JPH0486707A - Production of optical waveguide - Google Patents
Production of optical waveguideInfo
- Publication number
- JPH0486707A JPH0486707A JP20145190A JP20145190A JPH0486707A JP H0486707 A JPH0486707 A JP H0486707A JP 20145190 A JP20145190 A JP 20145190A JP 20145190 A JP20145190 A JP 20145190A JP H0486707 A JPH0486707 A JP H0486707A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- transparent substrate
- stamper
- liquid material
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 72
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 239000000758 substrate Substances 0.000 claims abstract description 99
- 239000011344 liquid material Substances 0.000 claims abstract description 37
- 239000000463 material Substances 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims description 14
- 230000001678 irradiating effect Effects 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 abstract description 42
- 239000011347 resin Substances 0.000 abstract description 42
- 239000010410 layer Substances 0.000 abstract description 40
- 238000003848 UV Light-Curing Methods 0.000 abstract description 24
- 239000012792 core layer Substances 0.000 abstract description 20
- 229920001187 thermosetting polymer Polymers 0.000 abstract description 10
- 239000003822 epoxy resin Substances 0.000 abstract description 4
- 229920000647 polyepoxide Polymers 0.000 abstract description 4
- 238000005304 joining Methods 0.000 abstract description 2
- 238000012856 packing Methods 0.000 abstract 1
- 238000004528 spin coating Methods 0.000 abstract 1
- 238000001723 curing Methods 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005323 electroforming Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229920000015 polydiacetylene Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
発明の背景
技術分野
この発明は、基板上に形成された光導波層のような二次
元光導波路、リブ型光導波路のような三次元光導波路等
を含む光導波路の製造方法に関する。BACKGROUND TECHNICAL FIELD OF THE INVENTION The present invention relates to optical waveguides including two-dimensional optical waveguides such as optical waveguide layers formed on a substrate, three-dimensional optical waveguides such as rib-type optical waveguides, etc. Regarding the manufacturing method.
従来技術とその問題点
Jブ型光導波路を例にとると、それは基板上に形成され
たコア層に、光の伝搬方向にそってリブ部かコア層と一
体に形成されているものである。Conventional technology and its problems Taking a J-shaped optical waveguide as an example, it is a core layer formed on a substrate, and a rib portion is formed integrally with the core layer along the propagation direction of light. .
光の伝搬方向に直交する面内において、伝搬光は、コア
層の厚さ方向では、コア層と空気との屈折率差およびコ
ア層と基板との屈折率差によって閉し込められ、コア層
(リブ部)の幅方向では。In the plane perpendicular to the light propagation direction, the propagating light is confined by the refractive index difference between the core layer and air and the refractive index difference between the core layer and the substrate in the thickness direction of the core layer. (in the width direction of the rib part).
リブ部の厚さかコア層の他の部分よりも厚いことにより
リブ部付近の実効屈折率か高くなるという現象を利用し
て閉し込められる。Confinement is achieved by utilizing the phenomenon that the effective refractive index near the rib portion increases due to the thickness of the rib portion being thicker than other portions of the core layer.
本出願人は、リブ部に対応する凹溝をもつスタンパと基
板との間に、エネルギか与えられることにより硬化する
液状材料を充填し、基板側から液状材料にエネルギを照
射して液状材料を硬化させ、この後スタンバを剥離して
製造するリブ型光導波路の製造方法を提案した(特願平
1−248107号)。しかしながらこの製造方法によ
ると、液状材料か光エネルギにより硬化するものである
ときには、基板は透明でなければならない。不透明基板
上にはリブ型光導波路を作製することかできない。The present applicant fills a space between a stamper having a groove corresponding to a rib portion and a substrate with a liquid material that hardens when energy is applied thereto, and irradiates the liquid material with energy from the substrate side to form the liquid material. A method of manufacturing a rib-type optical waveguide was proposed by curing and then peeling off the stand bar (Japanese Patent Application No. 1-248107). However, according to this manufacturing method, the substrate must be transparent if it is a liquid material or one that is cured by light energy. It is only possible to fabricate a rib-type optical waveguide on an opaque substrate.
