JPH0488181A - Surface treatment for metal - Google Patents

Surface treatment for metal

Info

Publication number
JPH0488181A
JPH0488181A JP20414190A JP20414190A JPH0488181A JP H0488181 A JPH0488181 A JP H0488181A JP 20414190 A JP20414190 A JP 20414190A JP 20414190 A JP20414190 A JP 20414190A JP H0488181 A JPH0488181 A JP H0488181A
Authority
JP
Japan
Prior art keywords
metal
contaminants
irradiated
synchrotron
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20414190A
Other languages
Japanese (ja)
Inventor
Eizo Miyauchi
宮内 榮三
Shigeru Okamura
茂 岡村
Norishige Hisatsugu
徳重 久継
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20414190A priority Critical patent/JPH0488181A/en
Publication of JPH0488181A publication Critical patent/JPH0488181A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To remove adsorbed contaminants from the surface in the synchrotron orbital radiant light irradiated region by irradiating a metal with synchrotron orbital radiant light in an atmosphere containing a gas liable to combine with carbon or in vacuum. CONSTITUTION:A metal is placed in an atmosphere containing a gas liable to combine with carbon, such as gases of oxygen, hydrogen, chlorine, etc., or in vacuum, and this metal is irradiated with synchrotron orbital radiant light. At this time, the above metal can be irradiated with the synchrotron orbital radiant light in the state reflected by a metallic film mirror. As a result, contaminants, such as carbon, adsorbed by the metallic surface in the part to which polishing cannot be applied are excited by the high energy radiant light, released from the surface, and removed. Further, if the temp. of the above metal is regulated to a temp. not lower than ordinary temp., e.g., about 200-300 deg.C, the energy of the contaminants is increased and the removal of the contaminant is facilitated, and moreover, if the metal is previously polished, the removal of the contaminants is facilitated to a greater extent because the amount of the contaminants on the surface is remarkably reduced.

Description

【発明の詳細な説明】 〔概 要〕 金属表面処理方法に関し、 複合電界研磨を施しにくい真空機構部品の表面の汚染物
を除去することを目的とし、 炭素と結合し易いガスを含む雰囲気中又は真空中に金属
を置き、該金属にシンクロトロン軌道放射光を照射し、
該照射HNi表面の吸着汚染物を除去することを含み構
成する。
[Detailed Description of the Invention] [Summary] Regarding a metal surface treatment method, the purpose is to remove contaminants on the surface of vacuum mechanism parts that are difficult to apply composite electric field polishing to, in an atmosphere containing a gas that easily combines with carbon, or Place a metal in a vacuum, irradiate the metal with synchrotron orbital synchrotron radiation,
The method includes removing adsorbed contaminants on the irradiated HNi surface.

〔産業上の利用分野〕[Industrial application field]

本発明は、金属表面処理方法に関し、より詳しくは、金
属表面の汚染物を除去する金属表面処理方法に関する。
The present invention relates to a metal surface treatment method, and more particularly to a metal surface treatment method for removing contaminants from a metal surface.

〔従来の技術〕[Conventional technology]

半導体素子構造の極薄化と極微細化に伴い、半導体装置
を作成する工程において、汚染の無い超クリーンな雰囲
気が望まれている。
BACKGROUND OF THE INVENTION As semiconductor device structures become ultra-thin and ultra-fine, an ultra-clean atmosphere without contamination is desired in the process of manufacturing semiconductor devices.

これを実現するためには、膜の成長、加工等に使用され
る真空チャンバの内部やその周辺の機構部品を可能な限
り清浄にする必要がある。特に金属表面から放出される
炭素系のガスによる汚染が問題となり、これを解決する
ために種々の手法が採られている。
In order to achieve this, it is necessary to keep the inside of the vacuum chamber used for film growth, processing, etc. and the mechanical parts around it as clean as possible. In particular, contamination due to carbon-based gas released from metal surfaces is a problem, and various methods have been adopted to solve this problem.

