JP2007152724A - Molding method for resin, and manufacturing method for optical element - Google Patents

Molding method for resin, and manufacturing method for optical element Download PDF

Info

Publication number
JP2007152724A
JP2007152724A JP2005350697A JP2005350697A JP2007152724A JP 2007152724 A JP2007152724 A JP 2007152724A JP 2005350697 A JP2005350697 A JP 2005350697A JP 2005350697 A JP2005350697 A JP 2005350697A JP 2007152724 A JP2007152724 A JP 2007152724A
Authority
JP
Japan
Prior art keywords
resin
anaerobic
mold
optical element
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005350697A
Other languages
Japanese (ja)
Inventor
Masatoshi Hayashi
政俊 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005350697A priority Critical patent/JP2007152724A/en
Publication of JP2007152724A publication Critical patent/JP2007152724A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding method for a resin which can make the thickness of a resin base extremely thin, and to provide a manufacturing method for a light-guiding path. <P>SOLUTION: This molding method for the resin has a process in which a pattern formed on a mold is transferred to the resin. As the resin 2, an anaerobic resin is used, and the resin is filled in the recess section of the mold 1 and pressed. The resin 2 is hardened under an atmosphere containing oxygen. Then, the molding method includes a process for removing a non-hardened section of the resin 2 by washing after the hardening of the resin 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、樹脂の成型方法、及び光学素子の製造方法に関するものである。   The present invention relates to a resin molding method and an optical element manufacturing method.

型を用いて、型に形成されたパターンを樹脂に転写して凹凸形状を形成する方法では、通常は、型と保持基板の間に樹脂を挟み込み、プレスした上で樹脂を硬化させ、その後、硬化した樹脂を型から剥離する方法が採用されていた。   In the method of using a mold to transfer the pattern formed on the mold to the resin to form the concavo-convex shape, the resin is usually sandwiched between the mold and the holding substrate, pressed and then cured, A method of peeling the cured resin from the mold has been adopted.

このようにして形成された樹脂成型物において、凸部以外の樹脂の厚さ(樹脂ベース厚さ)を薄く、もしくは皆無に作成するニーズが存在する。たとえばナノインプリントを行う場合、成型された樹脂層のベース層の樹脂厚分だけ余計にアッシングをしなければならないし、その値にばらつきがあれば、後工程のエッチング時間が変わってしまうために、最終的に作られる形状にムラができてしまう。そのため、樹脂ベース厚さはなるべく薄く、かつ均一であること、可能ならば皆無に近いことが要求される。また、樹脂を用いた導光路などでも(屈折率の異なる樹脂で閉じこめられた部分に光を全反射で導く方式など)、樹脂ベース層が存在することで、光の閉じこめが不完全になるという問題点がある。   In the resin molded product formed in this way, there is a need to make the resin (thickness of the resin base) other than the convex portions thin or no. For example, when nanoimprinting is performed, ashing must be performed by an amount corresponding to the resin thickness of the base layer of the molded resin layer, and if there is a variation in the value, the etching time in the subsequent process changes. The shape that is made will be uneven. Therefore, the resin base thickness is required to be as thin and uniform as possible, and if possible, close to none. In addition, even in a light guide path using resin (such as a method of guiding light by total reflection to a portion confined with a resin having a different refractive index), the presence of the resin base layer means that the light confinement becomes incomplete. There is a problem.

しかしながら、従来の方法では、樹脂ベース厚さを薄くすることが困難であった。成型前の樹脂粘度をかなり下げても樹脂ベース厚さを数μm以下にすることが困難であり、たとえできたとしても極限られた部分のみで、広い面積(直径数インチ)を均一に数μm以下にすることはできなかった。   However, in the conventional method, it is difficult to reduce the resin base thickness. Even if the resin viscosity before molding is considerably reduced, it is difficult to reduce the resin base thickness to several μm or less. Even if it can, even if it is limited, a wide area (a few inches in diameter) is uniformly several μm. It was not possible to:

本発明はこのような事情に鑑みてなされたもので、樹脂ベース厚さを極めて薄くすることが可能な樹脂の成型方法、及び光学素子の製造方法を提供することを課題とする。   This invention is made | formed in view of such a situation, and makes it a subject to provide the molding method of the resin which can make resin base thickness very thin, and the manufacturing method of an optical element.