発明の概要
発明の目的
この発明は、不透明基板上にリブ型光導波路を含む光導
波路を作製することかできる製造方法を提供することを
目的とする。SUMMARY OF THE INVENTION OBJECTS OF THE INVENTION An object of the present invention is to provide a manufacturing method capable of manufacturing an optical waveguide including a rib-type optical waveguide on an opaque substrate.
発明の構成および効果
この発明による光導波路の製造方法は1作製すべき光導
波路形状の凹型をもつスタンパを用意し、上記スタンパ
にエネルギ照射により硬化する第1の液状材料を充填し
、エネルギを照射して上記第1の液状材料を硬化させる
ことにより光導波層を形成し、上記硬化した光導波層上
に不透明基板を接合し、その後、上記スタンパを除去す
ることを特徴とする。Structure and Effects of the Invention The method for manufacturing an optical waveguide according to the present invention includes: (1) preparing a stamper having a concave shape in the shape of an optical waveguide to be manufactured; filling the stamper with a first liquid material that hardens by irradiating energy; and irradiating energy. The method is characterized in that an optical waveguide layer is formed by curing the first liquid material, an opaque substrate is bonded onto the cured optical waveguide layer, and then the stamper is removed.
光導波層とは、リブ型光導波路におけるコア部を有する
コア層、二次元光導波路の代表例としての光導波層を含
む概念である。The optical waveguide layer is a concept that includes a core layer having a core portion in a rib-type optical waveguide, and an optical waveguide layer as a representative example of a two-dimensional optical waveguide.
また、エネルギ照射により硬化する液状材料には、光硬
化性または熱硬化性の樹脂、たとえば紫外線(U V)
硬化樹脂かある。また無機材料としては熱硬化性膜形成
用塗布液を挙げることかできる。液状とはゲル状も含む
。In addition, liquid materials that harden by energy irradiation include photocurable or thermosetting resins, such as ultraviolet (UV)
There is hardened resin. Further, as the inorganic material, a coating liquid for forming a thermosetting film can be mentioned. Liquid state also includes gel state.
この発明の製造方法によると、光エネルギが照射される
ことにより硬化する液状材料を用いて不透明基板上に光
導波路を形成することができる。According to the manufacturing method of the present invention, an optical waveguide can be formed on an opaque substrate using a liquid material that hardens upon irradiation with light energy.
したかって不透明基板上に光導波路を形成する場合に用
いる材料は熱硬化性材料などに限定されることはなく、
光導波層を形成するための使用材料の幅が広がる。Therefore, the materials used when forming an optical waveguide on an opaque substrate are not limited to thermosetting materials, etc.
The range of materials that can be used to form optical waveguide layers is expanding.
この発明によると、光導波層と不透明基板との間にバッ
ファ層を形成することもてきる。According to this invention, a buffer layer can also be formed between the optical waveguide layer and the opaque substrate.
この場合には、透明基板を用意し、上記第1の液状材料
を硬化させることにより光導波層を形成したのち、上記
光導波層と上記透明基板との間にエネルギ照射により硬
化する第2の液状材料を注入し、エネルギを照射して上
記第2の液状材料を硬化させることにより、上記光導波
層よりも屈折率の小さいバッファ層を形成し、上記透明
基板を除去し、上記バッファ層上に不透明基板を接合し
、その後、上記スタンバを除去する工程に移る。In this case, a transparent substrate is prepared, and an optical waveguide layer is formed by curing the first liquid material, and then a second liquid material that is hardened by energy irradiation is formed between the optical waveguide layer and the transparent substrate. By injecting a liquid material and curing the second liquid material by irradiating energy, a buffer layer having a refractive index lower than that of the optical waveguide layer is formed, the transparent substrate is removed, and a layer is formed on the buffer layer. An opaque substrate is bonded to the opaque substrate, and then the process moves to the step of removing the stand bar.
光導波層と不透明基板との間にバッファ層を形成するこ
とにより、不透明基板の屈折率、または不透明基板と光
導波層を接合する材料の屈折率に左右されないで任意の
屈折率をもつ不透明基板または接合材料を用いることか
可能となり光導波路の設計が容易となる。By forming a buffer layer between the optical waveguide layer and the opaque substrate, an opaque substrate can have an arbitrary refractive index regardless of the refractive index of the opaque substrate or the refractive index of the material joining the opaque substrate and the optical waveguide layer. Alternatively, it becomes possible to use a bonding material, which facilitates the design of the optical waveguide.