その一つとして、真空チャンバ等の素材であるステンレ
ス板材の研磨技術に工夫が凝らされ、その代表的なもの
として、電界研磨と精密機械研磨を一体化した複合電界
研磨が提案されており、この方法によって処理したチャ
ンバを用いると、汚染ガスの放出を抑制してその内部圧
力を1×10日Torr以上の真空度にできることが確
かめられている。
As one of these efforts, improvements have been made to the polishing technology for stainless steel plates, which are the materials used in vacuum chambers, etc., and a typical example is composite electropolishing, which combines electrolytic polishing and precision mechanical polishing. It has been confirmed that when a chamber treated by this method is used, the release of contaminant gases can be suppressed and the internal pressure can be brought to a vacuum level of 1×10 days Torr or higher.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、チャンバに接続される金属製のガス導入パイプ
やベローの内部、あるいは、ベアリング、その他様々な
IR溝のWle部等についてこのような研磨技術を適用
することは容易でなく、これらの部品から汚染ガスが放
出されるためにチャンバ内をさらに高真空にすることが
難しくなるといった問題がある。
However, it is not easy to apply such polishing technology to the inside of metal gas introduction pipes and bellows connected to the chamber, bearings, and other various IR groove Wle parts, and it is difficult to apply these polishing techniques to There is a problem in that it becomes difficult to create a higher vacuum in the chamber due to the release of contaminant gas.

本発明はこのような問題に鑑みてなされたものであって
、複合電界研磨を施しにくい真空機構部品の表面に含ま
れる汚染物を除去することができる金属の表面処理方法
を提供することを目的とする。
The present invention has been made in view of these problems, and an object of the present invention is to provide a metal surface treatment method that can remove contaminants contained in the surfaces of vacuum mechanism parts that are difficult to apply complex electric field polishing to. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

上記した課題は、炭素と結合し易いガスを含む雰囲気中
又は真空中に金属を置き、該金属にシンクロトロン軌道
放射光を照射し、該照射領域の表面に吸着した汚染物を
除去することを特徴とする金属表面処理方法、 または、炭素と結合し易いガスを含む雰囲気中又は真空
中に金属を置き、シンクロトロン軌道放射光を金属膜鏡
に反射させて前記金属に照射し、該照射部分の表面に吸
着した汚染物を除去することを特徴とする金属表面処理
方法によって達成する。
The above-mentioned problem is to place a metal in an atmosphere containing a gas that easily combines with carbon or in a vacuum, irradiate the metal with synchrotron orbital synchrotron radiation, and remove contaminants adsorbed on the surface of the irradiated area. A metal surface treatment method characterized in that the metal is placed in an atmosphere containing a gas that easily combines with carbon or in a vacuum, and the metal is irradiated with synchrotron orbital radiation reflected by a metal film mirror, and the irradiated portion is This is achieved by a metal surface treatment method characterized by removing contaminants adsorbed on the surface of the metal.

〔作 用〕[For production]

本発明によれば、金属にシンクロトロン軌道放射光を照
射するようにしている。
According to the present invention, metal is irradiated with synchrotron orbital synchrotron radiation.

このため、金属部品の研磨を施せない部分や、研磨によ
り汚染物を完全に除去できない部分等にシンクロトロン
軌道放射光を照射すると、金属表面に吸着している炭素
等の汚染物は、高エネルギーの放射光により励起され、
その表面から放出されて除去されることになる。
For this reason, when synchrotron orbital synchrotron radiation is irradiated onto parts of metal parts that cannot be polished or where contaminants cannot be completely removed by polishing, contaminants such as carbon adsorbed on the metal surface are exposed to high energy. is excited by the synchrotron radiation of
It will be released from the surface and removed.

そこで、この処理を真空チャンバ及びその周辺機器の内
面に施セば、減圧状態における真空チャンバ内の汚染ガ
スが低減することになり、その中をさらに高真空にする
ことが可能になる。
Therefore, if this treatment is applied to the inner surface of the vacuum chamber and its peripheral equipment, the amount of contaminant gas inside the vacuum chamber in a reduced pressure state will be reduced, making it possible to create an even higher vacuum inside the vacuum chamber.