前記課題を解決するための第1の手段は、型に形成されたパターンを樹脂に転写する工程を含む樹脂の成型方法であって、樹脂として嫌気性樹脂を使用し、型の凹部に前記樹脂を充填して、酸素濃度20%以上の雰囲気中で前記樹脂を硬化させ、その後、前記樹脂の未硬化部分を洗浄して取り除く工程を含むことを特徴とする樹脂の成型方法である。   A first means for solving the above problem is a resin molding method including a step of transferring a pattern formed on a mold to a resin, wherein an anaerobic resin is used as the resin, and the resin is formed in a concave portion of the mold. And a step of curing the resin in an atmosphere having an oxygen concentration of 20% or more, and then washing and removing uncured portions of the resin.

本手段においては、嫌気性樹脂のうち凹型の凹部に入り込んだ部分は酸素と接触しないので硬化するが、凹部以外の表面に残った嫌気性樹脂は、酸素の影響を受けて硬化しない。よって、未硬化部分を洗浄して取り除くことにより、樹脂ベース厚を極めて薄くするか無くすることができる。   In this means, the portion of the anaerobic resin that has entered the concave concave portion does not come into contact with oxygen and is cured, but the anaerobic resin remaining on the surface other than the concave portion is not cured under the influence of oxygen. Therefore, the resin base thickness can be made extremely thin or eliminated by washing away the uncured portion.

前記課題を解決するための第2の手段は、前記第1の手段であって、前記樹脂の未硬化部分を洗浄して取り除いた後、残った前記樹脂の表面を、酸素濃度5%以下の雰囲気中で硬化させる工程を含むことを特徴とするものである。   The second means for solving the above-mentioned problem is the first means, and after cleaning and removing the uncured portion of the resin, the remaining surface of the resin is allowed to have an oxygen concentration of 5% or less. The method includes a step of curing in an atmosphere.

本手段においては、未硬化部分と硬化部分の間に半硬化部分があった場合でも、半硬化部分を硬化させて安定化させることができる。なお、酸素濃度は1%以下とすることがより好ましい。   In this means, even if there is a semi-cured portion between the uncured portion and the cured portion, the semi-cured portion can be cured and stabilized. The oxygen concentration is more preferably 1% or less.

前記課題を解決するための第3の手段は、型の凹部に嫌気性樹脂を充填して、酸素を含む雰囲気中で前記嫌気性樹脂を硬化させ、その後、前記嫌気性樹脂の未硬化部分を洗浄して取り除き、その後、前記嫌気性樹脂の表面に、前記嫌気性樹脂より屈折率の低い別の樹脂を塗布して硬化させ、その後、一体化した前記嫌気性樹脂、前記別の樹脂を、前記凹型から剥離する工程を含むことを特徴とする光学素子の製造方法である。   The third means for solving the above-mentioned problem is that an anaerobic resin is filled in the concave portion of the mold, the anaerobic resin is cured in an atmosphere containing oxygen, and then the uncured portion of the anaerobic resin is removed. Remove by washing, and then apply and cure another resin having a lower refractive index than the anaerobic resin on the surface of the anaerobic resin, and then integrate the anaerobic resin and the other resin, It is a manufacturing method of the optical element characterized by including the process of peeling from the said concave mold.

本手段においては、嫌気性樹脂の樹脂ベース厚を極めて薄くするか無くすることができるので、完成した光学素子において、樹脂ベース厚の部分から光が漏れ出すことが少なくなり、光の閉じ込め性が良好となる。   In this means, since the resin base thickness of the anaerobic resin can be made extremely thin or eliminated, light is less likely to leak from the resin base thickness portion in the completed optical element, and the light confinement property is reduced. It becomes good.

前記課題を解決するための第4の手段は、型の凹部に嫌気性樹脂を充填して、酸素濃度20%以上の雰囲気中中で前記嫌気性樹脂を硬化させ、その後、前記嫌気性樹脂の未硬化部分を洗浄して取り除き、その後、前記嫌気性樹脂の表面に、前記嫌気性樹脂より屈折率の低い別の樹脂を塗布して、前記別の樹脂を補強基板で押圧した状態で硬化させ、その後、一体化した前記嫌気性樹脂、前記別の樹脂、前記補強基板を、前記凹型から剥離する工程を含むことを特徴とする光学素子の製造方法である。   A fourth means for solving the above-mentioned problem is that an anaerobic resin is filled in the concave portion of the mold, and the anaerobic resin is cured in an atmosphere having an oxygen concentration of 20% or more. The uncured portion is removed by washing, and then another resin having a refractive index lower than that of the anaerobic resin is applied to the surface of the anaerobic resin, and the other resin is cured while being pressed with a reinforcing substrate. Then, the method includes the step of peeling the integrated anaerobic resin, the another resin, and the reinforcing substrate from the concave mold.