上記透明基板を除去したのち、さらに上記バッファ層と
第2の透明基板との間に第3の液状材料を注入しこれを
エネルギ照射によって硬化させることによって第2のバ
ッファ層を形成し、第2の透明基板を除去するバッファ
層形成工程を所要回数繰返し、最後の透明基板を除去し
たのち不透明基板の接合工程に移ることにより、任意数
段のバッファ層の形成が可能となる。After removing the transparent substrate, a third liquid material is further injected between the buffer layer and the second transparent substrate, and this is cured by energy irradiation to form a second buffer layer. By repeating the buffer layer forming step of removing the transparent substrate a required number of times and moving on to the bonding step of the opaque substrate after removing the last transparent substrate, it is possible to form an arbitrary number of stages of buffer layers.
この発明によるリブ型光導波路の製造方法は作製すべき
光導波路形状の凹型をもつスタンバと透明基板とを用意
し、上記スタンバと上記透明基板との間にエネルギ照射
により硬化する液状材料を注入し、エネルギを照射して
上記液状材料を硬化させることにより光導波層を形成し
、上記透明基板を除去し、上記光導波層上に不透明基板
を接合し、その後、上記スタンバを除去することを特徴
とする。The method for manufacturing a rib-type optical waveguide according to the present invention includes preparing a standber having a concave shape of the optical waveguide to be manufactured and a transparent substrate, and injecting a liquid material that hardens by energy irradiation between the standber and the transparent substrate. , forming an optical waveguide layer by curing the liquid material by irradiating energy, removing the transparent substrate, bonding an opaque substrate on the optical waveguide layer, and then removing the stand bar. shall be.
この製造方法によって、光エネルギか照射されることに
より硬化する液状材料を用いて不透明基板上に光導波路
を作製することができる。With this manufacturing method, an optical waveguide can be manufactured on an opaque substrate using a liquid material that hardens when irradiated with light energy.
光導波層と不透明基板との間にバッファ層を設ける場合
には次のようにする。When providing a buffer layer between the optical waveguide layer and the opaque substrate, the following procedure is performed.
すなわち1作製すべき光導波路形状の凹型をもつスタン
バと第1および第2の透明基板とを用意し、上記スタン
バと上記第1の透明基板との間にエネルギ照射により硬
化する第1の液状材料を注入し、エネルギを照射して上
記第1の液状材料を硬化させることにより光導波層を形
成し、上記第1の透明基板を除去し、上記光導波路層と
上記第2の透明基板との間にエネルギ照射により硬化す
る第2の液状材料を注入し、エネルギを照射して上記第
2の液状材料を硬化させることにより上記光導波層より
も屈折率の小さいバッファ層を形成し、上記第2の透明
基板を除去し、上記バッファ層上に不透明基板を接合し
、その後、上記スタンバを除去する。That is, 1. A standber having a concave shape of an optical waveguide to be manufactured and first and second transparent substrates are prepared, and a first liquid material that is cured by energy irradiation is placed between the standber and the first transparent substrate. is injected and irradiated with energy to harden the first liquid material to form an optical waveguide layer, remove the first transparent substrate, and bond the optical waveguide layer and the second transparent substrate. A second liquid material that is cured by energy irradiation is injected between the layers, and a buffer layer having a refractive index smaller than that of the optical waveguide layer is formed by irradiating energy and curing the second liquid material. The transparent substrate No. 2 is removed, an opaque substrate is bonded onto the buffer layer, and then the stand bar is removed.
これにより任意の屈折率をもつ不透明基板、または接合
材料を用いて光導波路を製造することかできるようにな
る。This makes it possible to manufacture an optical waveguide using an opaque substrate or bonding material with any refractive index.
バッファ層を複数段形成することももちろん可能である
。Of course, it is also possible to form the buffer layer in multiple stages.
実施例の説明
第1図はこの発明の第1の実施例によるリブ型光導波路
の製造工程を示している。DESCRIPTION OF EMBODIMENTS FIG. 1 shows the manufacturing process of a rib-type optical waveguide according to a first embodiment of the present invention.