また、金属の温度を常温以上にすれば、汚染物のエネル
ギーが高くなって放出され易い状態になるため、シンク
ロトロン軌道放射光による汚染物の除去は容易になり、
さらに、予め金属を研磨しておけば、その表面の汚染物
の量が大幅に減少するために、汚染物の除去はより容易
になる。
In addition, if the temperature of the metal is raised to above room temperature, the energy of the contaminants increases and becomes easier to release, making it easier to remove the contaminants using synchrotron orbital synchrotron radiation.
Furthermore, if the metal is previously polished, the amount of contaminants on its surface is greatly reduced, making contaminant removal easier.

しかも、シンクロトロン軌道放射光の進路を金属膜鏡に
よって変更しているために、放射光を直接照射しにくい
場所、例えばベロー内部や部品のコーナーにその光を照
射することが可能になる。
Furthermore, since the path of the synchrotron orbital synchrotron radiation is changed by the metal film mirror, it becomes possible to irradiate the light to places that are difficult to directly irradiate with the synchrotron radiation, such as the interior of the bellows or the corners of parts.

〔実施例〕〔Example〕

そこで、以下に本発明の詳細を図面に基づいて説明する
Therefore, the details of the present invention will be explained below based on the drawings.

第1図は、本発明の一実施例方法を示す概要図であって
、図中符号1は、真空中に置かれたステンレスよりなる
金属板で、この金属板1には、シンクロトロン放射光発
生装’77 (synchrotron orbita
l radiation(SOR))から発生した高エ
ネルギーの放射光を照射するように構成されている。
FIG. 1 is a schematic diagram showing a method according to an embodiment of the present invention, and reference numeral 1 in the figure is a metal plate made of stainless steel placed in a vacuum. Synchrotron Orbita '77
It is configured to irradiate high-energy synchrotron radiation generated from the radio waves (SOR).

ところで、SOR放射光は、真空紫外からX線にわたる
高エネルギーを有しているため、この放射光を金属板1
に照射すれば、その表面に吸着した炭素等のような脱離
し難い汚染物は励起されて外部に放出することになる。
By the way, since the SOR synchrotron radiation has high energy ranging from vacuum ultraviolet to X-rays, this synchrotron radiation is transmitted to the metal plate 1.
If the surface is irradiated with water, contaminants that are difficult to desorb, such as carbon, adsorbed on the surface will be excited and emitted to the outside.

そして、ステンレス板1に表面処理を施さないもの、機
械的研磨による表面処理を行ったもの、電界研磨を施し
たもの、および複合電界研磨を行ったものについて、2
50℃の温度で10時間以上の加熱処理を行った後に、
超高真空中でSOR放射光を照射し、それぞれの表面か
ら放出した炭素系のガスを質量分析系で測定したところ
、第2図に示すような放射光ドーズ量・ガス放出量特性
が得られた。
Regarding the stainless steel plate 1 without surface treatment, surface treatment by mechanical polishing, electric field polishing, and combined electric field polishing, 2
After heat treatment at a temperature of 50°C for 10 hours or more,
When we irradiated SOR synchrotron radiation in an ultra-high vacuum and measured the carbon-based gas emitted from each surface using a mass spectrometry system, we obtained synchrotron radiation dose and gas release characteristics as shown in Figure 2. Ta.