本手段においても、嫌気性樹脂の樹脂ベース厚を極めて薄くするか無くすることができるので、完成した光学素子において、樹脂ベース厚の部分から光が漏れ出すことが少なくなり、光の閉じ込め性が良好となる。   Also in this means, since the resin base thickness of the anaerobic resin can be made extremely thin or eliminated, light is less likely to leak from the resin base thickness portion in the completed optical element, and the light confinement property is improved. It becomes good.

前記課題を解決するための第5の手段は、前記第3の手段又は第4の手段であって、前記嫌気性樹脂の未硬化部分を洗浄して取り除いた後、前記嫌気性樹脂の上に、前記嫌気性樹脂より屈折率の低い別の樹脂を塗布する前に、残った前記嫌気性樹脂の表面を、酸素濃度5%以下の雰囲気中で硬化させる工程を含むことを特徴とするものである。   The fifth means for solving the above-mentioned problem is the third means or the fourth means, and after cleaning and removing the uncured portion of the anaerobic resin, the fifth means is disposed on the anaerobic resin. The method further comprises a step of curing the remaining surface of the anaerobic resin in an atmosphere having an oxygen concentration of 5% or less before applying another resin having a lower refractive index than the anaerobic resin. is there.

本手段においては、未硬化部分と硬化部分の間に半硬化部分があった場合でも、半硬化部分を硬化させて安定化させることができる。なお、酸素濃度は1%以下とすることがより好ましい。 前記課題を解決するための第6の手段は、前記第3の手段から第5の手段のいずれかの光学素子が導光路であることを特徴とする光学素子の製造方法である。   In this means, even if there is a semi-cured portion between the uncured portion and the cured portion, the semi-cured portion can be cured and stabilized. The oxygen concentration is more preferably 1% or less. A sixth means for solving the above problem is a method of manufacturing an optical element, wherein any one of the third to fifth means is a light guide.

本発明によれば、樹脂ベース厚さを極めて薄くすることが可能な樹脂の成型方法、及び光学素子の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the molding method of the resin which can make resin base thickness very thin, and the manufacturing method of an optical element can be provided.

(実施例1)
以下、本発明の第1の実施例を図1を用いて説明する。図1に示すように、石英基板をエッチングして、導波路(導光路)に用いる凹型溝を数本、長さ30mm、断面形状が80μm角となるように作成した。この表面に離型しやすいようにフッ素系離型剤を塗布し、型1を作成した(a)。
Example 1
Hereinafter, a first embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, the quartz substrate was etched to create several concave grooves used for a waveguide (light guide), a length of 30 mm, and a cross-sectional shape of 80 μm square. A fluorine-based mold release agent was applied to the surface so that mold release was easy, and mold 1 was prepared (a).

この型1の表面に、紫外線硬化型樹脂2(嫌気性樹脂)をスピンコーターで塗布した。スピンコーターの条件は、あからじめ型の凹部に樹脂が満ち、かつ凹部以外のベース層に相当する部分の厚さが20μm程度になるように設定した。スピンコートした直後は、型の凹凸形状に起因するミクロな樹脂ムラが発生しているため、スピンコート停止後所定時間放置した。樹脂粘度にもよるが、数分置くことで凹凸に関係なく樹脂面はほぼ均一化される(b)。   An ultraviolet curable resin 2 (anaerobic resin) was applied to the surface of the mold 1 with a spin coater. The conditions of the spin coater were set so that the pre-shaped recess was filled with resin, and the thickness of the portion corresponding to the base layer other than the recess was about 20 μm. Immediately after the spin coating, micro resin unevenness due to the uneven shape of the mold was generated, and therefore, it was left for a predetermined time after the spin coating was stopped. Although depending on the viscosity of the resin, the resin surface is made almost uniform by placing it for several minutes regardless of the unevenness (b).