まずリブ部に対応する凹溝1aをもつスタンバ1を用意
する。First, a stand bar 1 having a groove 1a corresponding to a rib portion is prepared.
このスタンバ1はたとえば次のようにして作製される。This standby 1 is manufactured, for example, as follows.
基板上に電子ビーム・レジストを塗布し、このレジスト
上にリブ部のパターンを電子ビームにより描画後、現象
することにより、基板上にリブ部となる残膜レジストを
もつ原盤を作製する。次に二の原盤上に電鋳法によりニ
ッケル(Ni)を堆積させ、原盤を離すことによりニッ
ケル製スタンバヲ得ル。An electron beam resist is applied onto the substrate, a rib pattern is drawn on the resist using an electron beam, and then developed, thereby producing a master having a residual film resist that will become the ribs on the substrate. Next, nickel (Ni) is deposited on the second master by electroforming, and by separating the master, a nickel standby is obtained.
用意されたスタンパ1上にコア層の材料であるUV(紫
外線)硬化樹脂2Aを滴下し、その上面か生垣になるよ
うにスピン・コートする。そしてU〜′硬化樹脂2Aに
その上面から紫外線を照射し、UV硬化樹脂2Aを硬化
させる(第1図(A))。UV硬化樹脂2Aか硬化した
のち、エポキシ系樹脂または熱硬化樹脂なとの接合(接
@)材料3を用いて不透明基板4をUV硬化樹脂2A上
に接合する(第1図(B))。接合材料3はコア層こお
いて光導波か可能なように、UV硬化樹脂2Aよりも小
さな屈折率をもつ材料が選択される。UV (ultraviolet) curing resin 2A, which is the material for the core layer, is dropped onto the prepared stamper 1, and the top surface thereof is spin-coated to form a hedge. Then, UV rays are irradiated onto the U~' cured resin 2A from its upper surface to cure the UV cured resin 2A (FIG. 1(A)). After the UV curing resin 2A is cured, an opaque substrate 4 is bonded onto the UV curing resin 2A using a bonding material 3 such as an epoxy resin or a thermosetting resin (FIG. 1(B)). As the bonding material 3, a material having a refractive index smaller than that of the UV curing resin 2A is selected so that optical waveguide is possible in the core layer.
不透明基板4かU V硬化樹脂2A上に接合されたのち
、スタンパ1を剥離する(第1図(C))。After bonding the opaque substrate 4 onto the UV curing resin 2A, the stamper 1 is peeled off (FIG. 1(C)).
これにより不透明基板4上にリブ部2aをもつコア層2
か形成される。As a result, the core layer 2 having the rib portion 2a is placed on the opaque substrate 4.
or formed.
コア層Rの材料としてはUV硬化樹脂の他にたとえば熱
硬化性材料を用いる二とかできる。熱硬化性無機材料の
例としては、熱硬化性膜形成用塗布液を挙げることかで
きる。多くの種類の塗布液かあるか、焼成後膜形成物と
してZr02Ti02.Ag2O3,SiO□等を含む
ものか好適である。さらにコア層2の材料としてM N
A(屈折率1.8 ) 、 PTS (ポリジアセ
チレン、屈折率1.H)、kDP (kH,、PO4)
等の非線形有機、無機光学材料を用いることかできる。As the material for the core layer R, for example, a thermosetting material can be used in addition to the UV curing resin. Examples of thermosetting inorganic materials include coating liquids for forming thermosetting films. There are many types of coating liquids, and Zr02Ti02. A material containing Ag2O3, SiO□, etc. is suitable. Furthermore, as the material of the core layer 2, M N
A (refractive index 1.8), PTS (polydiacetylene, refractive index 1.H), kDP (kH,, PO4)
It is possible to use nonlinear organic and inorganic optical materials such as
第2図はこの発明の第2の実施例による光導波路の製造
工程を示している。FIG. 2 shows the manufacturing process of an optical waveguide according to a second embodiment of the present invention.
リブ部に対応する凹溝13をもつスタンパlを用意する
。スタンパ1上にコア層の材料であるU V硬化樹脂2
Aを滴下し、その上に透明基板5を乗せ、スタンパ1と
透明基板5との間の間隔か所定値となるように、スタン
パ1と透明基板5との間に圧力を加え、また必要ならば
振動を与える。透明基板5の裏側から紫外線を照射し、
UV硬化樹脂2Aを硬化させる(第2図(A))。A stamp I having grooves 13 corresponding to the rib portions is prepared. UV curing resin 2, which is the material of the core layer, is placed on the stamper 1.
