JPH048758B2 - - Google Patents

Info

Publication number
JPH048758B2
JPH048758B2 JP61149547A JP14954786A JPH048758B2 JP H048758 B2 JPH048758 B2 JP H048758B2 JP 61149547 A JP61149547 A JP 61149547A JP 14954786 A JP14954786 A JP 14954786A JP H048758 B2 JPH048758 B2 JP H048758B2
Authority
JP
Japan
Prior art keywords
spacer
fuel
zircaloy
zirconium
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61149547A
Other languages
Japanese (ja)
Other versions
JPS636495A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61149547A priority Critical patent/JPS636495A/en
Publication of JPS636495A publication Critical patent/JPS636495A/en
Publication of JPH048758B2 publication Critical patent/JPH048758B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料スペーサ及び燃料集合体に係
り、特に沸騰水型原子炉に適用するのに好適な燃
料スペーサ及び燃料集合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel spacer and a fuel assembly, and particularly to a fuel spacer and a fuel assembly suitable for application to a boiling water nuclear reactor.

〔従来の技術〕[Conventional technology]

従来、燃料集合体の燃料スペーサには、錫1.20
〜1.70重量%、鉄0.18〜0.24重量%、クロム0.07
〜0.13重量%を含有するジルコニウム基合金(ジ
ルカロイ−4)が用いられている。
Traditionally, fuel spacers in fuel assemblies contain tin 1.20
~1.70 wt%, iron 0.18-0.24 wt%, chromium 0.07
A zirconium-based alloy (Zircaloy-4) containing ~0.13% by weight has been used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

近年、原子力発電の経済性向上のニーズに対応
して、燃料サイクル費の低減すなわち長期サイク
ルへの対応を図るために高燃焼度燃料集合体の必
要性が高まつている。燃料集合体の高燃焼度化に
際しては、炉心の安定性の確保と並んで燃料集合
体構成部材の性能向上、特に燃料スペーサ材料の
性能向上が重要な課題である。
In recent years, in response to the need to improve the economic efficiency of nuclear power generation, the need for high burnup fuel assemblies has increased in order to reduce fuel cycle costs, that is, to support long cycles. When increasing the burnup of a fuel assembly, in addition to ensuring the stability of the core, improving the performance of the fuel assembly components, especially the performance of fuel spacer materials, is an important issue.

発明者等は、上記の要求に対して現状のジルコ
ニウム基合金の特性を検討した結果、現状のジル
コニウム基合金にて構成した燃料スペーサを高燃
焼度燃料集合体に適用する際の問題点を明らかに
した。
As a result of examining the characteristics of current zirconium-based alloys in response to the above requirements, the inventors clarified the problems when applying fuel spacers made of current zirconium-based alloys to high burnup fuel assemblies. I made it.

すなわち、ジルカロイ−4は、原子炉内の使用
条件下で優れた耐食性及び耐水素吸収性を示す。
しかし、ジルカロイ−4は、原子炉炉内での使用
機関中には炉水と反応し、使用期間の増大ととも
に表面に酸化物が生成し、母材の減肉が進行する
ことがわかつた。一方、ジルカロイ−4の母材
は、酸化で発生する水素を取り込むため、使用期
間の増大とともに水素脆化が進行することも判明
した。燃料スペーサの使用限界は上記腐食減肉に
よる強度低下及び水素脆化による延性・強度低下
により決定されているが、特に水素脆化による特
性劣化が問題となつている。
That is, Zircaloy-4 exhibits excellent corrosion resistance and hydrogen absorption resistance under the conditions of use in a nuclear reactor.
However, it has been found that Zircaloy-4 reacts with reactor water during use in a nuclear reactor, and as the period of use increases, oxides are generated on the surface and the thickness of the base metal progresses. On the other hand, it was also found that the base material of Zircaloy-4 takes in hydrogen generated by oxidation, so hydrogen embrittlement progresses as the period of use increases. The usage limits of fuel spacers are determined by the strength reduction due to corrosion and the reduction in ductility and strength due to hydrogen embrittlement, but property deterioration due to hydrogen embrittlement is particularly problematic.

従つて、燃料集合体の高燃焼度化に際しては、
より耐食性、耐水素吸収性の優れた素材を燃料ス
ペーサに使用する必要がある。又、燃料スペーサ
は、素材となる0.5〜1mm程度のジルカロイ−4
板等に高加工度の塑性加工及びデインプル形成加
工等を施し、これらの加工を施したジルカロイ−
4板等を溶接により組立てた構造である。このた
め、燃料スペーサを構成するジルコニウム基合金
は、前述の特性と併せて良好な塑性加工性を有し
ていることが必要である。
Therefore, when increasing the burnup of a fuel assembly,
It is necessary to use a material with better corrosion resistance and hydrogen absorption resistance for the fuel spacer. Also, the fuel spacer is made of Zircaloy-4 with a thickness of about 0.5 to 1 mm.
Zircaloy is produced by applying high-density plastic processing and dimple forming processing to plates, etc.
The structure consists of four plates assembled by welding. Therefore, the zirconium-based alloy constituting the fuel spacer needs to have good plastic workability in addition to the above-mentioned properties.