次に、大気中、もしくは故意に酸素濃度の高い雰囲気中でこれに紫外線を照射する(c)。紫外線硬化型樹脂2は嫌気性を持っており、酸素に触れている部分の樹脂は硬化が阻害される。これにより紫外線硬化型樹脂2のうち、溝に囲まれた部分は硬化し、空気(酸素)に触れた部分は硬化しない。この条件では未硬化層はおよそ20μmになった。   Next, this is irradiated with ultraviolet rays in the atmosphere or intentionally in an atmosphere with a high oxygen concentration (c). The ultraviolet curable resin 2 has anaerobic properties, and curing of the resin in the portion that is in contact with oxygen is inhibited. As a result, a portion of the ultraviolet curable resin 2 surrounded by the groove is cured, and a portion that is in contact with air (oxygen) is not cured. Under this condition, the uncured layer was approximately 20 μm.

樹脂固有の硬化特性、硬化時の酸素濃度、及び紫外線量によって、未硬化層の厚さが変わってくる。今回はスピンコート条件を調整してベース層厚さが20μmになるように樹脂を塗布したが、あらかじめ使用する樹脂の未硬化層厚さを実験で確認しておけば異なる樹脂でも硬化後にベース層がほぼすべて未硬化になるように設定することができる。   The thickness of the uncured layer varies depending on the curing characteristics inherent to the resin, the oxygen concentration during curing, and the amount of ultraviolet light. This time, the resin was applied so that the base layer thickness was 20 μm by adjusting the spin coating conditions. However, if the uncured layer thickness of the resin to be used is confirmed in advance by experiment, even if a different resin is cured, the base layer Can be set to be almost uncured.

その後、未硬化樹脂を溶剤を用いて洗浄し除去した(d)。その後、窒素雰囲気中で、残った紫外線硬化型樹脂2の表面に紫外線を照射して界面の半硬化部分を固化させた(e)。樹脂によっては、洗浄後の表面が粗れて平滑にならない場合もある。このようなときは、同一屈折率のポリマーを非常に薄く塗布した後、酸素の少ない雰囲気下で硬化することにより、平滑化が可能である。   Thereafter, the uncured resin was removed by washing with a solvent (d). Thereafter, the surface of the remaining ultraviolet curable resin 2 was irradiated with ultraviolet rays in a nitrogen atmosphere to solidify the semi-cured portion of the interface (e). Depending on the resin, the cleaned surface may be rough and not smooth. In such a case, smoothing is possible by applying a very thin polymer having the same refractive index and then curing in a low oxygen atmosphere.

次に、その表面に紫外線硬化型樹脂3を塗布し、その上から紫外線が透過する補強基板4を載せて密着させた。補強基板4はこの後型から離型するときの補強の意味と、素子自体が薄いため、曲げ、温度変化等への耐性向上の二つの作用を有する。用途によっては使用しなくてもよい。そして、補強基板4を通して紫外線を照射し、紫外線硬化型樹脂3を硬化させた(f)。これにより、紫外線硬化型樹脂2、紫外線硬化型樹脂3、補強基板4は密着して一体化する。なお、導波路として使用するために、紫外線硬化型樹脂2の屈折率n1は、紫外線硬化型樹脂3の屈折率n2より十分大きくされている。   Next, an ultraviolet curable resin 3 was applied to the surface, and a reinforcing substrate 4 through which ultraviolet rays were transmitted was placed and adhered thereto. The reinforcing substrate 4 has two actions of improving the resistance to bending and temperature change because the element itself is thin and the meaning of reinforcement when releasing from the mold after this. It may not be used depending on the application. Then, ultraviolet rays were irradiated through the reinforcing substrate 4 to cure the ultraviolet curable resin 3 (f). As a result, the ultraviolet curable resin 2, the ultraviolet curable resin 3, and the reinforcing substrate 4 are in close contact and integrated. Note that the refractive index n1 of the ultraviolet curable resin 2 is sufficiently larger than the refractive index n2 of the ultraviolet curable resin 3 for use as a waveguide.

その後、型1を剥離すると、紫外線硬化型樹脂2で形成された長さ30mm、断面形状が約80μm角の四角柱が数本独立して紫外線硬化型樹脂3の上に形成されたものができた(g)。   After that, when the mold 1 is peeled off, a plurality of rectangular columns 30 mm long and about 80 μm square formed by the UV curable resin 2 are formed on the UV curable resin 3 independently. (G).