A is dropped, a transparent substrate 5 is placed on top of the transparent substrate 5, and pressure is applied between the stamper 1 and the transparent substrate 5 so that the distance between the stamper 1 and the transparent substrate 5 or a predetermined value is maintained, and if necessary, vibration. UV rays are irradiated from the back side of the transparent substrate 5,
The UV curing resin 2A is cured (FIG. 2(A)).
透明基板5をUV硬化樹脂2Aから剥離する(第2図(
B))。透明基板5とUV硬化樹脂2Aとの密着力かU
V硬化樹脂2Aとスタンパlとの密着力よりも弱くなる
ようにUV硬化樹脂2Aとスタンパ]と透明基板5との
組合せ等が考慮される。The transparent substrate 5 is peeled off from the UV curing resin 2A (see Fig. 2).
B)). The adhesion between the transparent substrate 5 and the UV curing resin 2A?
The combination of the UV curing resin 2A, the stamper] and the transparent substrate 5 is considered so that the adhesion is weaker than the adhesion between the V curing resin 2A and the stamper l.
エポキシ系樹脂または熱硬化性樹脂なとの接合材料3を
用いて不透明基板4をUV硬化樹脂2A上に接合する(
第2図(C))。The opaque substrate 4 is bonded onto the UV curing resin 2A using a bonding material 3 such as epoxy resin or thermosetting resin (
Figure 2 (C)).
不透明基板4かUV硬化樹脂2A上に接合されたのち、
スタ、バ1を剥離する(第2図(D))。After being bonded onto the opaque substrate 4 or the UV curing resin 2A,
Peel off the star and bar 1 (Fig. 2(D)).
これにより不透明基板4上にリブ部2aをもつコア層2
か形成される。As a result, the core layer 2 having the rib portion 2a is placed on the opaque substrate 4.
or formed.
第3図はこの発明の第3の実施例による光導波路の製造
工程を示している。FIG. 3 shows the manufacturing process of an optical waveguide according to a third embodiment of the present invention.
第3図(A)および(B)の工程は上述した第2図(A
)および(B)の工程と同しであるため説明を省略する
。The steps in FIGS. 3(A) and (B) are as shown in FIG. 2(A) above.
) and (B), so the explanation will be omitted.
透明基板5を除去したのち、硬化したUV硬化樹脂2人
上に・・ノファ層の材料となる液状から硬化する樹脂+
オ料6Aを滴下し、その上に透明基板7を乗せ、UV硬
化樹脂2Aと透明基板7との間の間隔か所定値となるよ
うに、UV硬化樹脂2Aと透明基板7との間に圧力を加
え、また必要ならば振動を与える。このバッファ層材料
としてもU V硬化樹脂を用いることができる。UV硬
化樹脂はフッ素含量を変えることによりその屈折率を変
えることかできる。バッファ層となるU V硬化樹脂6
Aの屈折率の方かコア層となるUV硬化樹脂2Aの屈折
率よりも小さくしておく。透明基板7の裏側から紫外線
を照射し、UV硬化材料6Aを硬化させる(第3図(C
))。After removing the transparent substrate 5, on top of the two cured UV cured resins... resin that hardens from a liquid state and becomes the material for the Nofa layer.
The transparent substrate 7 is placed on top of it, and pressure is applied between the UV curing resin 2A and the transparent substrate 7 so that the distance between the UV curing resin 2A and the transparent substrate 7 or a predetermined value is reached. and vibration if necessary. UV curing resin can also be used as the material for this buffer layer. The refractive index of UV-curable resins can be changed by changing the fluorine content. UV curing resin 6 which becomes a buffer layer
The refractive index of A is made smaller than the refractive index of the UV curable resin 2A which becomes the core layer. Ultraviolet rays are irradiated from the back side of the transparent substrate 7 to cure the UV curing material 6A (see Fig. 3 (C).
)).