ジルコニウム基合金の代表例としては、前述の
ジルカロイ−4金の他にジルカロイ−2(錫1.20
〜1.70重量%、鉄0.07〜0.20重量%、クロム0.05
〜0.15重量%、ニツケル0.03〜0.08重量%を含ん
だジルコニウム基合金)が知られている。ジルカ
ロイ−2は、燃料棒の被覆管、端栓等に使用され
ており、ジルカロイ−4と同様優れた耐食性を示
すものの、耐水素吸収性はジルカロイ−4に比較
し若干劣つている。
Typical examples of zirconium-based alloys include Zircaloy-2 (tin 1.20
~1.70 wt%, iron 0.07-0.20 wt%, chromium 0.05
Zirconium-based alloys containing ~0.15% by weight and 0.03-0.08% by weight of nickel are known. Zircaloy-2 is used for fuel rod cladding tubes, end plugs, etc., and although it exhibits excellent corrosion resistance similar to Zircaloy-4, its hydrogen absorption resistance is slightly inferior to that of Zircaloy-4.

ジルコニウム基合金の耐食性向上方法として
は、α+β相温度領域からの焼入処理が特開昭53
−73408号公報により公知である。特開昭53−
73408号公報は最終製品段階でジルコニウム基合
金に焼入処理を施して耐食性を向上させるもの
で、焼入処理後は冷間圧延等肉厚を減少させるこ
とを目的とした加工は加えられない。このように
最終製品段階で焼入処理を施されたものに、強加
工度の塑性加工を施すと、材料には微細な割れが
生じ場合によつては破断に至るので、スペーサ用
板材等の耐食性向上手法として好ましくない。
又、スペーサ用板材は0.5〜1mm程度の薄板であ
るため、デインプル加工等の加工の後に焼入処理
を施すと製品に変形を生じる。以上の様に、特開
昭53−73480号公報は、スペーサ材の耐食性向上
には適用できない。
As a method for improving the corrosion resistance of zirconium-based alloys, quenching treatment from the α+β phase temperature region is disclosed in Japanese Patent Application Laid-open No. 53
It is known from the publication No.-73408. Japanese Unexamined Patent Publication 1973-
Publication No. 73408 improves corrosion resistance by subjecting the zirconium-based alloy to quenching at the final product stage, and after quenching, no processing such as cold rolling for the purpose of reducing wall thickness is applied. If hard plastic working is applied to a material that has been quenched in the final product stage, microscopic cracks may occur in the material, which may even lead to breakage. This is not preferred as a method for improving corrosion resistance.
Further, since the spacer plate material is a thin plate of about 0.5 to 1 mm, the product will be deformed if it is hardened after dimple processing or other processing. As described above, JP-A-53-73480 cannot be applied to improving the corrosion resistance of spacer materials.

燃料スペーサは、燃料集合体が地震時及び取扱
時に受ける繰返し荷重に対し充分な強度を有する
板厚及び構造である必要がある。又、炉水に常に
接しているため、燃料スペーサは、耐炉水環境上
充分な性能を持つ材料で構成しなければならな
い。一方、燃料スペーサ構成部材には、ジルカロ
イ−2と同等の耐食性を有し、かつ、ジルカロイ
−2より耐水素吸収性の優れたジルカロイ−4が
使用されているが、燃料集合体の設計寿命(使用
限界年数)は当該材料の腐食減肉及び水素吸収に
よる脆化により決定されているのが現状である。
従つて、高燃焼度化達成には、燃料スペーサ構成
部材の腐食減肉量低減すなわち耐食性の向上並び
に水素脆化の抑制すなわち水素吸収量の低減が必
要である。設計者らは、高燃焼度達成に不可欠な
本要求に対応すべく、水素吸収率の小さなジルカ
ロイ−4の塑性加工性を確保しつつ耐食性を向上
させる製造方法の研究、スペーサ構造の見直し等
を推進しているが、解決手段が得られていないの
が現状である。
The fuel spacer needs to have a thickness and structure that have sufficient strength against repeated loads that the fuel assembly receives during earthquakes and handling. In addition, since the fuel spacer is constantly in contact with reactor water, it must be made of a material that has sufficient performance in terms of resistance to reactor water. On the other hand, Zircaloy-4, which has corrosion resistance equivalent to Zircaloy-2 and has better hydrogen absorption resistance than Zircaloy-2, is used for fuel spacer components, but the design life of the fuel assembly Currently, the service life limit (years) is determined by the material's embrittlement due to corrosion thinning and hydrogen absorption.
Therefore, in order to achieve a high burnup, it is necessary to reduce the amount of corrosion thinning of the fuel spacer constituent members, that is, to improve the corrosion resistance, and to suppress hydrogen embrittlement, that is, to reduce the amount of hydrogen absorption. In order to meet this requirement, which is essential for achieving high burnup, designers conducted research on manufacturing methods that improve corrosion resistance while ensuring the plastic workability of Zircaloy-4, which has a low hydrogen absorption rate, and reviewed the spacer structure. Although progress is being made, the current situation is that a solution has not been found.