樹脂層界面での光の全反射臨界角θは
sinθ=n2/n1
となり、この四角柱断面に光ファイバーを用いて臨界角以下で光を導入することによって、導波路として機能する。逆に言えば、紫外線硬化型樹脂2と紫外線硬化型樹脂3は、必要な臨界角θを基に選出できる。
The critical angle θ of total reflection of light at the resin layer interface is
sinθ = n2 / n1
Thus, by introducing light at a critical angle or less using an optical fiber into this square column cross section, it functions as a waveguide. In other words, the ultraviolet curable resin 2 and the ultraviolet curable resin 3 can be selected based on the necessary critical angle θ.

また、使用上導波路の凸部が外部に剥き出しになっているとパターンの破壊につながる。この場合、完成した導波路のパターン面を別の樹脂で覆う事ができる。ただし、この樹脂の屈折率n3はn1より必要な臨界角に相当する分だけ十分小さい必要がある。この樹脂が、紫外線硬化型樹脂3と同一であれば一体となった樹脂として、紫外線硬化型樹脂2の導波路を、光ファイバのクラッドのように完全にくるむことになる。   Further, when the convex portion of the waveguide is exposed to the outside in use, the pattern is destroyed. In this case, the pattern surface of the completed waveguide can be covered with another resin. However, the refractive index n3 of this resin needs to be sufficiently smaller than n1 by an amount corresponding to the required critical angle. If this resin is the same as the ultraviolet curable resin 3, the waveguide of the ultraviolet curable resin 2 is completely wrapped like an optical fiber clad as an integrated resin.

さらに、この実施例ではパターンのもととなる型を、石英基板をエッチングして作成し、形状を四角柱状にしたが、この方法は、型の材質と加工方法による影響を受けないので、その他の切削や電鋳などの方法で型を製作してもよく、型の材質は、金属や半導体、樹脂等のであっても何ら問題ない。また、導波路形状も、その断面は四角柱に限らず多角形から曲面まで可能である。導波路パターンも直線に限らず、同一面内であれば曲線、直角、分岐などが可能である。さらに導波路高さも、型の凹部深さが可変であることから、多段構造、傾斜構造などが可能となる。故に導波路に限らず、面の垂直方向に光を通すような各種光学素子などにも応用できる方法となっている。
(実施例2)
以下、本発明の第2の実施例を、図2を用いて説明する。石英基板をエッチングして、導波路に用いる連続した凸部を数本、長さ30mm、断面形状が80μm角となるように形成した。この表面に離型しやすいようにフッ素系離型剤を塗布し、型を作成した(不図示)。
Furthermore, in this example, the mold that is the basis of the pattern was created by etching a quartz substrate and the shape was made a quadrangular prism, but this method is not affected by the mold material and processing method, The mold may be manufactured by a method such as cutting or electroforming, and there is no problem even if the material of the mold is metal, semiconductor, resin or the like. Further, the cross section of the waveguide shape is not limited to a quadrangular prism but can be a polygonal shape to a curved surface. The waveguide pattern is not limited to a straight line, and can be curved, right-angled, branched, or the like as long as it is within the same plane. In addition, since the depth of the concave portion of the mold is variable, a multistage structure, an inclined structure, and the like are possible. Therefore, the method is applicable not only to the waveguide but also to various optical elements that allow light to pass in the direction perpendicular to the surface.
(Example 2)
A second embodiment of the present invention will be described below with reference to FIG. The quartz substrate was etched to form several continuous protrusions for use in the waveguide, a length of 30 mm, and a cross-sectional shape of 80 μm square. A fluorine mold release agent was applied on the surface so as to facilitate the mold release, and a mold was prepared (not shown).

この型から樹脂を用いて反転形状である凹パターンの樹脂製凹板5を転写により形成した。樹脂転写なので量産が可能である。樹脂成型は射出成型でもかまわないが、ここでは紫外線硬化型樹脂を使用し、補強ガラスに密着させた(a)。   A resin concave plate 5 having a concave pattern having an inverted shape was formed by transfer from the mold using resin. Resin transfer enables mass production. The resin molding may be injection molding, but here, an ultraviolet curable resin was used and adhered to the reinforced glass (a).

