶しないで大部分
は粒状あるいは樹枝状晶として析出する。これを
伸線加工すると析出物は長手方向に引伸ばされ
て、Cu母材中にNbが繊維状となつて分布する。
つぎに、伸線加工された材料の表面に、超電導化
合物を構成する他の元素Snを被覆し、ついで500
〜750℃の温度で拡散熱処理を行うとNbとSnと
が反応してNb3Sn化合物が生成される。第2図
は、長手方向に直角なNb3Sn超電導線の断面構造
の一例で、第2図aはSn被覆後で、繊維状のNb
2がCu母材1中に分散し、表面にSn3が被覆さ
れている。第2図bは拡散熱処理後で、Cu−Sn
合金母材4中に繊維状のNb3Sn化合物5が分散さ
れた構造を示している。しかし、このような従来
の方法によると、伸線加工された材料表面に、
Nb繊維の表面が露出する。このNb繊維は非常に
酸化活性度の大きな金属であり、大気中でその表
面に酸化被膜が形成されやすく、Snを直接被覆
しようとしても、Nb酸化物表面とSnとのぬれが
悪いため、線材表面に均一なSnを被覆を形成し
難くなる。また、Sn被覆を形成したあと、Nbと
Snを反応させて超電導線材を作るために加熱す
ると、軟化又は溶融したSn被覆が線材表面から
離脱して目的の反応を行えないという問題があ
る。従つて最終的に得られる超電導線の臨界電流
密度が長手方向に沿つて大きく変化し、均一性の
良い超電導線を得るのが困難であるという欠点を
有していた。
Conventionally, as a manufacturing method for this type of compound superconducting wire, a highly malleable normal conducting metal and one of the metals constituting the superconducting compound are melted and cast together, and after wire drawing, the superconducting compound is constituted. A method of manufacturing a superconducting wire by coating the other element and then performing a diffusion heat treatment is known. As an example of this conventional method using Fig. 1, Nb 3 Sn
The case of an in-situ type compound superconducting wire consisting of the following will be specifically explained. Cu is used as a normal metal with high malleability, and Nb is used as one of the metals constituting the superconducting compound. For example, Cu-30at%Nb
The composition is high-frequency melted and cast into a water-cooled Cu mold. Nb hardly dissolves in solid solution in Cu, and most of it precipitates as granules or dendrites. When this wire is drawn, the precipitates are stretched in the longitudinal direction, and Nb is distributed in the form of fibers in the Cu matrix.
Next, the surface of the wire-drawn material is coated with Sn, another element constituting the superconducting compound, and then
When diffusion heat treatment is performed at a temperature of ~750°C, Nb and Sn react to form a Nb 3 Sn compound. Figure 2 shows an example of the cross-sectional structure of a Nb 3 Sn superconducting wire perpendicular to the longitudinal direction.
2 is dispersed in the Cu base material 1, and the surface is coated with Sn3. Figure 2b shows Cu-Sn after diffusion heat treatment.
It shows a structure in which fibrous Nb 3 Sn compounds 5 are dispersed in an alloy base material 4 . However, according to such conventional methods, on the surface of the wire-drawn material,
The surface of the Nb fiber is exposed. This Nb fiber is a metal with extremely high oxidation activity, and an oxide film is easily formed on its surface in the atmosphere. Even if an attempt is made to coat Sn directly, the Nb oxide surface and Sn do not wet well, so the wire is It becomes difficult to form a uniform Sn coating on the surface. In addition, after forming the Sn coating, Nb and
When heating is applied to react Sn to produce a superconducting wire, there is a problem in that the softened or melted Sn coating separates from the surface of the wire, making it impossible to carry out the desired reaction. Therefore, the critical current density of the finally obtained superconducting wire varies greatly along the longitudinal direction, making it difficult to obtain a superconducting wire with good uniformity.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の欠点を解消するもので、長手
方向にわたつて超電導特性が均一なインサイチユ
ー型化合物超電導線の製造方法を提供するもので
ある。
The present invention solves the above-mentioned drawbacks and provides a method for manufacturing an in-situ compound superconducting wire with uniform superconducting properties in the longitudinal direction.