前述の従来技術は、耐食性の向上方法の説明に
とどまつており、水素吸収量の低減については配
慮がされておらず、高燃焼度燃料用スペーサ材料
への適用には問題があつた。
The above-mentioned conventional technology only explains a method for improving corrosion resistance, and does not consider reducing the amount of hydrogen absorption, and has problems in application to spacer materials for high burnup fuel.

本発明の目的は、耐食性に優れ、水素吸収量が
少なく、かつ塑性加工性の優れた燃料スペーサを
提供することにある。
An object of the present invention is to provide a fuel spacer with excellent corrosion resistance, low hydrogen absorption, and excellent plastic workability.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、燃料スペーサを、最終熱間圧延後
にα+β相又はβ相温度領域からの焼入処理が施
され、さらに焼入処理後複数回の冷間圧延と複数
回の焼なまし処理とが施されたジルカロイ−2で
構成することにより達成される。
The above purpose is that the fuel spacer is subjected to quenching treatment from the α+β phase or β phase temperature range after the final hot rolling, and is further subjected to multiple cold rolling treatments and multiple times of annealing treatment after the quenching treatment. This is accomplished by constructing the coated Zircaloy-2.

〔作用〕[Effect]

従来、ジルコニウム基合金の耐食性は焼入処理
により向上すると考えられていたが、本発明は、
焼入処理後複数回の冷間圧延及び複数回の焼なま
しを施す場合、合金組成の違いによつては耐食性
の改善効果の劣化が著しいという新規な見解に基
づくものである。
Conventionally, it was thought that the corrosion resistance of zirconium-based alloys could be improved by quenching, but the present invention
This is based on the new idea that when cold rolling is performed multiple times and annealing is performed multiple times after quenching, the effect of improving corrosion resistance deteriorates significantly depending on the difference in alloy composition.

第8図に、ジルカロイ−2とジルカロイ−4の
水素吸収率を比較して示す。本データは、同一製
造履歴の試料を腐食環境にさらし、同程度の腐食
増量(mg/dm2)を呈した試料の水素含有量を不
活性ガス融解熱伝導度法により測定し、酸化によ
り発生した水素量に占める割合を比較したもので
ある。第8図から明らかなように、酸化により発
生した全水素量に対する母材吸収水素量の割合す
なわち水素収率はジルカロイ−2に比べジルカロ
イ−4の方が小さく、その相対値は、ジルカロイ
−4が1に対しジルカロイ−2は1.7となつてい
る。燃料スペーサ材としてジルカロイ−4が従来
より使用されてきた理由は、この特性によるもの
である。従つて、高燃焼度燃料集合体用の燃料ス
ペーサ板材及び管材としては、焼入処理を施しそ
の後複数回の冷間圧延と複数回の焼なましを施し
た材料が有力候補と考えられていた。
FIG. 8 shows a comparison of the hydrogen absorption rates of Zircaloy-2 and Zircaloy-4. This data was obtained by exposing samples with the same manufacturing history to a corrosive environment and measuring the hydrogen content of the samples that exhibited the same degree of corrosion increase (mg/dm 2 ) using the inert gas fusion thermal conductivity method. This is a comparison of the proportion of hydrogen in the total amount of hydrogen. As is clear from Figure 8, the ratio of the amount of hydrogen absorbed in the base material to the total amount of hydrogen generated by oxidation, that is, the hydrogen yield, is smaller in Zircaloy-4 than in Zircaloy-2, and the relative value is is 1, whereas Zircaloy-2 is 1.7. This property is why Zircaloy-4 has been used conventionally as a fuel spacer material. Therefore, materials that have been quenched, then cold-rolled multiple times and annealed multiple times were considered to be the most promising candidates for fuel spacer plates and tube materials for high-burnup fuel assemblies. .

第9図に製造履歴の異なるジルカロイ試験材
(板材)の腐食試験結果を示す。第10図に各種
試験材の製造履歴を示す。ジルカロイ試験材A
は、β相温度領域からの焼入処理後に700℃にて
熱間圧延を施し、その後700℃の焼なましを施し、
さらに加工度40%の冷間圧延と600℃の焼なまし
とを繰返し施して製造された。ジルカロイ試験材
Bは、熱間圧延後にα+β焼入処理を施して製造
したものであり、ジルカロイ試験材Cは、最終焼
鈍材にα+β焼入処理を施したものである。焼入
処理は、目標焼入温度に5秒程度保持した後水冷
して施した。冷却速度は100℃/sec以上であつ
た。
FIG. 9 shows the corrosion test results of Zircaloy test materials (plate materials) with different manufacturing histories. Figure 10 shows the manufacturing history of various test materials. Zircaloy test material A
is hot rolled at 700℃ after quenching from the β phase temperature region, then annealed at 700℃,
Furthermore, it was manufactured by repeatedly cold rolling with a working degree of 40% and annealing at 600°C. Zircaloy test material B was produced by hot rolling and then α+β quenching, and Zircaloy test material C was produced by subjecting the final annealed material to α+β quenching. The quenching treatment was performed by maintaining the target quenching temperature for about 5 seconds and then cooling with water. The cooling rate was 100°C/sec or more.