続いて、樹脂製凹板5の表面に、紫外線硬化型樹脂2をスピンコーターで塗布した。スピンコーターの条件は、あからじめ凹部に樹脂が満ち、かつ凹部以外のベース層に相当する部分の厚さが20μm程度になるように設定した。スピンコートした直後は、凹凸形状に起因するミクロな樹脂ムラが発生しているため、スピンコート停止後所定時間放置した。樹脂粘度にもよるが、数分置くことで凹凸に関係なく樹脂面はほぼ均一化される(b)。   Subsequently, the ultraviolet curable resin 2 was applied to the surface of the resin concave plate 5 with a spin coater. The conditions of the spin coater were set so that the recesses were filled with resin in advance and the thickness of the portion corresponding to the base layer other than the recesses was about 20 μm. Immediately after the spin coating, micro resin unevenness due to the uneven shape was generated, so that the coating was left for a predetermined time after the spin coating was stopped. Although depending on the viscosity of the resin, the resin surface is made almost uniform by placing it for several minutes regardless of the unevenness (b).

続いて、大気中、もしくは故意に酸素濃度の高い雰囲気中でこれに紫外線を照射した(c)。紫外線硬化型樹脂2は嫌気性を持っており、酸素に触れている部分の樹脂は硬化が阻害される。これにより紫外線硬化型樹脂2は樹脂製凹板5の凹部に囲まれた部分は硬化し、空気(酸素)に触れた部分は硬化しない。この条件では未硬化層はおよそ20μmになった。   Subsequently, this was irradiated with ultraviolet rays in the atmosphere or in an atmosphere with a deliberately high oxygen concentration (c). The ultraviolet curable resin 2 has anaerobic properties, and curing of the resin in the portion that is in contact with oxygen is inhibited. As a result, the ultraviolet curable resin 2 is cured at the portion surrounded by the concave portion of the resin concave plate 5 and is not cured at the portion exposed to air (oxygen). Under this condition, the uncured layer was approximately 20 μm.

樹脂固有の硬化特性、硬化時の酸素濃度、及び紫外線量によって、未硬化層の厚さが変わってくる。今回はスピンコート条件を調整してベース層厚さが20μmになるように樹脂を塗布したが、あらかじめ使用する樹脂の未硬化層厚さを実験で確認しておけば異なる樹脂でも硬化後にベース層がほぼすべて未硬化になるように設定することができる。   The thickness of the uncured layer varies depending on the curing characteristics inherent to the resin, the oxygen concentration during curing, and the amount of ultraviolet light. This time, the resin was applied so that the base layer thickness was 20 μm by adjusting the spin coating conditions. However, if the uncured layer thickness of the resin to be used is confirmed in advance by experiment, even if a different resin is cured, the base layer Can be set to be almost uncured.

その後、未硬化樹脂を溶剤を用いて洗浄して未硬化部分を除去した(d)。そして、酸素濃度の低い窒素雰囲気中で紫外線を照射して界面を硬化させた(e)。   Thereafter, the uncured resin was washed with a solvent to remove the uncured portion (d). Then, ultraviolet rays were irradiated in a nitrogen atmosphere with a low oxygen concentration to cure the interface (e).

そして、その表面に紫外線硬化型樹脂3をスピンコートにより塗布し、表面が平坦になった後に、紫外線を照射して硬化させた(f)。このようにして、紫外線硬化型樹脂3と樹脂製凹板5で囲まれた、紫外線硬化型樹脂2からなる長さ30mm、断面形状が約80μm角の四角柱が、数本独立して形成された。紫外線硬化型樹脂3の屈折率と、樹脂製凹板5を構成する樹脂の屈折率は紫外線硬化型樹脂2の屈折率より十分小さいので、界面で全反射が起こり、紫外線硬化型樹脂2は、導波路としての役割を果たす。   And the ultraviolet curable resin 3 was apply | coated to the surface by spin coating, and after the surface became flat, it was hardened by irradiating with ultraviolet rays (f). In this way, several square columns each having a length of 30 mm and a cross-sectional shape of about 80 μm square surrounded by the ultraviolet curable resin 3 and the resin concave plate 5 are formed independently. It was. Since the refractive index of the ultraviolet curable resin 3 and the refractive index of the resin constituting the resin concave plate 5 are sufficiently smaller than the refractive index of the ultraviolet curable resin 2, total reflection occurs at the interface. Acts as a waveguide.

本発明の第1の実施例を説明するための図である。It is a figure for demonstrating the 1st Example of this invention. 本発明の第2の実施例を説明するための図である。It is a figure for demonstrating the 2nd Example of this invention.