〔発明の概要〕[Summary of the invention]

本発明の製造方法の概略を述べると、伸線加工
性の良好な常電導金属と、超電導化合物を構成す
る一方の元素との合金を溶解鋳造する工程、これ
を伸線加工して上記合金中の一方の構成元素を繊
維状とする線材を得る工程、線材表面に常電導金
属を被覆する工程、さらに常電導金属被覆表面に
上記超電導化合物を構成する他方の元素を被覆す
る工程、ついで拡散熱処理を施すことにより繊維
状の超電導化合物を上記線材内に生成させる工程
を順次行うことを包含する。
The manufacturing method of the present invention can be summarized as follows: a process of melting and casting an alloy of a normally conducting metal with good wire drawability and one of the elements constituting a superconducting compound; A step of obtaining a wire in which one of the constituent elements is fibrous, a step of coating the wire surface with a normal conducting metal, a step of further coating the normal conducting metal coated surface with the other element constituting the superconducting compound, and then a diffusion heat treatment. The method includes successively performing the steps of generating a fibrous superconducting compound within the wire by applying the following steps.

本発明によれば、前記超電導化合物を構成する
元素を例えばNbとSnとし、前記常電導化合物を
Cuとした時、Nb繊維を含む線材の表面に予めCu
を被覆することによつてNb繊維表面が酸化され
ていたとしてもCuとSnはぬれ性が良いので、Cu
表面にSnを均一に形成させることができる。ま
た、NbとSnを反応させるため線材を加熱したと
きに、ぬれ性の良いCu被覆がSn層を保持するの
で、Sn被覆がダレ落ちたりしない。
According to the present invention, the elements constituting the superconducting compound are, for example, Nb and Sn, and the normal conducting compound is
When using Cu, the surface of the wire containing Nb fibers is pre-coated with Cu.
Even if the Nb fiber surface is oxidized by coating it, Cu and Sn have good wettability.
Sn can be formed uniformly on the surface. Furthermore, when the wire is heated to cause the Nb and Sn to react, the Cu coating with good wettability holds the Sn layer, so the Sn coating does not sag.

〔発明の実施例〕[Embodiments of the invention]

〔実施例 1〕 第3図は本発明の一例を示す製造工程図であ
る。純度99.99%の無酸素Cuと純度99.5%のNbと
を高周波溶解し、Cu鋳型に鋳込んで直径15mm、
長さ100mmのCu−30at.%Nb合金を作製した。つ
ぎにこの棒状のインゴツト表面を切削し直径10mm
にし、冷間で直径0.25mmまで伸線加工した。この
Cu−Nb線の一部を切り出し、硝酸にてCuを溶解
除去して走査型電子顕微鏡によりNbフイラメン
トの観察を行つたところ、形状は不規則なリボン
状で、幅が約5μm、厚みが約0.1μmで長さが数mm
〜数cmのNbフイラメントの無数が束になつた繊
維状のものが見られた。つぎに、本発明の効果を
従来法と比較評価するために直径0.25mmのCu−
Nb線を10mの長さで2本切り出し、1本はその
ままで、他の1本は電気メツキにより約5μm厚
さのCuを被覆し、各々を同一条件で電気メツキ
によりSnを被覆した。
[Example 1] FIG. 3 is a manufacturing process diagram showing an example of the present invention. Oxygen-free Cu with a purity of 99.99% and Nb with a purity of 99.5% are high-frequency melted and cast into a Cu mold with a diameter of 15 mm.
A Cu-30at.%Nb alloy with a length of 100mm was fabricated. Next, the surface of this rod-shaped ingot is cut to a diameter of 10 mm.
It was then cold drawn to a diameter of 0.25mm. this
When a part of the Cu-Nb wire was cut out, the Cu was dissolved and removed with nitric acid, and the Nb filament was observed using a scanning electron microscope. 0.1μm and several mm in length
A fibrous structure consisting of numerous bundles of Nb filaments several centimeters in length was observed. Next, in order to evaluate the effect of the present invention in comparison with the conventional method, a Cu-
Two Nb wires with a length of 10 m were cut out, one was left as is, and the other was coated with Cu to a thickness of about 5 μm by electroplating, and each was coated with Sn by electroplating under the same conditions.