製造工程Cの場合、ジルカロイ−2、ジルカロ
イ−4ともに「410°×8時間、引続き510℃×16
時間」なる腐食条件下で優れた耐食性を示し、そ
の腐食増量は50mg/dm2程度であつた。同程度の
腐食増量すなわち発生水素量であるから、第8図
の水素吸収率の大きいジルカロイ−2の方が、吸
収する水素量は多く、従つて脆化の進行も早い。
塑性加工性が良好であればスペーサ用板材とし
て、上記製造工程Cにより製造されたジルカロイ
−4が最適となるが、本工程で製造された板材は
塑性加工性が劣化しておりスペーサ用板材として
使用するのは問題がある。
In the case of manufacturing process C, both Zircaloy-2 and Zircaloy-4 were heated at 410° x 8 hours, followed by 510°C x 16
It exhibited excellent corrosion resistance under corrosion conditions of 500 mL, and its corrosion weight increase was approximately 50 mg/dm 2 . Since the increase in corrosion weight, that is, the amount of hydrogen generated, is the same, Zircaloy-2, which has a higher hydrogen absorption rate as shown in FIG. 8, absorbs a larger amount of hydrogen, and therefore embrittlement progresses faster.
If the plastic workability is good, Zircaloy-4 manufactured by the above production process C is optimal as a plate material for spacers, but the plate material manufactured by this process has deteriorated plastic workability and cannot be used as a plate material for spacers. There are problems in using it.

塑性加工性という観点からは、製造工程A又は
Cで製造された板材が所望の特性を満足する。し
かし、ジルカロイ−4の場合、ジルカロイ−2に
比べ焼入処理後の熱間圧延、冷間圧延、焼なまし
等の工程により耐食性改善効果は著しく低下する
という新しい知見を得た。ジルカロイ−4の場合
製造工程Aの板材は腐食増量1000mg/dm2以上、
Bの板材は200mg/dm2程度、Cの板材は50mg/
dm2程度である。これに対しジルカロイ−2で
は、製造工程Aの板材が100mg/dm2程度、製造
工程Bが50mg/dm2程度、製造工程Cが50mg/d
m2程度となつている。特に製造工程Bと製造工程
Cとはほぼ同等である。本発明は、上記新規な知
見と第8図に示す水素吸収特性により達成され
る。すなわち、製造工程Bで比較した場合、ジル
カロイ−4とジルカロイ−2の水素吸収量の比
は、それぞれの腐食増量と水素吸収率との積の比
に等しく、ジルカロイ−4:ジルカロイ−2=
200mg×:50mg×1.7≒2:1となる(第11図)。
従つて、ジルカロイ−2の方がジルカロイ−4に
比べ腐食減肉量が小さくかつ水素吸収量が小さい
(水素脆化の程度が小さい)という結果が得られ
る。本効果は板材に限らず管材についても同様で
ある。以上より、耐食性を改善したジルカロイ−
2材は、炉内使用条件下でもスペーサ構成部材と
して優れた性能を発揮するのは明らかである。
From the viewpoint of plastic workability, the plate material manufactured in manufacturing process A or C satisfies the desired characteristics. However, new knowledge has been obtained that in the case of Zircaloy-4, the effect of improving corrosion resistance is significantly reduced by processes such as hot rolling, cold rolling, and annealing after quenching treatment, compared to Zircaloy-2. In the case of Zircaloy-4, the plate material in manufacturing process A has a corrosion increase of 1000 mg/dm 2 or more,
The board material of B is about 200mg/dm2, and the material of C is 50mg/dm2.
It is about dm2 . On the other hand, for Zircaloy-2, the plate material in manufacturing process A is about 100mg/ dm2 , the manufacturing process B is about 50mg/ dm2 , and the manufacturing process C is 50mg/dm2.
It is about 2 m2. In particular, manufacturing process B and manufacturing process C are almost equivalent. The present invention is achieved by the above-mentioned novel findings and the hydrogen absorption characteristics shown in FIG. That is, when compared in manufacturing process B, the ratio of the hydrogen absorption amounts of Zircaloy-4 and Zircaloy-2 is equal to the ratio of the product of their respective corrosion weight increases and hydrogen absorption rates, and Zircaloy-4:Zircaloy-2=
200mg×:50mg×1.7≒2:1 (Figure 11).
Therefore, results can be obtained that Zircaloy-2 has a smaller amount of corrosion thinning and a smaller amount of hydrogen absorption (lower degree of hydrogen embrittlement) than Zircaloy-4. This effect is not limited to plate materials but also applies to pipe materials. From the above, Zircaloy with improved corrosion resistance
It is clear that the material No. 2 exhibits excellent performance as a spacer component even under conditions of use in a furnace.