符号の説明Explanation of symbols

1…型、2…紫外線硬化型樹脂、3…紫外線硬化型樹脂、4…補強基板、5…樹脂製凹板、
DESCRIPTION OF SYMBOLS 1 ... Type | mold, 2 ... Ultraviolet curable resin, 3 ... Ultraviolet curable resin, 4 ... Reinforcement board, 5 ... Resin concave plate,

Claims (6)

型に形成されたパターンを樹脂に転写する工程を含む樹脂の成型方法であって、樹脂として嫌気性樹脂を使用し、型の凹部に前記樹脂を充填して、酸素濃度20%以上の雰囲気中で前記樹脂を硬化させ、その後、前記樹脂の未硬化部分を洗浄して取り除く工程を含むことを特徴とする樹脂の成型方法。 A resin molding method including a step of transferring a pattern formed on a mold to a resin, using an anaerobic resin as the resin, filling the concave portion of the mold with the resin, and in an atmosphere having an oxygen concentration of 20% or more And a step of curing the resin and then washing and removing uncured portions of the resin. 前記樹脂の未硬化部分を洗浄して取り除いた後、残った前記樹脂の表面を、酸素濃度5%以下の雰囲気中で硬化させる工程を含むことを特徴とする請求項1に記載の樹脂の成型方法。 The resin molding according to claim 1, further comprising a step of curing the remaining surface of the resin in an atmosphere having an oxygen concentration of 5% or less after removing the uncured portion of the resin by washing. Method. 型の凹部に嫌気性樹脂を充填して、酸素濃度20%以上の雰囲気中で前記嫌気性樹脂を硬化させ、その後、前記嫌気性樹脂の未硬化部分を洗浄して取り除き、その後、前記嫌気性樹脂の表面に、前記嫌気性樹脂より屈折率の低い別の樹脂を塗布して硬化させ、その後、一体化した前記嫌気性樹脂、前記別の樹脂を、前記凹型から剥離する工程を含むことを特徴とする光学素子の製造方法。 An anaerobic resin is filled in the concave portion of the mold, the anaerobic resin is cured in an atmosphere having an oxygen concentration of 20% or more, and then an uncured portion of the anaerobic resin is washed away and then the anaerobic resin is removed. Applying another resin having a refractive index lower than that of the anaerobic resin on the surface of the resin and curing the resin, and then removing the integrated anaerobic resin and the other resin from the concave mold. A method for manufacturing an optical element. 型の凹部に嫌気性樹脂を充填して、酸素濃度20%以上の雰囲気中中で前記嫌気性樹脂を硬化させ、その後、前記嫌気性樹脂の未硬化部分を洗浄して取り除き、その後、前記嫌気性樹脂の表面に、前記嫌気性樹脂より屈折率の低い別の樹脂を塗布して、前記別の樹脂を補強基板で押圧した状態で硬化させ、その後、一体化した前記嫌気性樹脂、前記別の樹脂、前記補強基板を、前記凹型から剥離する工程を含むことを特徴とする光学素子の製造方法。 The recess of the mold is filled with anaerobic resin, the anaerobic resin is cured in an atmosphere having an oxygen concentration of 20% or more, and then the uncured portion of the anaerobic resin is washed away and then the anaerobic resin is removed. An additional resin having a refractive index lower than that of the anaerobic resin is applied to the surface of the anionic resin, and the other resin is cured while being pressed with a reinforcing substrate, and then the integrated anaerobic resin, The method of manufacturing an optical element, comprising the step of peeling the resin and the reinforcing substrate from the concave mold. 前記嫌気性樹脂の未硬化部分を洗浄して取り除いた後、前記嫌気性樹脂の上に、前記嫌気性樹脂より屈折率の低い別の樹脂を塗布する前に、残った前記嫌気性樹脂の表面を、酸素濃度5%以下の雰囲気中で硬化させる工程を含むことを特徴とする請求項3又は請求項4に記載の光学素子の製造方法。 After washing and removing the uncured portion of the anaerobic resin, before applying another resin having a lower refractive index than the anaerobic resin on the anaerobic resin, the remaining surface of the anaerobic resin The method for producing an optical element according to claim 3, further comprising a step of curing in an atmosphere having an oxygen concentration of 5% or less. 請求項3から請求項5のうちいずれか1項に記載の光学素子が導光路であることを特徴とする光学素子の製造方法。
The optical element according to any one of claims 3 to 5, wherein the optical element is a light guide.
JP2005350697A 2005-12-05 2005-12-05 Molding method for resin, and manufacturing method for optical element Pending JP2007152724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350697A JP2007152724A (en) 2005-12-05 2005-12-05 Molding method for resin, and manufacturing method for optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350697A JP2007152724A (en) 2005-12-05 2005-12-05 Molding method for resin, and manufacturing method for optical element