これによれば、電界研磨や複合電界研磨の処理を行った
ステンレス板1については、加熱処理後、SOR放射光
照射前の状態でその表面から炭素系のガス(C(h、 
Co、CH2等)が放出され汚染源となっていたことが
わかる。また、これらに100mA・h程度のドーズ量
でSOR放射光を照射すると、ステンレス板1の表面か
ら放出される炭素系ガス、水素の放出量が一層近く低減
することが明らかになった。また、機械研磨をおこなっ
た試料についても、SOR放射光を当てて汚染ガスの放
出を同程度低減することができる。
According to this, regarding the stainless steel plate 1 that has been subjected to electropolishing or composite electropolishing, carbon-based gas (C(h,
It can be seen that Co, CH2, etc.) were released and became a source of pollution. Furthermore, it has been revealed that when these are irradiated with SOR synchrotron radiation at a dose of about 100 mA·h, the amount of carbon-based gas and hydrogen emitted from the surface of the stainless steel plate 1 is reduced even more. Furthermore, even for samples that have been mechanically polished, the release of contaminant gases can be reduced to the same extent by applying SOR synchrotron radiation.

したがって、研磨処理と放射光照射処理を併用すること
により理想的な表面処理が可能になることがわかる。
Therefore, it can be seen that ideal surface treatment is possible by using polishing treatment and synchrotron radiation treatment in combination.

さらに、無研磨の試料については、SOR放射光量を多
く照射することによって汚染ガスの放出が少なくなる。
Furthermore, for an unpolished sample, by irradiating it with a large amount of SOR radiation, the emission of contaminant gas is reduced.

なお、上記した実施例では、超高真空中に試料をおいて
SOR放射光照射処理を行ったが、炭素と結合しやすい
ガス、例えば水素、酸素、塩素等のガスに試料を置けば
、放射光により励起された汚染物とそれらのガスとの反
応により汚染物を除去し昌くなる。
In the above example, the sample was placed in an ultra-high vacuum and subjected to SOR synchrotron radiation treatment, but if the sample is placed in a gas that easily bonds with carbon, such as hydrogen, oxygen, chlorine, etc. The reaction of the contaminants excited by the light with these gases removes the contaminants.

また、金属物を常温以上、例えば200〜300℃以上
に加熱した状態でSO’R照射光を照射すると、汚染物
の熱励起や熱拡散との複合作用で、その除去が一層容易
になる。
Further, when the SO'R irradiation light is irradiated to the metal object heated to above room temperature, for example, above 200 to 300° C., the removal of the contaminant becomes easier due to the combined effect of thermal excitation and thermal diffusion of the contaminant.

次に、SOR放射光の照射方法を具体的に説明する。Next, a method of irradiating SOR radiation will be specifically explained.

第3図は、金属管2内にSOR放射光を照射する一例を
示す断面図であって、金属管2の中には、小径の小さな
2つの金属管3.4が束にして設けられている。
FIG. 3 is a cross-sectional view showing an example of irradiating SOR radiation into the metal tube 2. Inside the metal tube 2, two small metal tubes 3.4 with small diameters are installed in a bundle. There is.

そして、小径金属管3.4の内表面の汚染物を除去する
場合には、これらの金属管3.4の軸方向とSOR放射
光ビームの進行方向とを相対的に傾けたり、或いは傾け
ながら金属管を回転させることにより、その放射光を小
径金属管3.4の内側全面に照射することになる。
When removing contaminants from the inner surface of the small-diameter metal tubes 3.4, the axial direction of these metal tubes 3.4 and the traveling direction of the SOR synchrotron radiation beam are relatively tilted, or while being tilted. By rotating the metal tube, the entire inner surface of the small diameter metal tube 3.4 is irradiated with the emitted light.

なお、図中符号5はへロー、7はフランジを示している
In addition, the code|symbol 5 in the figure shows a hero, and 7 shows a flange.