この後、透明基板7をUV硬化樹脂6Aから剥離する(
第3図(D))。この場合にもUV硬化樹脂6Aと透明
基板7との密着力か弱くなるようにしておく。After that, the transparent substrate 7 is peeled off from the UV curing resin 6A (
Figure 3 (D)). In this case as well, the adhesion between the UV curing resin 6A and the transparent substrate 7 is made weak.
エポキシ系樹脂または熱硬化性樹脂なとの接合材料3を
用いて不透明基板4を樹脂材料6A上に接合する(第3
図(E))。The opaque substrate 4 is bonded onto the resin material 6A using a bonding material 3 such as epoxy resin or thermosetting resin (third
Figure (E)).
不透明基板4か樹脂材料6A上に接合されたのち、スタ
ンパ1を剥離する(第3図(F))。これにより不透明
基板4上にバッファ層6か形成され、さらにその上にリ
ブ部2aをもつコア層2か形成された光導波路か得られ
る。After the opaque substrate 4 is bonded onto the resin material 6A, the stamper 1 is peeled off (FIG. 3(F)). As a result, an optical waveguide is obtained in which the buffer layer 6 is formed on the opaque substrate 4, and the core layer 2 having the rib portions 2a is further formed thereon.
第1図(A)に示す製造工程によりスタンパ1上に硬化
したUV硬化樹脂2Aを形成したのちに第3図(C)〜
(F)に示す製造工程に移行することもてきる。二のよ
うにしても不透明基板上にバッファ層を介してリブ部を
もつコア層をつくることかできる。After forming the cured UV cured resin 2A on the stamper 1 through the manufacturing process shown in FIG. 1(A), the process shown in FIGS.
It is also possible to proceed to the manufacturing process shown in (F). Even in the case of method 2, a core layer having rib portions can be formed on an opaque substrate with a buffer layer interposed therebetween.
さらに、第3図(C) 、 (D)の工程を繰返すこと
により、バッファ層を複数層形成する二とかできる。Furthermore, by repeating the steps shown in FIGS. 3(C) and 3(D), it is possible to form a plurality of buffer layers.
第1図(八〉〜(C)はこの発明の第1の実施例による
リブ型光導波路の製造工程を示すものてあり 0
第2図(A)〜(D)はこの発明の第2の実施例による
リブ型光導波路の製造工程を示すものである。
第3図(A)〜(F)はこの発明の第3の実施例による
Jブ型光導波路の製造工程を示すものてあ1・・・スタ
ンパ
2・コア層
2a・・−リブ部
2A・U〜′硬化樹脂
3・・−接合材料7
4・不透明基板
57・・透明基板
6・・・バッファ層。
6A・樹脂材料(第2の液状やオ料)。
(第1の液状材料)
以1(8) to (C) show the manufacturing process of a rib-type optical waveguide according to the first embodiment of the present invention. 0 FIGS. 3A to 3F show the manufacturing process of a rib-type optical waveguide according to a third embodiment of the present invention. FIGS. ... Stamper 2, core layer 2a... - rib portion 2A, U~' cured resin 3... - bonding material 7 4, opaque substrate 57, transparent substrate 6... buffer layer. 6A, resin material (No. (2) liquid material). (1st liquid material)
Claims (6)
用意し、 上記スタンパにエネルギ照射により硬化する第1の液状
材料を充填し、 エネルギを照射して上記第1の液状材料を硬化させるこ
とにより光導波層を形成し、 上記硬化した光導波層上に不透明基板を接合し、 その後、上記スタンパを除去する、 光導波路の製造方法。(1) Prepare a stamper having a concave shape in the shape of an optical waveguide to be manufactured, fill the stamper with a first liquid material that hardens by irradiating energy, and harden the first liquid material by irradiating energy. A method for manufacturing an optical waveguide, comprising: forming an optical waveguide layer by: bonding an opaque substrate onto the cured optical waveguide layer; and then removing the stamper.