〔実施例〕〔Example〕

以下本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

第1図に沸騰水型原子炉に適用する燃料集合体
を示す。燃料集合体は、燃料棒2及びウオータロ
ツド4を燃料スペーサ3Aで束ねている。燃料ス
ペーサ3Aは、スペーサバンドにスペーサデイン
プル3Bが複数個設けられている。前述したよう
に燃料スペーサ3Aの材料として良好な塑性加工
が要求されるのはこのスペーサデインプル3Bの
加工(プレス加工)の必要性からである。
Figure 1 shows a fuel assembly applied to a boiling water reactor. The fuel assembly includes fuel rods 2 and water rods 4 bound together by fuel spacers 3A. The fuel spacer 3A has a spacer band provided with a plurality of spacer dimples 3B. As mentioned above, the reason why the material of the fuel spacer 3A is required to have good plastic working is because of the necessity of working (pressing) the spacer dimple 3B.

燃料スペーサ3Bは、燃料棒2及びウオータロ
ツド4を束ねる機能があれば良く、構造は第2図
に示すような板材の組合せによる格子構造、第4
図に示すような丸セル構造、第6図に示すように
八角セル構造等種々考えられる。本発明の実施例
である燃料集合体は、上記のいずれの燃料スペー
サを用いてもよい。
The fuel spacer 3B only needs to have the function of bundling the fuel rods 2 and water rods 4, and its structure may be a lattice structure made of a combination of plate materials as shown in FIG.
Various types of structures are possible, such as a round cell structure as shown in the figure and an octagonal cell structure as shown in FIG. The fuel assembly according to the embodiment of the present invention may use any of the above fuel spacers.

実施例 1 第2図に示す格子型の燃料スペーサ3Aは、
X、Y方向に直交して配置されたスペーサバー
8、格子状に組立てられたスペーサバー8の周囲
を取囲んでスペーサバー8の両端が取付けられる
スペーサバンド6、スペーサバー8に設けられる
S字状のスペーサデバイダ7及びスペーサバー8
の交点に設けられるランタンスプリング9から構
成されている。第3図はランタンスプリング9を
示している。スペーサバー8、スペーサバンド6
及びスペーサデイバイダ7によりスペーサ部材が
構成される。ランタンスプリング9は、スペーサ
部材に取付けられる。本実施例に用いるスペーサ
デバイダ7を有するスペーサバー8及びスペーサ
バンド6の薄板材を、ジルカロイ−2を用いて第
10図に示すA,B,Cの各製造工程で製作し
た。ただし、真空アーク溶解直後に鍛造を施した
ので、この点のみ第10図に示す製造工程A,
B,Cと異なつている。なお、燃料スペーサの特
性比較のため、スペーサ部材を前述のジルカロイ
−2ではなくジルカロイ−4を用いたスペーサ部
材も構成した。ジルカロイ−4の薄板材も、前述
のジルカロイ−2薄板材と同じ様に第10図に示
すA,B,Cの各製造工程にて製作した。従つて
薄板材としては、3種の製造工程、2種の材質
故、6種類となる。製造工程Cすなわち最終圧延
済薄板材(板厚約1mm)にα+β相温度領域から
の焼入処理を施して製造した燃料スペーサ用板材
は、材質によらず塑性加工(デインプル加工)で
割れが生じた。製造工程A及びBで製造したスペ
ーサ用板材(板厚約1mm)は、いずれも塑性加工
性(デインプル加工)が良く、燃料スペーサ製造
上全く問題なかつた。(Aには板厚約20mmの状態
でβ相温度領域からの焼入処理を施した。Bには
板厚約10mm程度の状態でα+β相温度領域からの
焼入処理を施した。)上記4種の燃料スペーサす
なわち、製造工程Aで製造したジルカロイ−2薄
板材より成るスペーサ(以降A・Zry−2と略
す)、同工程で材質がジルカロイ−4の燃料スペ
ーサ(以降A・Zry−4と略す)、製造工程Bで
製造したジルカロイ−2薄板材より成る燃料スペ
ーサ(以降B・Zry−2)、同工程でジルカロイ
−4より成る燃料スペーサ(以降B・Zry−4と
略す)より腐食試験用試験片を切出し、前述の腐
食試験に供し、水素吸収量、腐食増量を実測し
た。腐食増量は試験片の腐食試験前後の重量差を
試験片表面積で除してmg/dm2の単位で求めた。
又水素吸収量は不活性ガス融解熱伝導度法により
求めた。本試験により、第9図及び第11図に示
す結果と同等の結果が得られた。すなわち、A・
Zry−2、B・Zry−2の方がA・Zry−4、B・
Zry−4よりも腐食増量が小さく(腐食減肉量が
小さく)かつ水素吸収量が小さいので、高燃焼度
燃料体用スペーサのスペーサ部材としては、A・
Zry−2またはB・Zry−2が好適である。なお、
ランタンスプリングは、インコネルにて作られて
いる。
Example 1 The lattice-type fuel spacer 3A shown in FIG.
A spacer bar 8 arranged perpendicular to the X and Y directions, a spacer band 6 to which both ends of the spacer bar 8 are attached surrounding the spacer bar 8 assembled in a lattice pattern, and an S-shape provided on the spacer bar 8 shaped spacer divider 7 and spacer bar 8
The lantern spring 9 is provided at the intersection of the lantern springs 9 and 9. FIG. 3 shows the lantern spring 9. Spacer bar 8, spacer band 6
The spacer divider 7 constitutes a spacer member. Lantern spring 9 is attached to the spacer member. The thin plate materials of the spacer bar 8 having the spacer divider 7 and the spacer band 6 used in this example were manufactured using Zircaloy-2 through the manufacturing steps A, B, and C shown in FIG. 10. However, since forging was performed immediately after vacuum arc melting, only this point is shown in manufacturing process A shown in Figure 10.
It is different from B and C. In order to compare the characteristics of the fuel spacer, a spacer member using Zircaloy-4 instead of the above-mentioned Zircaloy-2 was also constructed. Zircaloy-4 thin plates were also produced in the same manner as the Zircaloy-2 thin plates described above, using the manufacturing processes A, B, and C shown in FIG. Therefore, there are six types of thin plate materials because there are three types of manufacturing processes and two types of materials. Manufacturing process C, that is, the fuel spacer plate material manufactured by subjecting the final rolled thin plate material (plate thickness approximately 1 mm) to quenching treatment from the α+β phase temperature range, cracks occur during plastic processing (dimple processing) regardless of the material. Ta. The spacer plates (approximately 1 mm in thickness) produced in manufacturing processes A and B both had good plastic workability (dimple processing) and caused no problems in producing fuel spacers. (For A, the plate thickness was approximately 20 mm and the quenching process was performed from the β phase temperature range. For B, the plate thickness was approximately 10 mm and the quenching process was performed from the α+β phase temperature range.) Above There are four types of fuel spacers: a spacer made of Zircaloy-2 thin plate material manufactured in manufacturing process A (hereinafter referred to as A・Zry-2), and a fuel spacer made of Zircaloy-4 made in the same process (hereinafter referred to as A・Zry-4). ), a fuel spacer made of Zircaloy-2 thin plate material manufactured in manufacturing process B (hereinafter referred to as B・Zry-2), and a fuel spacer made of Zircaloy-4 made in the same process (hereinafter referred to as B・Zry-4). A test specimen was cut out and subjected to the corrosion test described above, and the hydrogen absorption amount and corrosion increase were measured. The corrosion weight gain was determined in units of mg/dm 2 by dividing the difference in weight of the test piece before and after the corrosion test by the test piece surface area.
The amount of hydrogen absorbed was determined by the inert gas fusion thermal conductivity method. In this test, results equivalent to those shown in FIGS. 9 and 11 were obtained. That is, A.
Zry-2, B・Zry-2 is better than A・Zry-4, B・
A.
Zry-2 or B.Zry-2 is preferred. In addition,
The lantern spring is made of Inconel.