また、第4図は、細い金属管8にSOR放射光を照射す
る一例を示す断面図であって、この金属管8は、研磨を
施し難い1字状の曲がり部9を有している。この曲がり
部9の内側表面に吸着されている汚染物を除去する場合
には、SOR放射光を金属管8内に通してその曲がり部
9にこれを照射し、曲がり部9内表面の汚染物を取り去
ることになる。この場合にも、放射光の進行方向に対し
て細い金属管8を傾けたり、あるいは傾けながら金属管
8を回転させるようにすれば、曲がり部9だけでなくそ
の内面全体にSOR放射光を照射することができる。
Further, FIG. 4 is a cross-sectional view showing an example of irradiating SOR radiation onto a thin metal tube 8, and this metal tube 8 has a single-shaped bent portion 9 that is difficult to polish. In order to remove contaminants adsorbed on the inner surface of the bent portion 9, SOR radiation is passed through the metal tube 8 and irradiated onto the bent portion 9, so that the contaminants on the inner surface of the bent portion 9 are removed. will be removed. In this case as well, if the thin metal tube 8 is tilted with respect to the direction of propagation of the synchrotron radiation, or if the metal tube 8 is rotated while being tilted, the SOR synchrotron radiation is irradiated not only on the bent portion 9 but also on its entire inner surface. can do.

さらに第5図は、内部に凹凸を有する金属製ベローにS
OR放射光を照射する一例を示す断面図であって、その
ベロー10の内部には、1面、又は複数の反射面11を
有する金属膜鏡12が挿入されており、ベローIOを金
属膜鏡12の回りに回転させたり、前後左右に移動させ
るようにしている。なお、符号13は、金属膜鏡12の
支持杆を示している。
Furthermore, Fig. 5 shows that the S
FIG. 3 is a cross-sectional view showing an example of irradiating OR synchrotron radiation, in which a metal film mirror 12 having one or more reflective surfaces 11 is inserted inside the bellows 10, and the bellows IO is connected to the metal film mirror 12. It can be rotated around 12 and moved forward, backward, left and right. In addition, the code|symbol 13 has shown the support rod of the metal film mirror 12.

これによれば、ベロー10の長さ方向に沿って進行した
SOR放射光を金属膜鏡12に反射させて進路を変え、
ベローIOの斜面やコーナーに照射することが可能にな
る。
According to this, the SOR radiation light traveling along the length direction of the bellows 10 is reflected by the metal film mirror 12 to change its course.
It becomes possible to irradiate the slopes and corners of bellows IO.

第6図は、結晶加工装置のチャンバ及びその周辺部品を
示す概要図であって、チャンバ15、ベロー16、ガス
導入管17等の内部及び試料台1Bの表面は、上記した
方法によってSOR照射処理が行われ、200°C11
0時間の焼き出しがされたものである。
FIG. 6 is a schematic diagram showing the chamber and peripheral parts of the crystal processing apparatus, and the interior of the chamber 15, bellows 16, gas introduction tube 17, etc. and the surface of the sample stage 1B are subjected to SOR irradiation treatment by the method described above. was carried out at 200°C11
It was baked out for 0 hours.

このような装置を用いてチャンバ15内を減圧したとこ
ろ、5 X I O−” Torr以上の真空度を維持
でき、しかも、質量分析計19によってガスの種類を検
出したところ、CO□、co、cL等の信号のピークが
水素の1/l OO以下、または全く存在しないことが
確認された。
When the pressure inside the chamber 15 was reduced using such a device, it was possible to maintain a degree of vacuum of 5 X I O-'' Torr or more, and when the type of gas was detected using the mass spectrometer 19, CO□, co, It was confirmed that signal peaks such as cL were less than 1/l OO of hydrogen or did not exist at all.