第4図はCu被覆した後にSn被覆した、すなわ
ち本発明の方法による試料の横断面構造を示す。
FIG. 4 shows the cross-sectional structure of a sample coated with Cu and then coated with Sn, ie, according to the method of the present invention.

Cuの被覆が無い従来方法の場合、Sn被覆厚さ
は長さ方向で3〜10μmの範囲の不均一性を示し
たが、本発明の方法によるCu被覆が有る場合に
はSn被覆厚さは8〜10μmで不均一性は大幅に改
善された。ついで、400℃の温度で24時間、前熱
処理を施こした後、650℃の温度で48時間の拡散
熱処理を施こしNbフイラメントをNb3Snに変え
た。
In the case of the conventional method without Cu coating, the Sn coating thickness showed non-uniformity in the range of 3 to 10 μm in the length direction, but in the case of the Cu coating by the method of the present invention, the Sn coating thickness was The nonuniformity was significantly improved between 8 and 10 μm. Next, a preheat treatment was performed at a temperature of 400°C for 24 hours, and then a diffusion heat treatment was performed at a temperature of 650°C for 48 hours to change the Nb filament to Nb 3 Sn.

こうして得られた超電導線の4.2Kの温度、7T
の磁界中で臨界電流測定を行つた。超電導線の長
さ方向の変化を調べるため各々の端部から1m間
隔で試料を切り出して測定した。結果を第5図に
示すが、従来方法による試料では長さ方向で臨界
電流が14〜29Aの範囲で大きく変化しているのに
対し、Cu被覆を行つた本発明の方法による試料
では臨界電流は24〜28Aで長さ方向に対する変化
は大幅に小さくなり、特性の均一化がなされてい
ることが明らかとなつた。
The temperature of the superconducting wire thus obtained is 4.2K, 7T
Critical current measurements were carried out in the magnetic field. In order to investigate changes in the length direction of the superconducting wire, samples were cut out at 1 m intervals from each end and measured. The results are shown in Figure 5, where the critical current of the samples made by the conventional method varies greatly in the length direction in the range of 14 to 29 A, whereas the critical current of the samples made by the method of the present invention coated with Cu changes significantly in the length direction. It became clear that the change in the length direction was significantly smaller between 24 and 28A, and that the characteristics were uniform.

〔実施例 2〕 純度99.99%の無酸素Cuと純度99.9%のVとを
水冷Cuハース上でアーク溶解してCu−30at.%V
合金インゴツトを作製した。切削により直径10
mm、長さ40mmの棒状にし、直径1mmまで冷間で伸
線加工した後、圧延により厚さ0.1mm、巾1mmの
テープ状に加工した。つぎに、本発明の効果を従
来法と比較評価するため、10m長さで2本切り出
し、1本はそのままで、他の1本は電気メツキに
より約5μm厚さのCuを被覆し、各々を500℃に保
持された溶融Ga浴に連続的に浸清して厚さ約10μ
mのGaを被覆した。ついで500℃の温度で100時
間の拡散熱処理を行いVフイラメントをV3Gaに
変えた。
[Example 2] Oxygen-free Cu with a purity of 99.99% and V with a purity of 99.9% are arc melted on a water-cooled Cu hearth to form Cu-30at.%V.
An alloy ingot was produced. Diameter 10 by cutting
It was made into a rod shape with a length of 40 mm and a diameter of 1 mm, and then cold wire-drawn to a diameter of 1 mm, and then rolled into a tape shape with a thickness of 0.1 mm and a width of 1 mm. Next, in order to compare and evaluate the effect of the present invention with the conventional method, we cut out two 10 m long pieces, left one as it was, and coated the other with Cu approximately 5 μm thick by electroplating. Continuously immersed in a molten Ga bath maintained at 500℃ to a thickness of approximately 10μ
It was coated with Ga of m. Then, diffusion heat treatment was performed at a temperature of 500° C. for 100 hours to change the V filament to V 3 Ga.