形成したのち、上記光導波層と上記透明基板との間にエ
ネルギ照射により硬化する第2の液状材料を注入し、 エネルギを照射して上記第2の液状材料を硬化させるこ
とにより、上記光導波層よりも屈折率の小さいバッファ
層を形成し、 上記透明基板を除去し、 上記バッファ層上に不透明基板を接合し、 その後、上記スタンパを除去する工程に移る請求項(1
)に記載の光導波路の製造方法。(2) After preparing a transparent substrate and forming an optical waveguide layer by curing the first liquid material, a second liquid material that is hardened by energy irradiation is provided between the optical waveguide layer and the transparent substrate. A buffer layer having a refractive index smaller than that of the optical waveguide layer is formed by injecting the second liquid material and curing the second liquid material by irradiating energy, removing the transparent substrate, and forming an opaque layer on the buffer layer. Claim 1: The step of bonding the substrates and then removing the stamper is performed.
) The method for manufacturing an optical waveguide according to
液状材料を注入しこれをエネルギ照射によって硬化させ
ることによって第2のバッファ層を形成し、第2の透明
基板を除去するバッファ層形成工程を所要回数繰返し、 最後の透明基板を除去したのち不透明基板の接合工程に
移る、 請求項(2)に記載の光導波路の製造方法。(3) After removing the transparent substrate, a third liquid material is further injected between the buffer layer and the second transparent substrate and is cured by energy irradiation to form a second buffer layer. The method for manufacturing an optical waveguide according to claim 2, further comprising repeating the buffer layer forming step of removing the second transparent substrate a required number of times, and moving on to the opaque substrate bonding step after removing the last transparent substrate.
透明基板とを用意し、 上記スタンパと上記透明基板との間にエネルギ照射によ
り硬化する液状材料を注入し、 エネルギを照射して上記液状材料を硬化させることによ
り光導波層を形成し、 上記透明基板を除去し、 上記光導波層上に不透明基板を接合し、 その後、上記スタンパを除去する、 光導波路の製造方法。(4) Prepare a stamper with a concave shape of the optical waveguide to be produced and a transparent substrate, inject a liquid material that hardens by energy irradiation between the stamper and the transparent substrate, and irradiate the energy to form the liquid material. A method for manufacturing an optical waveguide, comprising forming an optical waveguide layer by curing a material, removing the transparent substrate, bonding an opaque substrate on the optical waveguide layer, and then removing the stamper.
第1および第2の透明基板とを用意し、上記スタンパと
上記第1の透明基板との間にエネルギ照射により硬化す
る第1の液状材料を注入し、 エネルギを照射して上記第1の液状材料を硬化させるこ
とにより光導波層を形成し、 上記第1の透明基板を除去し、 上記光導波層と上記第2の透明基板との間にエネルギ照
射により硬化する第2の液状材料を注入し、 エネルギを照射して上記第2の液状材料を硬化させるこ
とにより上記光導波層よりも屈折率の小さいバッファ層
を形成し、 上記第2の透明基板を除去し、 上記バッファ層上に不透明基板を接合し、 その後、上記スタンパを除去する、 光導波路の製造方法。(5) A stamper having a concave shape in the shape of an optical waveguide to be produced and first and second transparent substrates are prepared, and a first liquid that is hardened by energy irradiation is provided between the stamper and the first transparent substrate. forming an optical waveguide layer by injecting a material and curing the first liquid material by irradiating energy; removing the first transparent substrate; and forming the optical waveguide layer and the second transparent substrate. A second liquid material that is cured by energy irradiation is injected during the step, and a buffer layer having a refractive index smaller than that of the optical waveguide layer is formed by irradiating energy and curing the second liquid material. A method for manufacturing an optical waveguide, comprising: removing a second transparent substrate; bonding an opaque substrate onto the buffer layer; and then removing the stamper.