さらに、この装置により加工する試料20を試料台18
に取り付け、チャンバ15の窓14を通してその結晶表
面にSOR放射光を照射したところ、その周囲の雰囲気
中に汚染ガスが全くない状態になっているため、その結
晶表面から炭素系物、酸化物が効率良く除去され、しか
も、汚染ガスのない状態が長時間にわたり継続すること
がわかった。
Furthermore, the sample 20 to be processed by this device is placed on the sample stage 18.
When the crystal surface was irradiated with SOR radiation through the window 14 of the chamber 15, carbon-based substances and oxides were removed from the crystal surface because there was no contaminant gas in the surrounding atmosphere. It was found that the gas was removed efficiently and that the state without contaminant gas continued for a long period of time.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、金属にシンクロトロ
ン軌道放射光を照射するようにしたので、金属部品の研
磨を施せない部分や、研磨により汚染物を完全に除去で
きない部分等にシンクロトロン軌道放射光を照射し、そ
の金属表面に咬着している炭素等の汚染物を高エネルギ
ーで励起し、その表面から放出させてこれを除去するこ
とができ、真空チャンバ等の内部表面をクリーンにする
ことが可能になる。
As described above, according to the present invention, metal is irradiated with synchrotron orbital synchrotron radiation, so synchrotron radiation is applied to parts of metal parts that cannot be polished or contaminants cannot be completely removed by polishing. By irradiating orbital synchrotron radiation, contaminants such as carbon stuck to the metal surface can be excited with high energy and emitted from the surface to be removed, cleaning the internal surfaces of vacuum chambers, etc. It becomes possible to

また、金属の温度を常温以上にすれば、汚染物のエネル
ギーが高くなって放出され易い状態になり、シンクロト
ロン軌道放射光による汚染物の除去は容易になり、さら
に、予め金属を研磨しておけば、その表面の汚染物の量
が大幅に減少するために、汚染物の除去はより容易にな
る。
In addition, if the temperature of the metal is raised to above room temperature, the energy of the contaminants will be high and will be easily released, making it easier to remove the contaminants using synchrotron orbital synchrotron radiation. This greatly reduces the amount of contaminants on the surface, making contaminant removal easier.

しかも、シンクロトロン軌道放射光の進路を金属膜鏡に
よって変更するようにしたので、放射光を直接照射しに
くい場所、例えばベロー内部や部品のコーナーにその光
を照射することが可能になる。
Furthermore, since the path of the synchrotron orbital synchrotron radiation is changed by the metal film mirror, it becomes possible to irradiate the light into places that are difficult to directly irradiate with the synchrotron radiation, such as inside the bellows or at the corners of parts.

【図面の簡単な説明】 第1図は、本発明の一実施例を示す概要図、第2図は、
放射光照射によるステンレス表面から放出される炭素系
ガス及び水素ガスの放出量の変化を示す特性図、 第3図は、本発明のSOR放射光の第1の照射例を示す
断面図、 第4図は、本発明のSOR放射光の第2の照射例を示す
断面図、 第5図は、本発明のSOR放射光の第3の照射例を示す
断面図、 第6図は、本発明の処理を行った結晶加工装置の一例を
示す概要図である。 (符号の説明) 1・・・ステンレス板、 2.3.4・・・金属管、 7・・・フランジ、 8・・・金属管、 9・・・曲がり部、 5、IO・・・ベロー 11・・・反射面、 12・・・金属膜鏡、 15・・・チャンバ、 16・・・ベロー 17・・・ガス導入管、 18・・・試料台、 19・・・質量分析計、 20・・・試料。 出 願 人  富士通株式会社
[Brief Description of the Drawings] Fig. 1 is a schematic diagram showing an embodiment of the present invention, and Fig. 2 is a schematic diagram showing an embodiment of the present invention.
A characteristic diagram showing changes in the amount of carbon-based gas and hydrogen gas released from the stainless steel surface due to synchrotron radiation irradiation. FIG. 5 is a cross-sectional view showing a second example of irradiation with SOR synchrotron radiation of the present invention. FIG. 6 is a cross-sectional view showing a third example of irradiation with SOR synchrotron radiation of the present invention. FIG. 2 is a schematic diagram showing an example of a crystal processing apparatus that performed the processing. (Explanation of symbols) 1... Stainless steel plate, 2.3.4... Metal tube, 7... Flange, 8... Metal tube, 9... Bent part, 5, IO... Bellow DESCRIPTION OF SYMBOLS 11... Reflection surface, 12... Metal film mirror, 15... Chamber, 16... Bellows 17... Gas introduction tube, 18... Sample stand, 19... Mass spectrometer, 20 ···sample. Applicant Fujitsu Limited