実施例 2 第4図に示す燃料スペーサ3Cを実施例1と同
様の製造パラメータで製造したところ、板及び管
材の区別なく実施例1と同様の結果が得られた。
燃料スペーサ3Cは、複数の丸セル10を相互に
接続して、外側をスペーサバンド6にて取囲んだ
ものである。丸セル10には、第5図に示すよう
にばね11が設けられる。燃料棒2は、丸セル1
0内に挿入される。スペーサバンド6及び丸セル
10は、スペーサ部材を構成する。ばね11は、
スペーサ部材に取付けられているとも言える。な
お、丸セル10は以下のように製造した。
Example 2 When the fuel spacer 3C shown in FIG. 4 was manufactured using the same manufacturing parameters as in Example 1, the same results as in Example 1 were obtained regardless of the plate and tube materials.
The fuel spacer 3C is formed by interconnecting a plurality of round cells 10 and surrounding the outside with a spacer band 6. The round cell 10 is provided with a spring 11 as shown in FIG. Fuel rod 2 is round cell 1
Inserted within 0. The spacer band 6 and the round cells 10 constitute a spacer member. The spring 11 is
It can also be said that it is attached to the spacer member. Note that the round cell 10 was manufactured as follows.

第10図の製造工程Aでの丸セル製造方: ビレツトと呼ばれる外径約150mm、内径約50mm
長さ約500mmのジルカロイ−2厚肉円筒にβ焼入
処理を施し、その後、600℃〜750℃の温度で熱間
押出しし、外径約64mmのジルカロイ−2素管を製
造した。次に、素管を3回の冷間圧延で外径約10
mm肉厚約1mmの薄肉管にし、これを切断と塑性加
工を施して丸セルを製造した。冷間圧延にはピル
ガー圧延機を用いた。
How to manufacture a round cell in manufacturing process A in Figure 10: The outer diameter of the cell is approximately 150 mm, and the inner diameter is approximately 50 mm, which is called a billet.
A thick-walled Zircaloy-2 cylinder with a length of about 500 mm was subjected to β-quenching treatment, and then hot extruded at a temperature of 600°C to 750°C to produce a Zircaloy-2 blank tube with an outer diameter of about 64 mm. Next, the raw pipe is cold rolled three times to have an outer diameter of approximately 10 mm.
A thin-walled tube with a wall thickness of about 1 mm was made, and this was cut and plastically worked to produce a round cell. A Pilger rolling mill was used for cold rolling.