実施例1と同様、臨界電流測定を行つた結果を
図6に示すが、Cu被覆の無い従来方法では臨界
電流が96〜172Aの範囲で大きく変化したのに対
し、Cu被覆を行つた本発明の方法では臨界電流
は132〜150Aで長さ方向に対するバラツキは非常
に小さくなり、特性の均一化がなされていること
が明らかとなつた。
As in Example 1, the results of critical current measurements are shown in Figure 6. In the conventional method without Cu coating, the critical current varied greatly in the range of 96 to 172 A, whereas in the present invention with Cu coating, the critical current varied greatly in the range of 96 to 172 A. With this method, the critical current was 132 to 150 A, and the variation in the length direction was extremely small, making it clear that the characteristics were uniform.

本発明が適用される超電導化合物は、いわゆる
A−15型結晶構造を有するもので、Nb3Sn及び
V3Gaを基本とする化合物である。たとえば
(Nb,Ti)3Sn,V3(Ga,Al)等、第3元素を添
加した化合物においても本発明は適用される。ま
た、工業的立場からは常電導金属にはCuあるい
はCuを基本とする合金が用いられるが、Cuのか
わりにAu,Ag等を用いても可能である。
The superconducting compound to which the present invention is applied has a so-called A-15 type crystal structure, and includes Nb 3 Sn and
It is a compound based on V 3 Ga. For example, the present invention is also applicable to compounds to which a third element is added, such as (Nb, Ti) 3 Sn, V 3 (Ga, Al). Further, from an industrial standpoint, Cu or a Cu-based alloy is used as the normal conducting metal, but it is also possible to use Au, Ag, etc. instead of Cu.

また、常電導金属の被覆方法としては、電気メ
ツキの他、蒸着法,CVD法等により行うことが
できるし、SnあるいはGa等の被覆方法も電気メ
ツキ法,溶融浴浸漬法にこだわらない。
Further, as a method for coating the normally conductive metal, other than electroplating, vapor deposition, CVD, etc. can be used, and the method for coating Sn, Ga, etc. is not limited to electroplating or molten bath dipping.

さらに、伸線加工後の線材断面形状は円形でも
矩形でもさしつかえないし、さらにSnあるいは
Ga等を被覆後に多数本を撚合せたり、積層させ
たりした構造を用いてもさしつかえない。
Furthermore, the cross-sectional shape of the wire after wire drawing can be circular or rectangular.
It is also possible to use a structure in which a large number of fibers are twisted or laminated after being coated with Ga or the like.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の方法によると、長
手方向に超電導特性の均一なインサイチユー型化
合物超電導線が得られるので高磁界を発生する超
電導マグネツト用超電導線として使用すると工業
的,経済的効果は非常に大きい。
As described above, according to the method of the present invention, an in-situ compound superconducting wire with uniform superconducting properties in the longitudinal direction can be obtained, and therefore, when used as a superconducting wire for a superconducting magnet that generates a high magnetic field, it has no industrial or economical effects. Very large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来方法による製造工程図、第2図は
従来方法による線材構造を模式的に示す図、第3
図は本発明の一実施例を示す製造工程図、第4図
はその線材構造を説明する模式的な図、第5図及
び第6図は本発明の効果を説明する臨界電流測定
結果例を示す図である。 1,1′…Cu、2…Nbフイラメント、3…Sn、
4…Cu−Sn合金母材、5…Nb3Snフイラメント。
Figure 1 is a manufacturing process diagram using the conventional method, Figure 2 is a diagram schematically showing the wire structure according to the conventional method, and Figure 3 is a diagram schematically showing the wire structure according to the conventional method.
The figure is a manufacturing process diagram showing one embodiment of the present invention, Figure 4 is a schematic diagram explaining the wire structure, and Figures 5 and 6 are examples of critical current measurement results explaining the effects of the present invention. FIG. 1,1'...Cu, 2...Nb filament, 3...Sn,
4...Cu-Sn alloy base material, 5... Nb3Sn filament.