バッファ層と第3の透明基板との間に第3の液状材料を
注入しこれをエネルギ照射によって硬化させることによ
って第2のバッファ層を形成し、第3の透明基板を除去
するバッファ層形成工程を所要回数繰返し、 最後の透明基板を除去したのち不透明基板の接合工程に
移る、 請求項(5)に記載の光導波路の製造方法。(6) After removing the second transparent substrate, a third liquid material is further injected between the buffer layer and the third transparent substrate and cured by energy irradiation to form a second buffer layer. The method for manufacturing an optical waveguide according to claim (5), wherein the buffer layer forming step of forming a buffer layer and removing the third transparent substrate is repeated a required number of times, and after removing the last transparent substrate, the process moves to the step of bonding the opaque substrate. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20145190A JPH0486707A (en) | 1990-07-31 | 1990-07-31 | Production of optical waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20145190A JPH0486707A (en) | 1990-07-31 | 1990-07-31 | Production of optical waveguide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0486707A true JPH0486707A (en) | 1992-03-19 |
Family
ID=16441308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20145190A Pending JPH0486707A (en) | 1990-07-31 | 1990-07-31 | Production of optical waveguide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0486707A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007025438A (en) * | 2005-07-20 | 2007-02-01 | Fuji Xerox Co Ltd | Manufacturing method of waveguide device |
KR100687260B1 (en) * | 2004-07-22 | 2007-02-26 | 간사이 페인트 가부시키가이샤 | Method of fabricating optical waveguide |
EP1760502A1 (en) * | 2004-06-25 | 2007-03-07 | Omron Corporation | Film optical waveguide and method for manufacture thereof, and electronic instrument device |
US7901784B2 (en) | 2002-06-07 | 2011-03-08 | Sanyo Electric Co., Ltd. | Optical waveguide, optical transmitter and receiver module, and laminated structure |
-
1990
- 1990-07-31 JP JP20145190A patent/JPH0486707A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7901784B2 (en) | 2002-06-07 | 2011-03-08 | Sanyo Electric Co., Ltd. | Optical waveguide, optical transmitter and receiver module, and laminated structure |
EP1760502A1 (en) * | 2004-06-25 | 2007-03-07 | Omron Corporation | Film optical waveguide and method for manufacture thereof, and electronic instrument device |
EP1760502A4 (en) * | 2004-06-25 | 2010-08-11 | Omron Tateisi Electronics Co | Film optical waveguide and method for manufacture thereof, and electronic instrument device |
KR100687260B1 (en) * | 2004-07-22 | 2007-02-26 | 간사이 페인트 가부시키가이샤 | Method of fabricating optical waveguide |
US7310467B2 (en) | 2004-07-22 | 2007-12-18 | Kansai Paint Co., Ltd. | Method of fabricating optical waveguide |
JP2007025438A (en) * | 2005-07-20 | 2007-02-01 | Fuji Xerox Co Ltd | Manufacturing method of waveguide device |
JP4506591B2 (en) * | 2005-07-20 | 2010-07-21 | 富士ゼロックス株式会社 | Method for manufacturing waveguide device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006337985A (en) | Method of manufacturing high sag lens and lens manufactured by using the same method | |
JP2004144987A (en) | Manufacturing method of polymeric optical waveguide | |
JPH11305055A (en) | Production of optical waveguide and production of master raw glass for production of optical waveguide | |
JP4371777B2 (en) | Resin curing method and resin molded product manufacturing method | |
JPH02131202A (en) | Manufacture of optical waveguide | |
JPH0486707A (en) | Production of optical waveguide | |
JP2007152724A (en) | Molding method for resin, and manufacturing method for optical element | |
JPH06254868A (en) | Manufacture of composite precisely molded product | |
JPH1090532A (en) | Optical waveguide and its production | |
JPS58149008A (en) | Manufacture of light guide path plate | |
JP4534415B2 (en) | Method for producing polymer optical waveguide | |
KR100236617B1 (en) | Manufacturing method of hologram film using ultraviolet hardening paints | |
JP3239598B2 (en) | Method for manufacturing diffractive optical element | |
JPH03110505A (en) | Rib-shaped optical waveguide and its manufacture | |
JPH04103339A (en) | Method for forming three-dimensional matter | |
JP2006011211A (en) | Manufacturing method of polymer optical waveguide, mold used therefor, and manufacturing method thereof | |
JP2008188929A (en) | Manufacturing method of optical element | |
JPH10307226A (en) | Production of high-polymer optical waveguide | |
JPH01316231A (en) | Manufacture of substrate for information recording medium | |
JPH03200106A (en) | Optical waveguide lens | |
JPS5829629A (en) | Manufacture of optical part | |
JP4279772B2 (en) | Manufacturing method of optical waveguide | |
JPH049808A (en) | Coupling structure between optical waveguide and optical fiber and its manufacture | |
JP2003344682A (en) | Method for manufacturing optical waveguide and optical waveguide manufactured thereby | |
JP2001264557A (en) | Optical memory device |