第10図の製造工程Bでの丸セル製造法: 上記ジルカロイ−2素管全体にα+β焼入処理
を施し、その後3回の冷間圧延で外径約10mm、肉
厚約1mmの薄肉管にし、これを切断し塑性加工を
施して丸セルを製造した。冷間圧延にはピルガー
圧延機を用いた。
Round cell manufacturing method in manufacturing process B in Figure 10: The entire Zircaloy-2 raw tube is subjected to α+β quenching treatment, and then cold-rolled three times to form a thin-walled tube with an outer diameter of approximately 10 mm and a wall thickness of approximately 1 mm. This was cut and subjected to plastic working to produce round cells. A Pilger rolling mill was used for cold rolling.

本実施例の燃料スペーサは、丸セル10を含む
スペーサ部材を第10図の製造工程A,Bのいず
れかにて製造したジルカロイ−2を用いて構成さ
れる。ばね11は、インコネルにて作られてい
る。
In the fuel spacer of this embodiment, the spacer member including the round cells 10 is constructed using Zircaloy-2 manufactured in either manufacturing process A or B in FIG. Spring 11 is made of Inconel.

実施例 3 第6図に示す燃料スペーサ30を実施例1と同
様にパラメータで製造したところ、実施例1と同
様の結果が得られた。八角セル12は実施例2の
丸セル10と同様にジルカロイ−2の最終圧延済
薄板材(製造工程AまたはBに製造)より曲げ加
工により製造した。八角セル12に設けられたば
ね11は、インコネル製である。
Example 3 When the fuel spacer 30 shown in FIG. 6 was manufactured using the same parameters as in Example 1, the same results as in Example 1 were obtained. The octagonal cell 12, like the round cell 10 of Example 2, was manufactured by bending a final rolled sheet material of Zircaloy-2 (manufactured in manufacturing process A or B). The spring 11 provided in the octagonal cell 12 is made of Inconel.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、燃料スペーサの特性向上が達
成されるので、高燃焼度に耐えられる腐食の少な
い燃料スペーサを得ることができる。
According to the present invention, since the characteristics of the fuel spacer are improved, it is possible to obtain a fuel spacer that can withstand high burn-up and has little corrosion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例である燃料集合体の構
造図、第2図は第1図の燃料スペーサの平面図、
第3図は第2図のランタンスプリングの構造図、
第4図及び第6図は燃料スペーサの他の実施例の
平面図、第5図及び第7図は第4図及び第6図の
燃料スペーサに用いられるばね構造図、第8図は
ジルカロイ−2とジルカロイ−4の水素吸収率の
比較を示す説明図、第9図は各種耐食性改善材の
腐食試験結果の比較を示す説明図、第10図は試
験用材料製造工程を説明するフローチヤート、第
11図は、塑性加工性を確保して耐食性を向上し
たジルカロイ−2とジルカロイ−4の水素吸収量
の比較を示す説明図である。 1……上部タイプレート、2……燃料棒、3
A,3C,3D……スペーサ、3B……スペーサ
デインプル、4……ウオータロツド、5……下部
タイプレート、6……スペートバンド、7……ス
ペーサデバイダ、8……スペーサバー、9……ラ
ンタンスプリング、10……丸セル、11……ば
ね、12……八角セル。
FIG. 1 is a structural diagram of a fuel assembly according to an embodiment of the present invention, FIG. 2 is a plan view of the fuel spacer of FIG. 1,
Figure 3 is a structural diagram of the lantern spring in Figure 2.
4 and 6 are plan views of other embodiments of the fuel spacer, FIGS. 5 and 7 are spring structure diagrams used in the fuel spacer of FIGS. 4 and 6, and FIG. 8 is a Zircaloy FIG. 9 is an explanatory diagram showing a comparison of the corrosion test results of various corrosion resistance improving materials. FIG. 10 is a flowchart explaining the manufacturing process of the test material. FIG. 11 is an explanatory diagram showing a comparison of the hydrogen absorption amounts of Zircaloy-2 and Zircaloy-4, which ensure plastic workability and improve corrosion resistance. 1... Upper tie plate, 2... Fuel rod, 3
A, 3C, 3D...Spacer, 3B...Spacer dimple, 4...Water rod, 5...Lower tie plate, 6...Spate band, 7...Spacer divider, 8...Spacer bar, 9...Lantern spring , 10...round cell, 11...spring, 12...octagonal cell.