Publications (1)

Publication Number Publication Date
JP2007152724A true JP2007152724A (en) 2007-06-21

Family

ID=38237680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350697A Pending JP2007152724A (en) 2005-12-05 2005-12-05 Molding method for resin, and manufacturing method for optical element

Country Status (1)

Country Link
JP (1) JP2007152724A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190300A (en) * 2008-02-15 2009-08-27 Toppan Printing Co Ltd Imprint device and imprint method
JP2010076300A (en) * 2008-09-26 2010-04-08 Canon Inc Processing apparatus
WO2010090088A1 (en) * 2009-02-03 2010-08-12 コニカミノルタホールディングス株式会社 Base material manufacturing method, nanoimprint lithography method and mold replication method
JP2011051098A (en) * 2009-08-31 2011-03-17 Olympus Corp Method of manufacturing optical element, and the optical element
JP2011108805A (en) * 2009-11-17 2011-06-02 Dainippon Printing Co Ltd Pattern forming method by nano imprint
JP2013251560A (en) * 2013-07-18 2013-12-12 Dainippon Printing Co Ltd Nanoimprint method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190300A (en) * 2008-02-15 2009-08-27 Toppan Printing Co Ltd Imprint device and imprint method
JP2010076300A (en) * 2008-09-26 2010-04-08 Canon Inc Processing apparatus
WO2010090088A1 (en) * 2009-02-03 2010-08-12 コニカミノルタホールディングス株式会社 Base material manufacturing method, nanoimprint lithography method and mold replication method
JP5633744B2 (en) * 2009-02-03 2014-12-03 コニカミノルタ株式会社 Substrate preparation method, nanoimprint lithography method and mold replication method
JP2011051098A (en) * 2009-08-31 2011-03-17 Olympus Corp Method of manufacturing optical element, and the optical element
JP2011108805A (en) * 2009-11-17 2011-06-02 Dainippon Printing Co Ltd Pattern forming method by nano imprint
JP2013251560A (en) * 2013-07-18 2013-12-12 Dainippon Printing Co Ltd Nanoimprint method

Similar Documents

Publication Publication Date Title
TWI398902B (en) Soft mold and method of fabricating the same
KR100638826B1 (en) Method of manufacturing a high sag lens
JP2007152724A (en) Molding method for resin, and manufacturing method for optical element
ATE541231T1 (en) PROCESS FOR PRODUCTION OF AN OPTICAL FILM WAVEGUIDE
US7317861B2 (en) Method of producing polymer optical waveguide
JP2004144987A (en) Manufacturing method of polymeric optical waveguide
US6847773B2 (en) Optical waveguide and method for manufacturing the same
JP2004106320A (en) Manufacturing method for article with fine surface structure
JP4696813B2 (en) Mold manufacturing method
JP4371777B2 (en) Resin curing method and resin molded product manufacturing method
JP2007517253A (en) Production of polymer optical waveguides using molds
WO2017073370A1 (en) Film mold and imprinting method
JP4534415B2 (en) Method for producing polymer optical waveguide
JP2006263975A (en) Manufacturing method of optical element
WO2006066614A1 (en) Method for manufacturing optical devices
JP2003021741A (en) Manufacturing method for optical waveguide
JPH04157403A (en) Light wave guide and manufacture thereof
JPH08327844A (en) Production of optical waveguide
JP2006011211A (en) Manufacturing method of polymer optical waveguide, mold used therefor, and manufacturing method thereof
US8778452B2 (en) Method of manufacturing optical waveguide
KR100455088B1 (en) Production method of lightwave guide
JP2005099514A (en) Method for manufacturing optical waveguide
JP2005208187A (en) Optical device having waveguide structure and its manufacturing method
JP4337559B2 (en) Mold for producing polymer optical waveguide and method for producing polymer optical waveguide
KR20040037614A (en) Method of manufacturing 2-dimensional polymeric optical waveguide using hot embossing process