Claims (1)

【特許請求の範囲】[Claims] 1 常電導金属母材中に繊維状の超電導化合物を
分散させてなる超電導線の製造方法において、上
記常電導金属と上記超電導化合物を構成する一方
の元素との合金を溶解鋳造する工程、これを減面
加工して上記合金中の一方の構成元素を繊維状と
する線材を得る工程、線材表面に常電導金属を被
覆する工程、常電導金属被覆表面に上記超電導化
合物を構成する他方の元素を被覆する工程、他方
の元素を拡散,熱処理し、一方の元素と反応させ
て繊維状の超電導化合物を上記線材内に生成させ
る工程を順次行う工程を包含することを特徴とす
る超電導線の製造方法。
1. In a method for manufacturing a superconducting wire in which a fibrous superconducting compound is dispersed in a normal conducting metal base material, a step of melting and casting an alloy of the normal conducting metal and one of the elements constituting the superconducting compound; A step of reducing the area to obtain a wire in which one of the constituent elements in the alloy is in the form of fibers, a step of coating the surface of the wire with a normal conducting metal, and a step of coating the surface of the normal conducting metal with the other element constituting the superconducting compound. A method for producing a superconducting wire, comprising the steps of sequentially performing a step of coating, a step of diffusing and heat-treating the other element, and a step of reacting with one element to generate a fibrous superconducting compound in the wire. .
JP58169193A 1983-09-16 1983-09-16 Method of producing superconductive wire Granted JPS6062011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58169193A JPS6062011A (en) 1983-09-16 1983-09-16 Method of producing superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58169193A JPS6062011A (en) 1983-09-16 1983-09-16 Method of producing superconductive wire

Publications (2)

Publication Number Publication Date
JPS6062011A JPS6062011A (en) 1985-04-10
JPH048887B2 true JPH048887B2 (en) 1992-02-18

Family

ID=15881946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58169193A Granted JPS6062011A (en) 1983-09-16 1983-09-16 Method of producing superconductive wire

Country Status (1)

Country Link
JP (1) JPS6062011A (en)

Also Published As

Publication number Publication date
JPS6062011A (en) 1985-04-10

Similar Documents

Publication Publication Date Title
US3778894A (en) PROCESS FOR MAKING A V{11 Ga SUPERCONDUCTIVE COMPOSITE STRUCTURE
JP2975246B2 (en) Sn-plated wire for electrical contact and method of manufacturing the same
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
JPH0419918A (en) Nb3al-type superconductor wire manufacturing method and its apparatus
JPH048887B2 (en)
US5232901A (en) Method of producing superconducting ceramic wire having protective metal coating thereon
US3857173A (en) Method of producing a composite superconductor
JPH01274319A (en) Manufacture of fiber dispersion type superconductive wire
US4008102A (en) Method of the manufacture of a superconductor with a layer of the A-15 phase of the system Nb-Al-Si
JP2804163B2 (en) Manufacturing method of optical fiber material
JPS62267050A (en) Production of in-situ rod for fiber dispersion type superconducting wire
JP2555089B2 (en) Method for manufacturing superconducting conductor
JP3117519B2 (en) Oxide superconducting wire
JP3117521B2 (en) Manufacturing method of oxide superconducting wire
JPH0381248B2 (en)
JP2599442B2 (en) Method for producing Pt / Mo clad wire
Adam et al. Research and development efforts relative to superconducting materials. Final report.[Nb/sub 3/Sn tapes]
JP3117520B2 (en) Manufacturing method of oxide superconducting wire
JPS637353A (en) Production of fiber dispersion type superconductive wire
JPS62133049A (en) Manufacture of superconducting wire of compound
JPS6014818B2 (en) V↓Production method of 3Ga fiber-dispersed compound superconducting wire
JPH0132303B2 (en)
JPS63310516A (en) Manufacture of superconductive fiber
JPS6262406B2 (en)
JPS60101815A (en) Method of producing nb3sn superconductive wire material