Claims (1)

【特許請求の範囲】 1 燃料棒が挿入される複数の区画を画定するス
ペーサ部材と、前記スペーサ部材に取付けられて
前記区画内に挿入された前記燃料棒を押圧するス
プリング部材とからなる燃料スペーサにおいて、
前記スペーサ部材が、最終熱間圧延後に(α+
β)相またはβ相温度領域からの焼入処理が施さ
れしかも前記焼入れ処理後に冷間圧延及び焼なま
しが施されたジルコニウム基合金で構成されてお
り、前記ジルコニウム基合金が少なくともニツケ
ルを含んでいることを特徴とする燃料スペーサ。 2 複数の燃料棒と、各々の前記燃料棒の両端部
を保持する上部タイプレート及び下部タイプレー
トと、各々の前記燃料棒の相互間を所定間隔に保
持する燃料スペーサとを有し、前記燃料スペーサ
が、燃料棒が挿入される複数の区画を画定するス
ペーサ部材と、前記スペーサ部材に取付けられて
前記区画内に挿入された前記燃料棒を押圧するス
プリング部材とを有してなる燃料集合体におい
て、前記スペーサ部材が、最終熱間圧延後に(α
+β)相またはβ相温度領域からの焼入処理が施
されしかも前記焼入れ処理後に冷間圧延及び焼な
ましが施されたジルコニウム基合金で構成されて
おり、前記ジルコニウム基合金が少なくともニツ
ケルを含んでいることを特徴とする燃料集合体。
[Scope of Claims] 1. A fuel spacer comprising a spacer member that defines a plurality of compartments into which fuel rods are inserted, and a spring member that is attached to the spacer member and presses the fuel rods inserted into the compartments. In,
The spacer member is (α+
The zirconium-based alloy is made of a zirconium-based alloy that has been subjected to a quenching treatment from the β) phase or the β-phase temperature range, and has been cold-rolled and annealed after the quenching treatment, and the zirconium-based alloy contains at least nickel. A fuel spacer characterized by: 2. The fuel rod has a plurality of fuel rods, an upper tie plate and a lower tie plate that hold both ends of each of the fuel rods, and a fuel spacer that maintains a predetermined distance between each of the fuel rods, A fuel assembly in which the spacer includes a spacer member that defines a plurality of compartments into which fuel rods are inserted, and a spring member that is attached to the spacer member and presses the fuel rod inserted into the compartments. In the spacer member, after the final hot rolling, (α
The zirconium-based alloy is made of a zirconium-based alloy that has been quenched from the +β) phase or β-phase temperature range and that has been cold-rolled and annealed after the quenching treatment, and the zirconium-based alloy contains at least nickel. A fuel assembly characterized by:
JP61149547A 1986-06-27 1986-06-27 Fuel spacer and fuel aggregate Granted JPS636495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61149547A JPS636495A (en) 1986-06-27 1986-06-27 Fuel spacer and fuel aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61149547A JPS636495A (en) 1986-06-27 1986-06-27 Fuel spacer and fuel aggregate

Publications (2)

Publication Number Publication Date
JPS636495A JPS636495A (en) 1988-01-12
JPH048758B2 true JPH048758B2 (en) 1992-02-18

Family

ID=15477537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61149547A Granted JPS636495A (en) 1986-06-27 1986-06-27 Fuel spacer and fuel aggregate

Country Status (1)

Country Link
JP (1) JPS636495A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331793A (en) * 1989-06-29 1991-02-12 Nuclear Fuel Ind Ltd Ring element type spacer

Also Published As

Publication number Publication date
JPS636495A (en) 1988-01-12

Similar Documents

Publication Publication Date Title
US5838753A (en) Method of manufacturing zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
EP0227989B2 (en) Zirconium-based alloy with high corrosion resistance
KR970004349B1 (en) Fuel rod for a nuclear reactor fuel assembly
JPH08260081A (en) Long-life corrosion-resistant zirconium alloy for coating fuel
US5844959A (en) Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
US5854818A (en) Zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
US5835550A (en) Method of manufacturing zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
US4918710A (en) Fabrication procedure for a cross-bracing grid for a fuel assembly of a nuclear reaction
JPH01119650A (en) Manufacture of channel box for nuclear reactor fuel assembly
JPH0371507B2 (en)
JPH048758B2 (en)
JPS6358223B2 (en)
EP0745258B1 (en) A nuclear fuel element for a pressurized water reactor and a method for manufacturing the same
JPH10260280A (en) Zirconium based alloy, fuel cladding tube and fuel assembly for reactor
JP3983493B2 (en) Zirconium-based alloy manufacturing method
JP2600057B2 (en) Cladding tube, spacer, and channel box for highly corrosion resistant nuclear fuel, fuel assembly thereof, and method of manufacturing the same
US20100322370A1 (en) Process of manufacturing zirconium alloy for fuel guide tube and measuring tube having high strength and excellent corrosion resistance
JPH07173587A (en) Production of zirconium alloy welded member
JP2001074872A (en) Method for manufacturing zirconium alloy for nuclear reactor
JP3400815B2 (en) Method for producing Zircaloy-2 fuel material for BWR reactor
JP2001262259A (en) Highly corrosion resistant zirconium alloy, structural material for nuclear reactor core and its producing method
JPS6026650A (en) Fuel cladding pipe for nuclear reactor
JPH0812259B2 (en) Nuclear fuel element
JPH1073690A (en) Highly anticorrosive cladding tube for nuclear fuel, spacer, channel box, fuel assembly thereof and method for manufacturing it
JPS62287059A (en) Production of spacer for nuclear reactor