Claims (4)

【特許請求の範囲】[Claims] (1)炭素と結合し易いガスを含む雰囲気中又は真空中
に金属を置き、該金属にシンクロトロン軌道放射光を照
射し、該照射領域の表面に吸着した汚染物を除去するこ
とを特徴とする金属表面処理方法。
(1) A metal is placed in an atmosphere containing a gas that easily combines with carbon or in a vacuum, and the metal is irradiated with synchrotron orbital synchrotron radiation to remove contaminants adsorbed on the surface of the irradiated area. Metal surface treatment method.
(2)前記金属が常温以上の温度に加熱されていること
を特徴とする請求項1の金属表面処理方法。
(2) The metal surface treatment method according to claim 1, wherein the metal is heated to a temperature higher than room temperature.
(3)前記金属のシンクロトロン軌道放射光の照射面が
研磨されていることを特徴とする請求項1の金属表面処
理方法。
(3) The metal surface treatment method according to claim 1, wherein the surface of the metal irradiated with synchrotron orbital radiation is polished.
(4)炭素と結合し易いガスを含む雰囲気中又は真空中
に金属を置き、シンクロトロン軌道放射光を金属膜鏡に
反射させて前記金属に照射し、該照射部分の表面に吸着
した汚染物を除去することを特徴とする金属表面処理方
法。
(4) A metal is placed in an atmosphere containing a gas that easily combines with carbon or in a vacuum, and synchrotron orbital synchrotron radiation is reflected by a metal film mirror and irradiated onto the metal, and contaminants are adsorbed on the surface of the irradiated part. A metal surface treatment method characterized by removing.
JP20414190A 1990-07-31 1990-07-31 Surface treatment for metal Pending JPH0488181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20414190A JPH0488181A (en) 1990-07-31 1990-07-31 Surface treatment for metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20414190A JPH0488181A (en) 1990-07-31 1990-07-31 Surface treatment for metal

Publications (1)

Publication Number Publication Date
JPH0488181A true JPH0488181A (en) 1992-03-23

Family

ID=16485517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20414190A Pending JPH0488181A (en) 1990-07-31 1990-07-31 Surface treatment for metal

Country Status (1)

Country Link
JP (1) JPH0488181A (en)

Similar Documents

Publication Publication Date Title
JP3253675B2 (en) Charged beam irradiation apparatus and method
US5178721A (en) Process and apparatus for dry cleaning by photo-excited radicals
JPH0643298A (en) Light transmission type vacuum separation window and soft x-ray transmission window
JPH0488181A (en) Surface treatment for metal
JPS63224233A (en) Surface treatment
JP4550959B2 (en) Thin film production equipment
Ohashi et al. Development of contamination-free x-ray optics for next-generation light sources
JP2007260537A (en) Photochemical treatment device
JPS5819479A (en) Method and device for etching
JP2003226955A (en) Method and apparatus for modification surface
JPH11336662A (en) Vacuum vessel and method for evacuating therefrom
JP3294242B2 (en) Charged beam irradiation method
JP2004186600A (en) Optical characteristics recovery method of optical system and its device
JPH0417673A (en) Sputtering apparatus
JPS6059643A (en) Method and device for cleaning inner surface of sample chamber of electron microscope
JPS6154632A (en) Formation of insulating film
JP3066232B2 (en) Semiconductor wafer heat treatment equipment
JP3214154B2 (en) Cleaning method using dielectric barrier discharge lamp
JP2985321B2 (en) Mask pattern forming method
JP2587522B2 (en) Generation method of extremely high vacuum environment
JPH0644553B2 (en) Optical vapor deposition method and optical vapor deposition apparatus
JPH03218628A (en) Method and device for cleaning surface of semiconductor substrate
JPS6191930A (en) Cleaning method of semiconductor substrate
JP2002252212A (en) Surface processing method, and method and apparatus for manufacturing photovoltaic power generator
JPH0430519A (en) Treating apparatus of surface of substrate